Cybersecurity and financial stability^a

Kartik Anand¹ Chanelle Duley² Prasanna Gai² 2022 RiskLab/BoF/ESRB Conference on Systemic Risk Analytics

¹ Deutsche Bundesbank ² University of Auckland

^aThis paper represents the authors' personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.

Two observations

■ Digital transformations of banks gathering pace ..

Two observations

■ Digital transformations of banks gathering pace ..

 ... but so too are cyber attacks on financial institutions

➤ Classification of cyber attacks

→ Recent examples

Our research agenda

- Kashyap and Wetherilt (2019) emphasis the role of shared services (e.g., digital platform) in creating common vulnerabilities that amplify cyber shocks
- Duffie and Younger (2019) argue that cyber attacks can morph into wholesale bank runs
- Eisenbach et al (2021) estimate there to be negative spillovers in wholesale funding markets following a cyber attack on a large U.S. based bank

2

Our research agenda

- Kashyap and Wetherilt (2019) emphasis the role of shared services (e.g., digital platform) in creating common vulnerabilities that amplify cyber shocks
- Duffie and Younger (2019) argue that cyber attacks can morph into wholesale bank runs
- Eisenbach et al (2021) estimate there to be negative spillovers in wholesale funding markets following a cyber attack on a large U.S. based bank
- Our paper: theoretical model of cybersecurity and financial stability
- Key message: Cybersecurity bears the hallmarks of a weakest-link public good

```
\begin{cases} \text{Ex ante free riding problem} & \downarrow \\ \\ \text{Ex post coordination failure} & \uparrow \end{cases}
```

2

Our model

- Banks own safe legacy assets funded by equity and debt (subject to runs)
- IT infrastructure (software / hardware) required to manage assets
 - Outsourced to a 'platform' that serves multiple banks
 - But, the platform has a vulnerability that can be exploited using malicious code to cause outages (e.g., Stuxnet exploited vulnerabilities in industrial control systems)
 - Attackers must deploy their code in banks' systems that interface with the platform
- Banks have initial endowments and choose how much to it to invest in
 - ► Cybersecurity (public good) → monitor and repel unauthorised intrusions
 - ▶ Operational resilience (private good) → backup systems to mitigate outages

The 'cyber' ingredients

- Cybersecurity is a weakest-link public-good (Varian, 2004)
 - ▶ Platform correlates cyber risks (Lipp et al., 2018, Canella et al., 2019).
 - Draw on Cornes (1993) in modelling cybersecurity as a "weaker-link" public good positive externalities, and higher marginal product for lower investment levels

The 'cyber' ingredients

- Cybersecurity is a weakest-link public-good (Varian, 2004)
 - ▶ Platform correlates cyber risks (Lipp et al., 2018, Canella et al., 2019).
 - Draw on Cornes (1993) in modelling cybersecurity as a "weaker-link" public good positive externalities, and higher marginal product for lower investment levels
- Three elements of cyber attacks
 - ► Attack intensity is uncertain → 'attribution problem' (Hayden, 2011)
 - ► Cause outages that temporarily suspended operations (Cloudflare, 2021)
 - ► Generate long-lasting damages for victims (Lewis et al., 2020)

The 'cyber' ingredients

- Cybersecurity is a weakest-link public-good (Varian, 2004)
 - Platform correlates cyber risks (Lipp et al., 2018, Canella et al., 2019).
 - Draw on Cornes (1993) in modelling cybersecurity as a "weaker-link" public good positive externalities, and higher marginal product for lower investment levels
- Three elements of cyber attacks
 - ► Attack intensity is uncertain → 'attribution problem' (Hayden, 2011)
 - ► Cause outages that temporarily suspended operations (Cloudflare, 2021)
 - ► Generate long-lasting damages for victims (Lewis et al., 2020)
- Disruptions mitigated through investments in operational resilience (e.g., data vaults, resilience planning), which is a private good
 - ▶ Sheltered Harbor is a certification for banks that implement robust safeguards

Related Literature

- Investment in cybersecurity (theory): Gordon and Loeb (2002), Varian (2004), Anderson and Moore, (2006), Grossklag et al (2008), Kamhoua et al (2014)
- Investment in cybersecurity (empirical): Aldasoro et al (2020), Gogolin et al (2021), Jamilov et al (2021)
- Cybersecurity and financial stability: Kashyap and Wetherilt (2019), Duffie and Younger (2019), Eisenbach et al (2021)

Model

Environment and agents

i: endowment W_i

j: endowment
$$W_j$$

$$I = D + E$$

$$E > 0$$

Safe investment Return R>1; Face value of debt F>0

Investment decisions (t = 0)

Safe investment Return R>1; Face value of debt F>0

7

Investment decisions (t = 0)

Safe investment Return R>1; Face value of debt F>0

В

Cyber attack and disruption to the platform (t = 1)

If $\ell_b \in (0,1)$ of debt is withdrawn, bank b fails due to illiquidity whenever $R(1-\alpha(1-h(O_b)))-\ell_bFD < 0$

9

Rollover decisions

- \blacksquare Attack intensity: $\lambda \in [0,\bar{\lambda}]$
- Outage shock: $\alpha \in [0,1]$
- Rollover decisions delegated to fund managers (Rochet and Vives, 2004)
 - ▶ Fund managers' conservatism $\gamma \le 1$ → rollover risk / coordination failure
 - ightharpoonup Larger $\gamma \rightarrow$ greater incentives to withdraw
- Fund manager k (bank b) receives a noisy private signal

$$x_{bk} = \alpha + \varepsilon_k$$
,

with $\varepsilon_k \in [-\varepsilon, \varepsilon]$; withdraw decision based on the signal

Platform resumes operations and debts mature (t=2)

Bank b fails due to **insolvency** whenever $R\Big(1-\alpha\delta\big(1-h(O_b)\big)\Big)-\ell_bFD<(1-\ell_b)FD$

Equilibrium

Symmetric pure strategy PBE

- Focus on threshold strategies
 - ► Fund manager k rolls over debt with bank b whenever $x_{bk} < x_b^*$
- Equilibrium consists of
 - At t=1: given choices (O_b^*, S_b^*) the threshold strategy x_b^* maximises fund managers expected payoff and the bank fails whenever $\alpha > \alpha_b^*$ following a successful cyber attack
 - At t=0: given (x_b^*, α_b^*) , bank b chooses (O_b^*, S_b^*) to maximise expected equity value given the budget constraints, and the choices of the other bank

- Illiquidity threshold: $\alpha_b^{IL}(\ell_b) \equiv \frac{R \ell_b FD}{R(1 h(O_b))}$
- Insolvency threshold: $\alpha_b^{IN} \equiv \frac{R-FD}{R\delta(1-h(O_b))}$

- Illiquidity threshold: $\alpha_b^{IL}(\ell_b) \equiv \frac{R \ell_b FD}{R(1 h(O_b))}$
- Insolvency threshold: $\alpha_b^{IN} \equiv \frac{R-FD}{R\delta(1-h(O_b))}$

■ Illiquidity threshold: $\alpha_b^{IL}(\ell_b) \equiv \frac{R - \ell_b FD}{R(1 - h(O_b))}$

■ Insolvency threshold: $\alpha_b^{IN} \equiv \frac{R-FD}{R\delta(1-h(O_b))}$

■ Illiquidity threshold: $\alpha_b^{IL}(\ell_b) \equiv \frac{R - \ell_b FD}{R(1 - h(O_b))}$

■ Insolvency threshold: $\alpha_b^{IN} \equiv \frac{R-FD}{R\delta(1-h(O_b))}$

Outage shocks and bank fragility

Proposition

There exist a unique failure threshold:

$$\alpha_b^* = \begin{cases} \alpha_b^{\mathit{IN}} & \textit{if} \quad \gamma < \widehat{\gamma} \\ \\ \alpha_b^{\mathit{IL}}(\gamma) & \textit{if} \quad \gamma \geq \widehat{\gamma} \end{cases}.$$

- \blacksquare Funding conditions matter: illiquidity risk arises only when γ is large
- Greater investment in cybersecurity increases fragility

Optimal investment choices

- Bank b chooses its investments in cybersecurity and operational resilience
 - ► Maximise expected equity value, π_b
 - ▶ Taking as given the the investment by other banks, \vec{S}_{-b}

$$\begin{array}{ll} \max_{O_b,S_b} \pi_b & \equiv & \overbrace{\operatorname{Prob}\left(\lambda \leq \chi(S_b,\vec{S}_{-b})\right)}^{\operatorname{Probability cyber attack fails}} \times \overbrace{[R-FD]}^{\operatorname{Equity value}} \\ & + & \underbrace{\operatorname{Prob}\left(\lambda > \chi(S_b,\vec{S}_{-b})\right)}_{\operatorname{Probability cyber attack successful}} \times \underbrace{\int_{0}^{\alpha_b^*(O_b)} EV_2(\alpha,O_b) d\alpha}_{\operatorname{Equity value depending on outage}} \end{array}$$

where
$$EV_2(\alpha, O_b) = R(1 - \alpha \delta(1 - h(O_b)) - FD$$
, and $O_b + S_b = W_b$

Optimal investment choices

■ Bank b chooses its investments in cybersecurity and operational resilience

where $EV_2(\alpha, O_b) = R(1 - \alpha \delta(1 - h(O_b)) - FD$, and $O_b + S_b = W_b$

- ▶ Maximise expected equity value, π_b
- ▶ Taking as given the the investment by other banks, \vec{S}_{-b}

$$\max_{O_b,S_b} \pi_b \equiv \underbrace{\Prob\left(\lambda \leq \chi(S_b,\vec{S}_{-b})\right)}_{Probability \ cyber \ attack \ fails} \underbrace{\frac{\text{Equity value}}{[R-FD]}}_{Equity \ value}$$

$$+ \underbrace{\Prob\left(\lambda > \chi(S_b,\vec{S}_{-b})\right)}_{Probability \ cyber \ attack \ successful} \underbrace{\frac{\Gamma}{R-FD}}_{Equity \ value \ depending \ on \ outage}}_{Equity \ value \ depending \ on \ outage}$$

■ Trade-off

- Investing more in cybersecurity reduces the incidents of successful cyber attacks and thereby the likelihood of earning higher returns
- But, conditional on the cyber attack being successful the bank is more fragile and susceptible to failing the more it invests in cybersecurity

Benchmark 1: No free-riding problem and no rollover risk

- Planner accounts for how each banks' decisions influence other banks
- \blacksquare When $\gamma < \widehat{\gamma},$ failure driven by insolvency: failure threshold $\alpha_b^{\it IN}$
- Samuelson Condition

$$\sum_{b=1}^{N} \frac{\overbrace{(R-FD)-\int_{0}^{\alpha_{b}^{IN}}EV_{2}(\alpha,O_{b})d\alpha}^{(R-FD)-\int_{0}^{\alpha_{b}^{IN}}EV_{2}(\alpha,O_{b})d\alpha}} = \frac{1}{\partial \chi/\partial S_{b}}.$$

$$\underbrace{\sum_{b=1}^{N} \underbrace{(\bar{\lambda}-\chi)\int_{0}^{\alpha_{b}^{IN}}(\partial EV_{2}/\partial O_{b})d\alpha}_{\equiv \partial \pi_{j}/\partial O_{b}}} = \frac{1}{\partial \chi/\partial S_{b}}.$$

■ Free-riding reduces incentives to invest in cybersecurity

Benchmark 2: No free-riding problem but with rollover risk

- lacktriangle When $\gamma \geq \widehat{\gamma} o$ failure driven by illiquidity; failure threshold $\alpha_b^{IL}(\gamma)$
- Samuelson Condition

$$\sum_{b=1}^{N} \underbrace{\frac{(R-FD) - \int_{0}^{\alpha_{b}^{L}(\gamma)} EV_{2}(\alpha, O_{b}) d\alpha}{(R-FD) - \int_{0}^{\alpha_{b}^{L}(\gamma)} EV_{2}(\alpha, O_{b}) d\alpha}}_{\equiv \partial \pi_{j} / \partial O_{j}} = \frac{1}{\partial \chi / \partial S_{b}}.$$

- Two effects of rollover risk on marginal rate of substitution
 - **1** MB from an extra unit of cybersecurity is higher $(\alpha_b^{IL}(\gamma) < \alpha_b^{IN})$
 - MB from higher operational resilience is lower (since run is 'inefficient')
- Rollover risk increases incentives to invest in cybersecurity

 \blacksquare Assume $\gamma \geq \widehat{\gamma} \rightarrow$ failure driven by illiquidity

 \blacksquare Assume $\gamma \geq \widehat{\gamma} \rightarrow$ failure driven by illiquidity

■ Assume $\gamma \ge \widehat{\gamma} \rightarrow$ failure driven by illiquidity

■ Assume $\gamma \ge \widehat{\gamma} \rightarrow$ failure driven by illiquidity

 \blacksquare Assume $\gamma \geq \widehat{\gamma} \rightarrow$ failure driven by illiquidity

■ Assume $\gamma \ge \widehat{\gamma} \rightarrow$ failure driven by illiquidity

Proposition

Bank b's investments, (S_b^*, O_b^*) , given other banks' investments, $(\vec{S}_{-b}, \vec{O}_{-b})$, solves:

$$\frac{\partial \pi_b/\partial \chi}{\partial \pi_b/\partial \, O_b} = \frac{1}{\partial \chi/\partial \, S_b} \,, \label{eq:delta_b}$$

where $\partial S_b^*/\partial S_j > 0$ for any $j \neq b$.

System-wide equilibrium

Proposition

There exist two Nash equilibria: all banks, b = 1, ..., N

- (i) invest nothing in cybersecurity, $S_b^* = 0$, and $O_b^* = W_b$ in operational resilience;
- (ii) invest $S_b^* \in (0, W_b)$ in cybersecurity and $O_b^* = W_b S_b^*$ in operational resilience.

Comparative statics

	S_b^*	Comments
Endowment (W_b)	\uparrow iff $W_b \leq \widehat{W}$	Countervailing effects: (i) $\partial \pi_b/\partial \chi \downarrow$ and (ii) $\partial \pi_b/\partial O_b \downarrow$
Equity (E_b)	↓	More skin in the game \rightarrow more to lose if bank fails
Attack intensity (λ)	\	More likely cyber attack will succeed \rightarrow greater incentives to mitigate outages
Attack deadweight loss (δ)	†	Larger benefits from staving off cyber attacks altogether

■ Compare Laissez faire outcome with Benchmark 2

■ Compare Laissez faire outcome with Benchmark 2

Proposition

There is under-investment in cybersecurity, $S_b^* < S_b^P$; the extent of the under-investment is growing in γ .

- Laissez faire outcome is constrained inefficient
- lacktriangle As γ increases, MRS_b increases for all banks o higher S_b^P and $|S_b^P S_b^*|$

- Benchmark outcome can be achieved by
 - Imposing at t = 0 banks investment optimally (e.g., stress-tests)
 - \blacksquare Penalising banks at t=2 that did not exhibit 'due care' following a cyber attack (e.g., recent SEC penalties on financial institutions)

Conclusion

- We develop a model to study cybersecurity and financial stability
 - ► Common IT infrastructure correlate risks across banks
 - ► Cybersecurity is a weakest-link public good
- Investment in cybersecurity trades-off lowering the probability of a successful cyber attack and raising fragility in the event of a successful attack
- \blacksquare Laissez faire outcome is constrained inefficient \to role for regulation/supervision of cybersecurity
- Several testable implications for investment in cybersecurity (go through even after endogenising face value of debt)

Conclusion

- We develop a model to study cybersecurity and financial stability
 - ► Common IT infrastructure correlate risks across banks
 - ► Cybersecurity is a weakest-link public good
- Investment in cybersecurity trades-off lowering the probability of a successful cyber attack and raising fragility in the event of a successful attack
- \blacksquare Laissez faire outcome is constrained inefficient \to role for regulation/supervision of cybersecurity
- Several testable implications for investment in cybersecurity (go through even after endogenising face value of debt)

Thank you!

Classification of cyber events

 \blacksquare Federal Information Security Management Act of 2002

Classification of cyber events

- Federal Information Security Management Act of 2002
- Confidentiality of data is breached
 - Losses may stem from liability due to damages caused to customers or from competitors learning about a bank's trading strategies
- Availability of data is compromised
 - ▶ Losses may stem from bank capital or liquidity becoming immobilised
- Integrity of data is impaired
 - Losses may stem from inability to perform core activities

→ return

Recent attacks on financial institutions

- Europe & South-East Asia (May 2021): Insurance firm AXA subject to ransomware attack → integrity of data processed by a third-party IT firm compromised
- Hungary (September 2020): Telecommunications systems suffered DDoS attack → availability of data and services compromised for banks
- New Zealand (August 2020): Network provider suffered DDoS attack → NZ Stock Exchange shut down operations → availability of data and services compromised for banks

Recent attacks on financial institutions

- Europe & South-East Asia (May 2021): Insurance firm AXA subject to ransomware attack → integrity of data processed by a third-party IT firm compromised
- Hungary (September 2020): Telecommunications systems suffered DDoS attack → availability of data and services compromised for banks
- New Zealand (August 2020): Network provider suffered DDoS attack → NZ Stock Exchange shut down operations → availability of data and services compromised for banks
- Key ingredient
 - ▶ Disruptions involved common IT infrastructure (platforms)

