Monetary Policy and Inflation Scares¹

Christopher Erceg Jesper Lindé Mathias Trabandt

 $^{^{1}}$ Views expressed are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Motivation: The Inflation Surge

• Major CBs attempted to "look through" a transient inflation surge.

Motivation: U.S. Data

• Professional forecasters underestimated inflationary pressures and growth momentum

Questions

- How can we account for the surge in observed inflation *and* the dynamics of SPF inflation forecasts?
- What are the risks of "looking through" large supply shocks, especially in a hot economy?
- How do Phillips Curve nonlinearities affect the costs of disinflation?
- What are the lessons of post-Covid inflation dynamics for the conduct of monetary policy going forward?

Outline

- Motivation & Questions \checkmark
- Model Overview
- Model-Data Comparison & Analysis
- Policy Implications and Conclusions

Model Overview

- Starting point: model in Harding, Lindé and Trabandt (2022, 2023).
 - Nonlinear New Keynesian model with sticky prices and sticky wages (Erceg, Henderson and Levin, 2000, EHL) plus Kimball aggregation (1995).
 - Nonlinear price and wage inflation Phillips curves.
- Three new model features:
- **①** Unobserved components representation of cost-push shock.
- **2** Forecast-targeting Taylor rule.
- **③** State-dependent price and wage indexation (rule-of-thumb price/wage setting).

Linearized EHL Model with Kimball Aggregation

$$\kappa_{j} = \frac{\left(1 - \xi_{j}\right)\left(1 - \beta\xi_{j}\right)}{\xi_{j}} \frac{1}{1 - \left(1 + \theta_{j}\right)\psi_{j}} \text{ for } j \in \{p, w\}$$

Harding, Lindé and Trabandt (2022, 2023): study effects of cost-push shocks (a_t) and discount factor shocks (δ_t) in nonlinear model.

Cost-push Shock: Unobserved Components Representation

- Cost-push shock, a_t , consists of an iid part $a_{T,t}$ and a persistent part $a_{P,t}$.
 - Agents can observe a_t but not $a_{T,t}$ or $a_{P,t}$.
- Similar to e.g. Erceg and Levin (2003) and Edge, Laubach and Williams (2007).
- State space system:

$$a_t = egin{bmatrix} 1 & 1 \end{bmatrix} egin{bmatrix} a_t^P \ a_t^P \ a_t^T \end{bmatrix} \ a_{t+1}^P = egin{bmatrix}
ho_P & 0 \ 0 & 0 \end{bmatrix} egin{bmatrix} a_t^P \ a_t^T \ 0 & \sigma_T \end{bmatrix} egin{bmatrix} arepsilon_{t+1}^P \ arepsilon_{t+1}^P \ arepsilon_{t+1}^P \end{bmatrix}$$

• Agents use Kalman filter to predict $a_{T,t|t}$ and $a_{P,t|t}$; Assume $\sigma_T > \sigma_P$.

Forecast-targeting Taylor Rule

• Forecast-targeting Taylor rule:

$$\frac{R_t}{R} = \left\{\frac{R_{t-1}}{R}\right\}^{\rho} \left\{\frac{E_t \Pi_{t+4}}{\Pi}\right\}^{(1-\rho)\gamma_{\pi}} \left\{\frac{y_t}{y_t^{pot}}\right\}^{(1-\rho)\gamma_{\chi}}$$

- Baseline: Four-quarter ahead expected inflation (qoq), i.e. $E_t \Pi_{t+4} = E_t \frac{P_{t+4}}{P_{t+3}}$.
- Variations: Π_t or $E_t \Pi_{t+8}$.

State-dependent Indexation

• Non-optimizing (rule-of-thumb) firms set $P_{i,t} = (\Pi^{1-\varkappa_t}\Pi_{t-1}^{\varkappa_t}) \times P_{i,t-1}$ where

$$arkappa_t = e^{-rac{arrho}{\max\left(\Pi_t^* - \Pi_t \ 0.0001
ight)}}$$
 and $\Pi_t^* = \left(\Pi_{t-1}^*
ight)^\omega \left(\Pi_{t-1}
ight)^{1-\omega}$

Shocks and Solution Algorithm

- Shock to persistent cost-push shock component, $a_{P,t}$.
- Standard demand shock (negative discount factor shock), δ_t .
- Solve the nonlinear model with sequential Fair-Taylor (1983) algorithm.

Parameters I

П Steady state gross inflation rate 1.005

- Net price markup in steady state 0.1
- $heta_p \\ ilde{\xi}_p$ 2/3 Calvo price stickiness parameter
- ψ_p Parameter Kimball aggregator prices -12
 - 0.002 Curvature parameter endogenous indexation Q
- 0.8 Parameter in endogenous. indexation ω
- Inflation indexation parameter in linear model 0 \mathcal{X}
- θ_w 0.1 Net wage markup in steady state
- ξ_w Calvo wage stickiness parameter 0.75
- -6 Parameter Kimball aggregator wages ψ_w

Parameters II

- ho = 0.85 Taylor rule: interest rate smoothing
- γ_{π} 1.5 Taylor rule: coef. on expected inflation
- $\gamma_x = 0.125$ Taylor rule: coef. on output gap
- eta 0.995 Household discount factor
- h = 0.7 Household consumption habit
- χ 0 Inverse Frisch elasticity of labor supply
- $\rho_P = 0.9$ AR(1) persistent cost-push shock
- $ho_T = 0$ AR(1) transitory cost-push shock
- σ_P 1 Standard deviation persistent cost shock
- σ_T 10 Standard deviation transitory cost shock
- ho_{δ} 0.9 AR(1) discount factor shock

Outline

- Motivation & Questions \checkmark
- Model Overview \checkmark
- Model-Data Comparison & Analysis
- Policy Implications and Conclusions

Model-Data Comparison: Nonlinear Model

Effects of Adverse Cost-Push Shock

Cost-Push Shock: Role of Inflation Variable in Policy Rule

State-Dependent Amplification of Cost-Push Shocks

Baseline: Discount		Scenario: Baseline+Same-	State-dependent Effects
Factor Shock		Sized Cost-Push Shock	of Cost-Push Shock
Discount Shock	Inflation Peak	Inflation Peak	∆ Inflation Peak (Scenario-Baseline)
-0.0%	2% (Steady State)	6.7%	4.7%
-0.5%	2.2%	8.0%	5.8%
-1.0%	2.4%	9.4%	7.0%
-1.5%	2.7%	10.8%	8.1%
-2.0%	3.2%	12.2%	9.0%

Impact of Nonlinearities: Cost-Push Shock

Impact of Shock Size: Cost-Push Shock

"Looking trough" Transient Cost-Push Shock

How Costly is the Last Mile?

• Adverse shock shifts economy from A to B, but more aggressive policy may bring economy to point D rather than C.

Quantifying the Last Mile – More Monetary Tightening

More Monetary Tightening: Stochastic Simulations

Outline

- Motivation & Questions \checkmark
- Model Overview \checkmark
- Model-Data Comparison & Results \checkmark
- Policy Implications and Conclusions

Policy Implications and Conclusions

- Nonlinear model accounts well for inflation surge and expansion in economic activity.
 - **Key:** central bank misjudges persistence of underlying inflationary pressures. Does not hike policy rate as it (erroneously) expects quickly dissipating inflationary pressures.
 - Ensuing fall in real interest rate boosts economic activity even with inflation being high.
- Nonlinear model accounts for data much better than linearized version.
- Analysis highlights risks of putting too much weight on "point forecasts" of inflation, especially with large forecast uncertainty.
 - Nonlinear model shows "looking through" supply shocks reasonable if inflation is near target; "looking through" risky if inflation is above target.

Policy Implications and Conclusions

- Nonlinear model points to effects of cost-push shocks being state-dependent. A given cost-push shock amplifies inflation by more if inflation is elevated to begin with.
- Costs of returning inflation to target quickly may be amplified considerably if inflation is allowed to persist for some time.
- Analysis suggests that interaction of nonlinearities and more persistent shocks crucial to understand 2021-23 episode and critical to formulate good policy.

Thank you for your attention.

Paper, slides, and codes available at www.mathiastrabandt.com

Annex

- Competitive firms aggregate intermediate goods $Y_{i,t}$ into final good Y_t using technology $\int_0^1 G(Y_{i,t}/Y_t) di = 1.$
- Following Dotsey-King (2005) and Levin-Lopez-Salido-Yun (2007):

$$G\left(\frac{Y_{i,t}}{Y_t}\right) = \frac{\omega_p}{1+\psi_p} \left[\left(1+\psi_p\right) \left(\frac{Y_{i,t}}{Y_t}\right) - \psi_p \right]^{\frac{1}{\omega_p}} + \frac{1+\psi_p - \omega_p}{1+\psi_p}$$

- $\psi_p < 0$: Kimball (1995), $\psi_p = 0$: Dixit-Stiglitz.
- Kimball aggregator: demand elasticity for intermediate goods increasing function of relative price.
 - Firms increase prices more than they cut prices because of quasi-kinked demand.

State-dependent Indexation

• Non-optimizing (rule-of-thumb) firms set $P_{i,t} = \tilde{\Pi}_t P_{i,t-1}$ where $\tilde{\Pi}_t = \Pi^{1-\varkappa_t} \Pi_{t-1}^{\varkappa_t}$ and

$$arkappa_t = e^{-rac{arrho}{\max(\Pi_t^* - \Pi_t \, 0.0001)}}$$
, $\Pi_t^* = \left(\Pi_{t-1}^*
ight)^\omega \left(\Pi_{t-1}
ight)^{1-\omega}$

Parameters: $\varrho = 0.002$, $\omega = 0.8$, $\Pi = 1.005$.

Note: state-dependent indexation disappears upon log-linearization.

Similar setup for wage indexation.

Model-Data Comparison (In Progress)

- Evidence on endogenous indexation/rule of thumb firms (in progress).
- Micro data on frequency of price adjustment (in progress).

Effects of Discount Factor Shock

Effects of iid Cost-Push Shock

Effects of Unobs. Components Specification

Effects of Timing of Policy Thightening

Cost-Push Shock: Endogenous Indexation Variables

Linear Model vs. Data

