Correlation networks to measure the systemic implications of banks resolution

Paolo Giudici & Laura Parisi

University of Pavia

RiskLab/BoF/ESRB Conference on Systemic Risk Analytics
Helsinki - June 28th, 2017
A key component of systemic risk is the probability of default of financial institutions. Default probabilities can be calculated using market-based data (e.g. CDS spreads), or by looking at the balance-sheet structure of banks. From a micro- to a macro-prudential approach: Default probability of each financial institution \rightarrow entire financial system. FOLTF banks can be subject to different resolution decisions.

Objective

What would happen to each single bank, and to the entire banking system, in case an adverse scenario materialises, taking into account the regulatory BRRD/SRM context established in the Euro area.

- market-based + micro-prudential + macro-prudential tools,
- consequences of banks resolution
 - at the bank level
 - at the system level
We define a risk measure for each single bank (based on CDS spreads);

We find one or more financial institutions under distress (FOLTF);

We derive the consequences of having such FOLTF banks in the system according to two perspectives:

- for each single financial institution,
- for the entire banking system;

and under three alternative scenarios:

- FOLTF banks are liquidated,
- FOLTF banks are "saved" by a private intervention,
- FOLTF banks are subject to bail-in resolution;

We compare the consequences (measured in terms of expected losses) under the three scenarios and according to the two perspectives, in order to identify the "best" resolution decision as the one that minimises losses.
Systemic risk in the banking sector: literature overview

1. Conditional quantiles:
 ▶ Acharya et al. (2010), Adrian & Brunnermeier (2011), Brownlees & Engle (2012)
 ▶ Identify SIFIs → Do not describe contagion transmission;

2. Regression methods:
 ▶ Koopman et al. (2012), Betz et al. (2014), Duprey et al. (2015), Hautsch et al. (2015)
 ▶ Provide predictive models → Do not describe contagion transmission;

3. Network models:
 ▶ Battiston et al. (2012), Billio et al. (2012), Minou and Reyes (2013),
 Diebold and Ylmaz (2014)
 ▶ Describe contagion transmission → Do not provide predictive models.

Our contribution

▶ Systemic risk measure based on CDS spreads;
▶ Contagion mechanism based on partial correlation networks.
Banks resolution in the Euro area: overview

- ECB identifies a bank as FOLTTF;
- the bank is not systemically important \rightarrow liquidation;
- the bank is systemically important \rightarrow Bail-in = solution covering losses
 - waterfall hierarchy of bail-in able resources,
 - consequences on private creditors rather than on taxpayers.
- IF and ONLY IF two conditions are met:
 - no alternative private interventions would prevent the failure of the FOLTTF bank,
 - resolution is necessary in the public interest.

Our contribution

Comparison between the expected losses (for each bank and for the entire system) in case of:
- liquidation,
- private intervention,
- bail-in.
Measuring Systemic Risk

Methodology

Univariate EL

From CDS spreads of financial institutions.

Contagion effect

From the partial correlation network between the CDS spreads of financial institutions.

Multivariate EL

Can be used to assess contagion between financial institutions, for example in the BRRD context.
The banks’ perspective

Let A be a vector of (net) asset values: $A = \{A_1, \ldots, A_N\}$.

$$EL_n = A_n \cdot (PD_n) \cdot (1 - RR_n).$$

Let S_n be the CDS spread: in the simplified case of a one-year contract

$$EL_n = A_n \cdot S_n,$$

We extend EL_n into a multivariate expected loss (TEL) that takes contagion between CDS spreads into account:

Multivariate EL

$$TEL_n = EL_n + \sum_{m \neq n} c_{mn|\text{rest}} EL_m,$$

where $\text{rest} = V \setminus \{m, n\}$.

The geometric average between the coefficients is equal to the partial correlation between EL_m and EL_n:

$$|\rho_{mn|\text{rest}}| = |\rho_{nm|\text{rest}}| = \sqrt{|c_{mn|\text{rest}}| \cdot |c_{nm|\text{rest}} S_n|}.$$
The system’s perspective

\[TEL^{\text{system}} = \left(\sum_{i=1}^{N} A^i \right) \cdot \left[Pr \left(\bigcap_{i=1}^{N} D^i \right) \right] = \]

\[= \left(\sum_{i=1}^{N} A^i \right) \cdot \left[Pr(D^1) \cdot Pr(D^2|D^1) \cdot \ldots \cdot Pr(D^N|D^1, D^2, \ldots, D^{N-1}) \right]. \]

\[TEL^{\text{system}} \]

\[TEL^{\text{system}} = \left(\sum_{i=1}^{N} A^i \cdot \prod_{i=1}^{N} PD^i \right) + \]

\[+ \left(\sum_{i=1}^{N} A^i \cdot \sum_{\omega, \omega_1, \omega_2} \left(\prod_{\omega=1}^{N(N+1)/2} \rho_{\omega} \prod_{\omega_1=1}^{N} PD^{\omega_1} \prod_{k \neq \omega_2}^{N} PD^k \prod_{\omega_1, \omega_2=1}^{N} \frac{A^{\omega_1}}{A^{\omega_2}} \right) \right] = \]

\[= TEL^{\text{system,1}} + TEL^{\text{system,2}}. \]
THE EFFECTS OF BANKS RESOLUTION

- **ASSUMPTION**: one bank (B^m) is identified as FOLTF.
- **QUESTION**: does another bank (B^n) in the system prefer B^m to be liquidated, ”saved” through a private intervention or subject to bail-in?
- Each bank should evaluate the consequences of the three alternative scenarios in a long-run perspective.
- We aggregate the expected losses over time (survival analysis).
- The preferred scenario is the one that minimises the expected losses of:
 - each single bank (banks’ perspective),
 - the entire banking system (system’s perspective).
- Discrete time-line

\[
t_0 \quad t_1 \quad t_2
\]

- **FOLTF bank**
 - a) Liquidation
 - b) Private intervention
 - c) Bail-in

- **New system**
 - a) Without FOLTF bank
 - b, c) With FOLTF bank

Paolo Giudici & Laura Parisi
CORRELATION NETWORKS TO MEASURE THE SYSTEMIC IMPLICATIONS OF BANKS RESOLUTION
Liquidation

<table>
<thead>
<tr>
<th>Assets</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>A_1</td>
<td>$A_1 - f_1 \cdot k[A_3 - Eq_3]$</td>
<td>$A_1 - f_1 \cdot k[A_3 - Eq_3]$</td>
</tr>
<tr>
<td>B^2</td>
<td>A_2</td>
<td>$A_2 - f_2 \cdot k[A_3 - Eq_3]$</td>
<td>$A_2 - f_2 \cdot k[A_3 - Eq_3]$</td>
</tr>
<tr>
<td>B^3</td>
<td>A_3</td>
<td>A_3</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>S_1</td>
<td>S_1</td>
<td>S_1</td>
</tr>
<tr>
<td>B^2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
</tr>
<tr>
<td>B^3</td>
<td>S_{3,t_0}</td>
<td>$S_{3,t_1} = 1$</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marg. Corr.</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>R_{t_0} (3×3)</td>
<td>R_{t_0} (3×3)</td>
<td>R_{t_2} (2×2)</td>
</tr>
<tr>
<td>B^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B^3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part. Corr.</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B^2</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
</tr>
<tr>
<td>B^3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A_i =$ Net asset values
$Eq._i =$ Equity
$f_i, k \in [0, 1]$
Private intervention

<table>
<thead>
<tr>
<th>Assets</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>A_1</td>
<td>$A_1(1 - \frac{X}{A_1+A_2})$</td>
<td>$A_1(1 - \frac{X}{A_1+A_2})$</td>
</tr>
<tr>
<td>B^2</td>
<td>A_2</td>
<td>$A_2(1 - \frac{X}{A_1+A_2})$</td>
<td>$A_2(1 - \frac{X}{A_1+A_2})$</td>
</tr>
<tr>
<td>B^3</td>
<td>A_3</td>
<td>$A_3 + X$</td>
<td>$A_3 + X$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>S_1</td>
<td>S_1</td>
<td>S_1</td>
</tr>
<tr>
<td>B^2</td>
<td>S_2</td>
<td>S_2</td>
<td>S_2</td>
</tr>
<tr>
<td>B^3</td>
<td>S_{3,t_0}</td>
<td>S_{3,t_0}</td>
<td>S_{3,t_2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marg. Corr.</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>R_{t_0} (3 × 3)</td>
<td>R_{t_0} (3 × 3)</td>
<td>R_{t_0} (3 × 3)</td>
</tr>
<tr>
<td>B^2</td>
<td>R_{t_0} (3 × 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B^3</td>
<td>R_{t_0} (3 × 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part. Corr.</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^1</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
</tr>
<tr>
<td>B^2</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
<td></td>
</tr>
<tr>
<td>B^3</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
<td></td>
</tr>
</tbody>
</table>

X = amount needed by B^3 in order to absorb losses still meeting regulatory requirements (Pillar 1)
Bail-in

<table>
<thead>
<tr>
<th></th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>B^1</td>
<td>A_1</td>
<td>$A_1 - f_1 \cdot k \cdot \text{Bail-in}_3$</td>
</tr>
<tr>
<td></td>
<td>B^2</td>
<td>A_2</td>
<td>$A_2 - f_2 \cdot k \cdot \text{Bail-in}_3$</td>
</tr>
<tr>
<td></td>
<td>B^3</td>
<td>A_3</td>
<td>$A_3 - \text{Bail-in}_3$</td>
</tr>
<tr>
<td>S</td>
<td>B^1</td>
<td>S_1</td>
<td>S_1</td>
</tr>
<tr>
<td></td>
<td>B^2</td>
<td>S_2</td>
<td>S_2</td>
</tr>
<tr>
<td></td>
<td>B^3</td>
<td>S_3</td>
<td>S_3</td>
</tr>
<tr>
<td>Marg. Corr.</td>
<td>B^1</td>
<td>R_{t_0} (3×3)</td>
<td>R_{t_0} (3×3)</td>
</tr>
<tr>
<td></td>
<td>B^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part. Corr.</td>
<td>B^1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B^2</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
</tr>
<tr>
<td></td>
<td>B^3</td>
<td>$[(R_{t_0})^{-1}]{mn} = \rho{mn</td>
<td>S}$</td>
</tr>
</tbody>
</table>

Bail-in$_3 =$ amount of bail-inable liabilities that have to be written down to allow B^3 to absorb losses still meeting regulatory requirements (Pillar 1)

$f_i, k \in [0, 1]$
Example: Three Banks

\[A_1 = 40 \text{ bn €}, \ A_2 = 20 \text{ bn €}, \ A_3 = 4 \text{ bn €} \]

\[S_n \sim \mathcal{N}(\mu_{S_n}, \sigma_{S_n}^2) \text{ with } \mu_{S_1}, \mu_{S_2} = 0.01, 0.03, 0.05, 0.07 \text{ and unit variances} \]

\[\rho_{mn} \sim \mathcal{N}(\mu_{\rho_{mn}}, \sigma_{\rho_{mn}}^2) \text{ with } \mu_{\rho_{12}}, \mu_{\rho_{13}}, \mu_{\rho_{23}} \sim \mathcal{U}([-0.5, 0.5]) \]

\[\begin{aligned}
S_{3,t_j} & \sim \mathcal{N}(\mu_{S_3,t_j}, \sigma_{S_3}^2), \\
\mu_{S_3} & \{t_0,t_1\} = 0.10, \\
\mu_{S_3,t_2} & \sim \mathcal{U}([0, 0.30]),
\end{aligned} \]

(1)
The private intervention always minimises losses in case of positive correlations;

This effect is even stronger for smaller and safer (lower PD) banks.
SIMULATION RESULTS 2

Bank 1

- TS_a - TS_b
- S_1 = 0.01
- S_1 = 0.03
- S_1 = 0.05
- S_1 = 0.07

Bank 2

- TS_a - TS_b
- S_2 = 0.01
- S_2 = 0.03
- S_2 = 0.05
- S_2 = 0.07

Paolo Giudici & Laura Parisi

CORRELATION NETWORKS TO MEASURE THE SYSTEMIC IMPLICATIONS OF BANKS RESOLUTION
Data: NAV of Main Italian Banks

<table>
<thead>
<tr>
<th>Bank</th>
<th>μ (%)</th>
<th>Max (%)</th>
<th>Min (%)</th>
<th>$\sigma \cdot 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS</td>
<td>7.321</td>
<td>8.836</td>
<td>3.714</td>
<td>1.429</td>
</tr>
<tr>
<td>BPM</td>
<td>3.318</td>
<td>4.043</td>
<td>2.168</td>
<td>0.456</td>
</tr>
<tr>
<td>BAPO</td>
<td>3.771</td>
<td>4.871</td>
<td>2.608</td>
<td>0.484</td>
</tr>
<tr>
<td>MB</td>
<td>2.250</td>
<td>3.081</td>
<td>1.601</td>
<td>0.351</td>
</tr>
<tr>
<td>UCG</td>
<td>1.430</td>
<td>1.584</td>
<td>1.292</td>
<td>0.097</td>
</tr>
<tr>
<td>UBI</td>
<td>2.915</td>
<td>3.417</td>
<td>2.067</td>
<td>0.354</td>
</tr>
<tr>
<td>ISP</td>
<td>1.693</td>
<td>2.395</td>
<td>1.168</td>
<td>0.291</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank</th>
<th>Asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS</td>
<td>9.58</td>
</tr>
<tr>
<td>BPM</td>
<td>4.44</td>
</tr>
<tr>
<td>BAPO</td>
<td>6.92</td>
</tr>
<tr>
<td>MB</td>
<td>8.08</td>
</tr>
<tr>
<td>UCG</td>
<td>48.00</td>
</tr>
<tr>
<td>UBI</td>
<td>7.63</td>
</tr>
<tr>
<td>ISP</td>
<td>41.06</td>
</tr>
</tbody>
</table>
Partial Correlation Network

Node dimension = Assets

Node dimension = CDS spreads

Correlation networks to measure the systemic implications of banks resolution.
System’s view on MPS distress (1/3)

Aggregation over time

- Scenario a: Liquidation
- Scenario b: Private interv.
- Scenario c: Bail-in

Paolo Giudici & Laura Parisi

Correlation networks to measure the systemic implications of banks resolution
System’s view on MPS distress (2/3)

Scenario b, t2
Expected Losses

Scenario c, t2
Expected Losses

Paolo Giudici & Laura Parisi
Correlation networks to measure the systemic implications of banks resolution
System’s view on MPS distress (3/3)

Scenario b – Scenario c, t2

Potential losses density

- \(S = S_{t1} \)
- \(S = 0.035 \)
- \(S = 0.14 \)

Expected Losses

Paolo Giudici & Laura Parisi

Correlation networks to measure the systemic implications of banks resolution
CONCLUSIONS

▶ Banks’ perspective:
 ▶ The smaller or the safer a bank is, the bigger the reduction of EL in case of private intervention,
 ▶ Liquidation reduces EL only in case of strong negative partial correlations,
 ▶ The reduction of EL in case of private intervention is
 ▶ a decreasing function of the PDs of the safe banks,
 ▶ an increasing function of the correlations between safe banks and the FOLTF one.

▶ System’s perspective:
 ▶ Private intervention and bail-in minimise losses,
 ▶ Bail-in resolution slightly reduces contagion effects with respect to private intervention,
 ▶ An increase in the PD of the FOLTF bank after bail-in/private intervention increases EL of the entire system,
 ▶ Such increase is stronger for the private intervention scenario.
Caveats

- Proxies for bail-inable liabilities and interbank exposures (no confidential data),
- Not considered alternatives such as bridge banks, extraordinary public bail-out, ...,
- No macroeconomic impact of the three scenarios \rightarrow no effects on taxpayers, or sovereigns-banks loop,
- Static approach.