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Introduction

Systemic Risk

Externalities created by the failure or distress of one bank can have
significant spillover effects on other banks, potentially leading to a
broader systemic crisis (2008, SVB, etc)

Therefore, it is crucial for policymakers and financial institutions to
monitor and address systemic risk to maintain financial stability

The Basel III introduces Systemically Important Financial Institutions

Emerge Network analysis (Jackson & Pernoud, 2021)

Beyond the Balance Sheet: June 2025 4 / 46



Introduction

Financial Contagion
Most papers focus on the effects of contagion in the interbank
market on the system (Allen & Gale, 2000; Upper & Worms, 2004;
Upper, 2010; Mistrulli, 2011; Battiston et al., 2012a and 2012b;
Anand et al., 2015; Cerchiello et al.; 2017)

I aim to examine additional potential effects such as bank runs
▶ potential implications for systemic risk when incorporating indirect

methods into networks derived from sentiment analysis rather than
solely the deterioration of banks’ fundamentals.

I use unstructured big data gathered from X (formerly twitter) to
measure sentiment based on the judgment of the financial institutions

▶ captures also non-fundamentals info
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Introduction

Can the analysis of unstructured big data contribute to the measurement
of financial contagions and enhance the understanding of the dynamics
between fundamental and non-fundamental factors in bank runs?

contributions to the existing literature and for regulators
▶ expand the existing literature on Financial Contagion by incorporating

the potential impact of bank runs as an amplification mechanism
▶ macro-prudential and targeted supervision framework: stress test

simulation (measure impact and identify SIFIs)

Initial step towards further exploration of the dynamics of financial
contagion and bank runs

Beyond the Balance Sheet: June 2025 6 / 46



Literature Review: Financial Networks

Vertices: banks (weighted by Balance Sheet)
Edges: directed in the flow of the money (weighted by debt size)
Complex Networks: Scale-free, small words, core-periphery, etc

What is special about Financial Networks?
▶ Elliott et al., 2014:

non-monotonicity (“too interconnected to fail”, “robust yet fragile”),
complexity (hard to identify/comprehend dynamics and vulnerabilities),
highly dynamic (constant evolution and adaptation to changes)

Defining Financial Networks: direct vs indirect methods
▶ Fan et al. (2021): direct, reduced-form, and emotional methods.

Rönnqvist & Sarlin (2016) and Bricco & Xu (2019)
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Literature Review: Financial Networks

Financial Contagion and its applications in the literature
Allen & Gale (2000)

▶ Centrality measures
Jackson & Pernoud (2021): traditional and financial centrality
Depend on network topology rather then on a specific shock

▶ Applications in the literature
Allen & Gale (2000), Upper & Worms (2004), Mistrulli (2011),
Battiston et al. (2012a and 2012b), Anand et al. (2015)

The role of Social Media as a Bank Run catalyst
▶ Cookson et al. (2023), Nopp & Hanbury (2015), Nyman et al. (2021),

Calomiris Mason (1997), Iyer Puri (2012), Huang et al. (2009), Billio
et al. (2012), Acharya et al. (2017), Shiller (2019), Fan et al. (2021),
and Cerchiello et al. (2017)
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Methodology and Data

Data

Direct Financial Network: interbank connections
Minimum density (Anand et al, 2015)

Financial Contagion
Battiston et al. (2012a) and Mistrulli (2011)

Sentiment Network: unstructured big data from Twitter
Graphical Gaussian Models (GGM)
Fan et al. (2021), Cerchiello et al. (2017), Lauritzen (1996)

Financial Contagion with Bank Runs effects

An illustration
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Data

50 largest banks in Europe based on their assets (-2 RU and -1 TR)

Balance Sheet
individually financial reports in December/22

⋆ 14 countries (British, French, German (6), Norway (1))
Total amount of assets: 33,145.22 billion Euros
Largest: HSBA (HSBC Holdings) has 2,805.44 (8.5%)
Smallest: NORD has 109.33 b Euros (0.32%)
Ranking IB liabilities: AGRI (3rd), DZ (20th), and BPCE (6th).
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Data: Tweets gathered from Twitter

Over 50k tweets in the period between 01/01/2022 to 31/12/2022.
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Direct Financial Network: Minimum Density (MD)
Anand et al. (2015): banks do not spread their borrowing and lending
across the entire system, since the costs in terms of information
processing, risk management and creditworthiness checks would be
prohibitive for all but the largest banks

c is the fixed cost of establishing a link, Ai and Li are assets and
liabilities. MD approach can be formulated as a constrained
optimization problem for the matrix Z which contains IB exposures:
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Direct Financial Network: Minimum Density (MD)

Substituting into objective function one gets the value function for
the optimization program:

V (Z ) = −c
N∑
i=1

N∑
j=1

1[Zij>0] −
N∑
i=1

[αiAD
2
i + γiLD

2
i ]
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Financial Contagion: Interbank

Battiston et al. (2012a) and Mistrulli (2011): all banks raising funds
in the IB market are allowed to fail one at a time.
Next, calculate the losses incurred by banks that have provided loans to
the failed bank (if > Tier1; fail)
Simulation proceeds checking if the banks that failed 1st iteration lead to
the failure of other banks.
The simulation continues until at least one bank defaults.

B represent the set of banks and ci > 0 the initial Tier 1 of bank i .
z ∈ B denote the 1st bank that defaults. Dn

z ⊆ B and Sn
z ⊆ B are

the set of banks that default and survive, respectively, at the nth step
of the contagion path initiated by bank z, as follows:

Dn
z = {k ∈ B : cnk,z ≤ 0|cn−1

k,z > 0}
Sn
z = {k ∈ B : cnk,z > 0} ∀n ≥ 1
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Financial Contagion: Interbank

Where:

cnk,z = cn−1
k,z − α

∑
j∈Dn−1

z

Xkj , ∀n ≥ 1 and ∀k ̸= z
(1)

The contagion path is represented by the following:

and the process stops after N iterations when no additional default occurs.
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Financial Contagion: Interbank

Main assumptions:
▶ α = 1

stress test in a worst-case scenario
▶ I assume that the occurrence of bank failure triggering contagion is

unexpected, which implies that the pattern of interbank lending
remains constant throughout the entire contagion process (no time for
structural adjustments)

these works focuses on a specific channel for contagion (IB).
My contribution: incorporating the possibility of bank runs as an
amplification mechanism in financial contagion
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Sentiment Network

Measuring the sentiment
Each tweet has been classified into a sentiment class measure.
The higher the measure, the more positive the sentiment (or value)
that the tweet assigns to the bank under analysis.

▶ Sentiment classification: NRC Emotion Lexicon (14k words/terms) -
extend multi-language version

▶ Google’s Compact Language Detector
▶ openNLP sentence tokenizer
▶ Loop to analyze each bank/tweet and the correct language
▶ Finally, I computed the average daily sentiment for each bank

Construct the Sentimental Network to connect the banks
▶ Graphical Gaussian Models (GGM) - are well suited Network Inference

between a large set of financial institutions
Fan et al. (2021), Cerchiello et al. (2017), Lauritzen (1996).
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Sentiment Network

Graphical Gaussian Model (GGM)
estimate relationship among banks through their partial correlation

Let G = (V ,E ) be an undirected graph and edge set E = VxV , a
binary matrix, with elements eij describe whether pairs of vertices are
linked (eij = 1) or not (eij = 0).

pairwise Markov property determined by G states that:

eij = 0 ⇔ Xi ⊥ Xj |XV \{i ,j}
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Sentiment Network

Whittaker (1990) proved that this independence corresponds to a
partial correlation of zero i.e.:

Xi ⊥ Xj |XV \{i ,j} ⇔ ρijV = 0

Therefore, ρij expresses the direct influence of a financial institution
on another, which can be used to measure the relationships between
institutions.

So the structural learning of the GGM can be transformed into the
problem of calculate partial correlations (precision matrix Θ)
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Sentiment Network

The maximum likelihood estimation problem of Θ is:

max
Θ>0

log |Θ| − tr(SΘ)

The resulting model is too complex to be interpreted in reality.
Following Fan et al. (2021) and Banulescu Dumitrescu (2015) a
Lasso approach can be used by applying L1-norm penalty to:

Θ̂ = arg max
Θ>0

log |Θ| − tr(SΘ)− λ||Θ||1

Since the L1-norm penalty is used, the solution of Θ̂ will be sparse
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Financial Contagion with Bank Runs effects

for each bank, analyze the other banks sentiment connected

let banks sentiment connect to default

check the IB connections

check if there are no duplicate cases (already fail IB)

compute the number of additional banks that would fail

compute the additional total assets from these banks

compute the difference from this simulation from the simulation of
only interbank contagion
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration
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An Illustration

Beyond the Balance Sheet: June 2025 34 / 46



An Illustration
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Results

Financial Networks

Financial Contagion
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Results: Financial Networks
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Results: Financial Networks
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Results: Financial Contagion
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Results: Financial Contagion

Total amount of assets
IB connections: 127,604 billion euros
IB + Bank Runs: 239,351 billion euros (+ 87.57 %)
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Results: Financial Contagion
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Results

Outcomes lean towards a pessimistic perspective
▶ stress test in a worst-case scenario approach, offering insights into the

potential vulnerabilities of the financial system

Not be interpreted too literally or used as the sole determinant of a
financial institution’s systemic importance

▶ The additional stress indicator, represented by the bank runs
amplification, can serve as another measure of systemic importance

Distinction fundamental and non-fundamental networks is noteworthy
▶ it provides valuable information that would otherwise be overlooked
▶ considering both types of networks can contribute to a more

comprehensive understanding of the dynamics and potential risks
within the financial system.
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Conclusion

The results obtained from the analysis provide valuable insights into
the potential effects of bank runs and sentiment-driven contagion in
the financial system.

The sentiment network provides additional information that
complements the interbank network and contributes to a more holistic
understanding of contagion dynamics.

Contributions
▶ expand the existing literature on Financial Contagion
▶ regulators (e.g. banks that were not highly central in the network

before now exhibit increased centrality)
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Conclusion

Interpret these results with caution and not view them as definitive
determinants of a bank’s systemic importance

▶ stress test scenario and provide insights into potential vulnerabilities
rather than precise predictions

Main limitations
▶ The sentiment analysis based on Twitter data may not capture the

entire spectrum of market sentiment, and the sentiment expressed on
social media platforms may no always align with market realities.

▶ The estimation of the interbank network relies on the availability and
quality of data, which may have limitations.

Further research
▶ Further research and analysis are necessary to validate and refine the

findings
▶ explore the applicability of the suggested methodology in real-world

cases of distress for result comparison
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Beyond the Balance Sheet: The Role of Social Sentiment in
Financial Contagion

Wagner Eduardo Schuster∗

Abstract

Recent financial crises underscore the importance of understanding financial network dynamics to assess
systemic risk effectively. This study explores the potential impact of sentiment-driven bank runs on systemic
risk, using sentiment analysis from X (formerly Twitter) data to integrate non-fundamental factors into
traditional financial contagion simulations. The analysis utilizes balance sheet data of Europe’s 50 largest
banks and unstructured Twitter data, employing interbank network estimation, sentiment analysis, and
financial contagion simulations. Interbank connections are estimated using the Minimum Density approach,
while sentiment scores from tweets form a sentiment network using Graphical Gaussian Models with a Lasso
penalty. The study reveals an expected core-periphery structure in the interbank network, highlighting
banks like Crédit Agricole with high centrality due to interbank exposures. However, the sentiment network
captures non-fundamental connections, altering the contagion landscape. Simulations show that sentiment-
driven bank runs significantly affect systemic risk, with other banks becoming pivotal in the contagion
scenarios. Notably, banks with previously lower centrality now exhibit increased importance in the network,
a crucial finding for regulators. By incorporating sentiment-driven contagion into the analysis, this study
offers a more comprehensive framework for assessing systemic risk and understanding the interplay between
fundamental and non-fundamental factors to identify early warning signals. Additionally, the dynamic
nature of sentiment analysis enables near real-time risk evaluation, facilitating the rapid reconstruction of
the networks and offering valuable insights for regulators and policymakers to mitigate systemic risk through
proactive monitoring and intervention strategies.

KEYWORDS: Systemic Risk; Financial Networks; Sentiment Analysis; Financial Contagion.

JEL codes: G01; G21; D85.

1 Introduction

Systemic risk is a critical concern in today’s world, as externalities created by failures or distress in one bank
can generate spillover effects, potentially leading to broader systemic crises. The interconnectedness and
complexity of financial institutions and markets make identifying and mitigating systemic risk challenging.

Numerous studies have examined the structure and dynamics of financial networks to understand how shocks
and contagion propagate through the system, potentially leading to systemic risk (Allen & Gale, 2000; Upper
& Worms, 2004; Upper, 2010; Mistrulli, 2011; Battiston et al., 2012; Anand et al., 2015; Cerchiello et al.,
2017). However, most of this literature focuses on contagion effects in the interbank market.

My approach is different: I plan to examine additional sentiment-driven effects, such as bank runs as in the
self-fulfilling prophecy outlined by Diamond and Dybvig (1983). My research will explore the potential im-

∗Economics PhD student at Goethe University Frankfurt. Großer Hasenpfad 141, 60598 Frankfurt am Main, Germany.
w.schuster@em.uni-frankfurt.de
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plications for systemic risk when incorporating sentiment analysis into network models, rather than focusing
solely on the deterioration of banks’ fundamentals.

Furthermore, existing approaches often rely on structured data, which may overlook critical insights from
unstructured sources. Advances in Artificial Intelligence, specifically in natural language processing (NLP)
and large language models (LLMs), now enable the processing and extraction of meaningful information from
large volumes of unstructured text. This research seeks to bridge that gap by integrating these technologies
into the network analysis of financial systems.

Specifically, my research will address the following questions:

• How do sentiment-driven effects, such as bank runs, impact the propagation of financial contagion in
the interbank market?

• Can sentiment analysis of unstructured big data improve the measurement and understanding of the
dynamics between fundamental and non-fundamental factors in bank runs?

• How does the inclusion of unstructured big data aid in identifying systemically important banks and
early warning indicators for financial contagion?

By exploring the impacts of sentiment-driven effects on Europe’s largest banks, my research aims to pro-
vide valuable insights for regulatory agencies concerning macroprudential and targeted supervision. It offers
a comprehensive framework for assessing bank interconnectedness and conducting stress test simulations
to measure the potential impacts of events such as bank runs. Additionally, it aims to identify systemi-
cally important banks and provide early warnings to signal financial vulnerabilities, enabling timely policy
interventions.

2 Literature review: Financial Networks

Allen and Gale’s (2000) seminal work has been instrumental in understanding financial contagion arising
from credit interlinkages among banks. They demonstrate that the propagation of an unforeseen liquidity
shock and its systemic implications are heavily influenced by the pattern of interconnectedness among banks.

In this sense, network analysis is a valuable tool for understanding and analyzing systemic risk. Jackson
and Pernoud (2021) highlight that measuring the contribution of banks to systemic risk involves identifying
central, significant, or systemic nodes using financial centrality concepts. However, traditional centrality
measures often do not apply to Financial Networks.

To measure a bank’s systemic importance, one effective approach is to utilize financial contagion simulations
(Battiston et al., 2012; Mistrulli, 2011). However, a common issue in such analyses is the lack of specific
interbank connection data, necessitating the estimation of these networks for contagion simulations. This
study will follow Anand et al. (2015) in estimating interbank connections using the Minimum Density (MD)
method. In this approach, banks avoid spreading their borrowing and lending across the entire system due to
the prohibitive costs associated with information processing, risk management, and creditworthiness checks,
which are manageable only for the largest banks.

Additionally, I aim to incorporate sentiment-driven effects as an amplification channel within conventional
interbank financial contagion simulations. Using both direct measures (interbank exposures and balance
sheet information) and indirect measures (non-fundamental aspects), this approach will provide a holistic
understanding of systemic risk. For this, sentiment analysis from social media will be employed.

Social media has emerged as a significant factor in bank runs, rapidly spreading information and opinions
that can fuel panic and lead to deposit withdrawals. Shiller (2019) emphasizes the role of shared narratives
and group sentiments in driving economic events. Data from Twitter (Cerchiello et al., 2017; Cookson
et al., 2023), the Bank of England, Reuters, broker reports (Nyman et al., 2021), and Eastmoney Net
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(Fan et al., 2021) has been used to underscore the importance of sentiment analysis in understanding bank
interconnections and risk contagion.

Traditional approaches often rely on limited structured data. This study will leverage advances in NLP and
LLMs to process unstructured text and extract meaningful information, thereby bridging the gap in network
analysis of financial systems.

3 Methodology and data

The objective of this section is to provide an overview of the methodology and data set utilized in this
paper. Firstly, the dataset employed in the study is presented, followed by an outline of the methodologies
employed. Lastly, an illustrative example is presented to showcase the practical application and effectiveness
of the proposed approach.

I used mostly the software R version 4.2.2 with R-Studio 2023.03.1.

3.1 Data

In this study, I collected data on the 50 largest banks in Europe based on their assets. However, three banks
were excluded from the analysis: two from Russia and one from Turkey. The decision to exclude these banks
was primarily based on the limitation of the sentiment analysis algorithm used, which does not support these
languages.

The dataset is divided into two main groups: the first group comprises balance sheet data for the banks,
while the second group consists of tweets gathered from Twitter for sentiment analysis.

Regarding the first group, I analyzed individually all the financial reports of each bank in the last period of
2022 (December/22). From these financial reports I collected the following data:

• Ticker (in case of banks listed)
• Headquarter (HQ)
• Total Assets and Total Liabilities
• Total Equity
• Tier 1 Equity (CET1)
• Interbank Assets and Interbank Liabilities

This data can be seen in Table 1:

Table 1: Balance Sheet Europe’s largest 50 banks

Rank Institution Name Ticker HQ
Total

Assets
Total

Liabilities Equity
IB

Assets
IB

Liabilities CET1
1 HSBC Holdings HSBA UK 2805.44 2620.05 185.38 6.90 63.10 112.81
2 BNP Paribas BNP FR 2666.38 2539.82 126.56 32.62 124.72 91.83
3 Crédit Agricole AGRI FR 2167.62 2094.14 73.48 567.64 284.17 40.62
4 Banco Santander SAN ES 1734.66 1637.07 97.59 63.69 80.34 73.39
5 Barclays BARC UK 1717.29 1638.72 78.58 11.36 22.67 53.18
6 Groupe BPCE BPCE FR 1531.13 1448.58 82.56 97.69 139.12 69.67
7 Société Générale GLE FR 1486.82 1414.04 72.78 66.90 132.99 48.64
8 Deutsche Bank

Aktiengesellschaft
DBK DE 1336.79 1264.46 72.33 14.39 7.20 48.10

9 UBS Group AG UBSG CH 1044.39 990.28 54.11 13.99 10.97 42.99
10 Lloyds Banking LLOY UK 995.90 941.98 53.91 12.06 8.24 36.15

3



Rank Institution Name Ticker HQ
Total

Assets
Total

Liabilities Equity
IB

Assets
IB

Liabilities CET1
11 Intesa Sanpaolo ISP IT 975.68 921.60 54.09 32.88 137.48 40.77
12 ING Groep N.V. INGA NL 967.82 917.40 50.41 35.10 56.63 41.97
13 Crédit Mutuel MUT FR 885.09 828.34 56.75 57.97 63.22 50.89
14 UniCredit UCG IT 857.77 796.12 61.65 57.80 131.34 51.44
15 NatWest NWG UK 816.90 775.50 41.41 8.10 23.19 28.35
16 Standard Chartered STAN UK 770.12 723.14 46.98 36.11 26.30 32.30
17 La Banque Postale POST FR 745.64 705.28 40.37 67.10 26.44 13.61
18 Banco Bilbao Vizcaya

Argentaria
BBVA ES 713.14 662.53 50.61 25.23 28.92 42.49

19 Coöperatieve Rabobank RAB NL 628.51 582.16 46.36 11.12 31.26 38.37
20 DZ BANK AG DZ DE 627.04 558.92 68.12 123.44 186.79 18.76
21 Nordea Bank Abp NDA FI 594.84 563.44 31.40 4.57 32.87 20.28
22 CaixaBank CABK ES 592.23 557.97 34.26 12.19 12.77 27.49
24 Danske Bank DANSKEDK 505.52 483.98 21.54 8.17 18.64 15.47
25 Commerzbank AG CBK DE 477.44 388.73 88.71 15.14 41.40 23.90
26 ABN AMRO Bank N.V. ABN NL 379.58 356.77 22.81 2.98 17.51 19.51
27 KBC Group NV KBC BE 355.87 335.06 20.81 29.42 35.67 16.82
28 Landesbank

Baden-Württemberg
LAND DE 324.17 278.62 45.55 81.28 84.08 13.53

29 Erste Group Bank EBS AT 323.86 298.56 25.30 18.44 28.82 20.44
30 Skandinaviska Enskilda

Banken AB
SEB SE 319.47 300.97 18.50 6.98 4.59 14.74

31 Svenska Handelsbanken SHB SE 312.31 294.59 17.73 0.85 7.39 14.34
33 Nationwide Building

Society
NBS UK 308.46 289.28 19.18 3.24 28.43 15.58

34 DNB Bank ASA DNB NO 295.09 271.47 23.62 1.87 16.17 17.70
35 Raiffeisen Gruppe RAIF CH 282.61 261.84 20.77 2.21 14.09 20.72
36 Bayerische Landesbank BAY DE 259.30 230.88 28.42 61.44 60.96 11.36
37 Swedbank AB SWED SE 258.16 242.24 15.92 5.12 6.59 13.03
38 Banco de Sabadell SAB ES 251.38 238.16 13.22 4.70 11.37 9.99
39 Nykredit NYK DK 214.96 201.95 13.01 1.56 3.74 11.83
40 Raiffeisen Bank

International AG
RBI AT 207.06 188.29 18.76 15.60 33.61 15.64

41 Zürcher Kantonalbank KANT CH 201.20 187.81 13.39 2.96 39.33 12.88
42 Banco BPM BAMI IT 189.69 176.29 13.39 5.49 32.64 8.62
43 Belfius Bank BEL BE 179.47 167.85 11.62 4.14 1.87 10.72
44 OP Financial Group OP FI 175.52 161.18 14.34 0.80 12.30 12.57
45 BPER Banca BPE IT 152.30 144.42 7.88 9.48 22.00 6.61
46 Bank of Ireland Group BIRG IE 151.32 139.39 11.93 3.18 3.68 7.54
47 AIB Group plc A5G IE 129.75 117.49 12.26 1.50 0.23 9.00
49 Banca Monte dei Paschi

di Siena
BMPS IT 120.17 112.14 8.03 3.26 21.38 7.60

50 Norddeutsche
Landesbank
Girozentrale

NORD DE 109.33 103.03 6.30 13.11 28.66 5.68

NOTES: 1) all values are in Billions of Euros. 2) Sberbank of Russia, VTB Bank from Russia, and Türkiye
Cumhuriyeti Ziraat Bankasi A.S. from Turkey are removed due to the different alphabet used in their mother
language which is not supported by the sentimental analysys algorithm used. These banks would be the 23rd,
32th, and 48th in the rank, respectively. 3) For the banks not listed in Stock Market, the column “Ticker”
present an acronym. 4) Deutsche Bank Aktiengesellschaft does not specify the amount of interbank assets
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and liabilities, just the balance. Therefore, I assumed this value as liabilities and twice it as assets (to match
the balance, since it was positive value in the assets). 5) Danske Bank A/S does not inform his CET1, just
total equity. Therefore, I used the average ratio CET1/Equity (71.81%) of the other banks to estimate it.

Regarding the descriptive statistics of this data, there are banks representing 14 different countries, with
the majority of them being British (6), French (6), or German (6). In the other hand, Norway only has one
bank among the largest 50.

It is important to emphasize that the total amount of assets, which sums up for all 47 banks, is 33,145.22
billion Euros. The largest bank, HSBA (HSBC Holdings), has 2,805.44 billion Euros, accounting for 8.5%
of the total. On the other hand, the smallest bank, NORD (Norddeutsch Landesbank Girozentrale), has
109.33 billion Euros, representing 0.32% of the total.

Another significant point to highlight is the interbank liabilities, which are used later to establish the inter-
connections among banks. The ranking of the largest banks based on interbank liabilities would be quite
different from their ranking based on assets. The top three banks in terms of interbank liabilities would be
AGRI (Crédit Agricole), DZ (DZ Bank), and BPCE (Groupe BPCE). Their rankings based on assets were
3rd, 20th, and 6th, respectively.

With respect to the Twitter data, I constructed a query in order to collect the relevant tweets for each one
of the banks. I retrieved the tweets that commented the name of bank (or how it is know for in Twitter) or
yet the Ticker for those banks listed.

Together with that, I filter for tweets containing a word belonging to a financial taxonomy that was developed
by Cerchiello et al. (2017). This financial taxonomy was developed by the authors based on their knowledge
of which balance sheet information may affect financial risk.

To ensure comprehensive coverage, this financial taxonomy was translaed to the local language of each
bank’s headquarters. Therefore, I conducted searches for tweets in both English and the local language of
each bank’s headquarters. This allowed for a broader range of tweets to be included.

Finally, whenever possible, I prioritized tweets with engagement, such as likes, retweets, or comments, as
they indicate a higher level of interaction with the content.

In total I collected over 50 thousand tweets in the period between 01/01/2022 to 31/12/2022.

In the sequence, I detail the methodologies used in this work.

3.2 Direct Financial Network: interbank connections trough Balance Sheet

Typically, we have information on the assets and liabilities of each bank in the interbank market, but not
on the specific interconnections between banks. In such cases, estimating the interbank network is necessary
when performing contagion simulations or evaluating other risk metrics.

To estimate the interbank connections among the financial institutions, I followed the methodology proposed
by Anand et al. (2015). The authors state that establishing network linkages represent a costs for banks.
Contrary to the Maximum Entropy approach (ME) proposed by Upper and Worms (2004), in this method-
ology banks do not spread their borrowing and lending across the entire system, since the costs in terms of
information processing, risk management and creditworthiness checks would be prohibitive for all but the
largest banks. For this reason, the authors propose a Minimum Density (MD) approach to create interbank
networks.

Minimizing the total number of linkages necessary for allocating interbank positions results to be consistent
with total lending and borrowing observed for each bank (Mistrulli, 2011). Formally, let c represent the
fixed cost of establishing a link, Ai the assets of bank i and Li the liabilities. Then the MD approach can
be formulated as a constrained optimization problem for the matrix Z which contains the interbank assets
and liabilities of the n banks. As follows:
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min
z

= c

N∑
i=1

N∑
j=1

1[Zij>0] s.t.

N∑
j=1

Zij = Ai ∀i = 1, 2, ..., N

N∑
i=1

Zij = Lj ∀j = 1, 2, ..., N

Zij ≥ 0 ∀i, j

(1)

where the indicator function 1 equals one only if bank i lends to bank j. The constraints can be softened by
assigning penalties for deviations from the marginals (i.e., Ai and Lj) as follows:

ADi =

Ai −
∑

j

Zij

 ,

LDi =

Li −
∑

j

Zji

 (2)

where LDi measures bank i’s current deficit; i.e. how much its bilateral borrowing falls short of the total
amount it needs to raise, Li, which is also the amount to be matched by the solution being constructed, Z.
Substituting into objective function one gets the value function for the optimization program:

V (Z) = −c

N∑
i=1

N∑
j=1

1[Zij>0] −
N∑

i=1
[αiAD2

i + γiLD2
i ] (3)

3.3 Financial Contagion

For simulating the interbank contagion, I will follow the works of Battiston et al. (2012a) and Mistrulli
(2011). In the simulation of interbank financial contagion in Mistrulli (2011) all banks raising funds in the
interbank market are allowed to fail one at a time.

The next step involves calculating the losses incurred by banks that have provided loans to the failed bank.
If these losses exceed the lenders’ tier-1 capital, which includes capital and reserves, the lenders would also
experience a default. The simulation then proceeds by checking if the banks that failed in the initial iteration
lead to the failure of other banks. In each subsequent iteration, the banks that failed in the previous iteration
are removed from the set of banks that could be affected by contagion. The simulation continues until at
least one bank defaults.

Formally, let B represent the set of banks and Xij the funds that bank j ∈ B borrows from bank i ∈ B,
where Xij ≥ 0 ∀(i, j) ∈ BxB and Xii = 0 ∀i ∈ B. Additionally, let ci > 0 represent the initial Tier 1
capital endowment of bank i, and α ∈ [0, 1] the rate of loss (i.e. the incidence of losses due to contagion in
the interbank exposure). Finally, let z ∈ B denote the first bank that defaults because of some idiosyncratic
shock, and define Dn

z ⊆ B and Sn
z ⊆ B as the set of banks that default and survive, respectively, at the nth

step of the contagion path initiated by bank z, as follows:

Dn
z = {k ∈ B : cn

k,z ≤ 0|cn−1
k,z > 0}

Sn
z = {k ∈ B : cn

k,z > 0} ∀n ≥ 1
(4)
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Where cn
k,z, which is the capital of bank k at the nth step of the contagion initiated by bank z, is equal to:

cn
k,z = cn−1

k,z − α
∑

j∈Dn−1
z

Xkj , ∀n ≥ 1 and ∀k ̸= z (5)

The contagion path is represented by the following:

Failed banks

D0
Z = {Z}

D1
Z = {k ∈ S0

Z : c1
k,z = (ck − αXkz) ≤ 0}

D2
Z = {k ∈ S1

Z : c2
k,z = (c1

k,z − α
∑

j∈D1
z

Xkj) ≤ 0}

...

Dn
Z = {k ∈ Sn−1

Z : cn
k,z = (cn−1

k,z − α
∑

j∈Dn−1
z

Xkj) ≤ 0}

...

DN
Z = {∅}

Surviving banks

S0
Z = {k ∈ B\{Z}}

S1
Z = {k ∈ S0

Z : c1
k,z = (ck − αXkz) > 0}

S2
Z = {k ∈ S1

Z : c2
k,z = (c1

k,z − α
∑

j∈D1
z

Xkj) > 0}

...

Sn
Z = {k ∈ Sn−1

Z : cn
k,z = (cn−1

k,z − α
∑

j∈Dn−1
z

Xkj) > 0}

...

SN
Z = {k ∈ SN−1

Z : cN
k,z = (cN−1

k,z − α
∑

j∈DN−1
z

Xkj) > 0}

(6)

and the process stops after N iterations when no additional default occurs.

Based on the literature in Financial Contagion, I have made some important assumptions. Firstly, in line
with Battiston et al. (2012a) I have adopted their rationale which assumes that agents are unable to recover
during the duration of the cascade. Consequently, I will assume that the rate of loss (α) is equal to one.
This choice is motivated by the fact that I am conducting a stress test and aiming to measure a worst-case
scenario situation.

Also based on Battiston (2012a), another assumption I will make is that agents lack certainty regarding the
robustness level of their counterparties, represented by the Tier 1 capital. Consequently, they are unable to
anticipate whether a significant default cascade will occur or not.

Finally, one crucial assumption emphasized in numerous papers that conducted financial contagion simu-
lations, such as Battiston et al. (2012a), Upper and Worms (2004), and Mistrulli (2015), pertains to the
structure of banks once the simulations commence. Accordingly, I assume that the occurrence of bank failure
triggering contagion is unexpected, which implies that the pattern of interbank lending remains constant
throughout the entire contagion process. While this assumption may initially appear strict, it acknowledges
the fact that domino effects may take place over a very short period of time, where banks have minimal
opportunities for adjustments or strategic maneuvers.

Lastly, as highlighted by Mistrulli (2011), the contagion mechanism used in these works focuses on a specific
channel for contagion while disregarding other potential sources that may interact with the propagation of
contagion within the interbank market. This precise aspect forms the crux of my research. By incorporating
the possibility of bank runs as an amplification mechanism in financial contagion, I aim to make a contribution
to the existing literature.

3.4 Sentiment Network: unstructured big data from Twitter

In order to construct the Sentiment Network, I initially performed sentiment analysis on each of the retrieved
tweets. Subsequently, I utilized the sentiment scores assigned to the banks to build the Sentiment Network.
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3.4.1 Measuring the sentiment

Once the tweets were collected as stated in the “Data” section, each obtained tweet has been classified into a
sentiment class measure. The higher the measure, the more positive the sentiment (or value) that the tweet
assigns to the bank under analysis.

The sentiment classification has been carried out employing the NRC Emotion Lexicon. The NRC (National
Research Council) lexicon consists of approximately 14,000 words or terms and is a popular resource used
in sentiment analysis tasks. It is a sentiment lexicon that consists of a list of words and their associated
sentiment scores. Each word in the lexicon is tagged with one or more emotions or sentiment categories,
such as joy, sadness, anger, fear, trust, anticipation, surprise, and disgust.

Additionally, for this work I have used the extend multi-language version of the vocabulary as I need to
measure the sentiment in the local language of each bank.

The procedure for measuring the sentiment of each tweet involves several steps. Firstly, I utilized Google’s
Compact Language Detector to determine the language used in each tweet. Although Twitter has its own
language detection algorithm, I observed a significant number of mismatches, which were notably reduced
by employing Google’s algorithm.

After language identification, the next step involves using the openNLP sentence tokenizer for tokenization.
Tokenization plays a crucial role in sentiment analysis as it breaks down a sentence into individual tokens.
This process enables a more detailed analysis and understanding of sentiment by taking into account factors
such as negation, sentiment modifiers, context, and noise removal.

For instance, in the sentence “I do not trust this bank,” tokenization ensures the accurate interpretation
of the negative sentiment by recognizing the presence of “not.” Similarly, in the sentence “Its reserves are
extremely fragile,” tokenization identifies the sentiment modifier “extremely,” which intensifies the negative
sentiment expressed. Furthermore, tokenization helps eliminate noise such as punctuation marks, allowing
the focus to be on meaningful words.

In the sequence, I implemented a loop to analyze each bank and its corresponding Twitter data. For each
tweet, the language used was identified and then provided as input to the NRC Emotion Lexicon algorithm.
This step ensured that the sentiment analysis was conducted in the appropriate language, taking into account
the specific linguistic nuances and context.

Finally, I computed the average sentiment for each bank by aggregating the sentiment measurements on a
daily basis. This approach allowed me to obtain a consolidated sentiment value for each bank, which will be
used in estimating the sentiment network.

3.4.2 Construct the Sentimental Network to connect the banks

Accordingly to Fan et al. (2021), Cerchiello et al. (2017) and Cerchiello and Giudici (2016), Graphical Gaus-
sian Models (GGM) are well suited to estimate interconnections between a large set of financial institutions.

In Cerchiello et al. (2017) the authors use GGM to estimate the relationships between banks. To do so they
begin by estimating the relationship among banks through their partial correlation following the work of
Lauritzen (1996). Partial correlations can be estimated assuming that the observations follow a GGM, in
which the covariance matrix (Σ) is constrained by the conditional independences described by a graph.

More formally, let X = (X1, ..., XN ) ∈ RN be a N-dimensional random vector distributed according to a
multivariate normal distribution N (µ, σ) and, assuming stationarity, µ = 0. In addition, the authors assume
throughout that the covariance matrix Σ is not singular.

Let G = (V, E) be an undirected graph, with vertex set V = 1, ..., N , and edge set E = V xV , a binary
matrix, with elements eij , that describe whether pairs of vertices are (symmetrically) linked between each
other (eij = 1), or not (eij = 0).
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If the vertices V of this graph are put in correspondence with the random variables X1, ..., XN , the edge set
E induces conditional independence on X through the Markov properties as stated by Lauritzen (1996). In
particular, the pairwise Markov property determined by G states that, for all 1 ≤ i < j ≤ N :

eij = 0 ⇔ Xi ⊥ Xj |XV \{i,j} (7)

that is, the absence of an edge between vertices i and j is equivalent to independence between the random
variables Xi and Xj , conditionally on all other variables xv\{i,j}.

Whittaker (1990) proved that this independence corresponds to a partial correlation of zero i.e.:

Xi ⊥ Xj |XV \{i,j} ⇔ ρijV = 0 (8)

where

ρijV = −θij

√
θiiθjj

(9)

denotes the ijth partial correlation, i.e., the correlation between Xi and Xj conditionally on the remaining
variables Xv\{i,j}.

Therefore, ρij expresses the direct influence of a financial institution on another, which can be used to
measure the relationships between institutions.

If the value of θij is zero (not zero), an edge does not exist (does exist) between vertex i and vertex j, and
Xi and Xj are (are not) conditional independent.

Accordingly to Fan et al. (2021) constructing a visual connectedness network of financial institutions can
be enhanced by considering partial correlations. When measuring the correlation of network nodes, it
is important to differentiate between direct and indirect correlations. Simple correlation coefficients fail
to capture this distinction, while partial correlation coefficients excel at quantifying direct correlations.
By excluding the influence of other variables, the partial correlation coefficient specifically analyzes the
correlation between two variables, providing a more accurate measure of direct correlation.

Therefore the GGM can be defined as the family of all N -variate normal distributions that satisfies the
constraints induced by the graph G = (V, E) on the partial correlation, as follows:

eij = 0 ⇔ ρijV = 0, ∀ 1 ≤ i < j ≤ N (10)

Moreover, let Θ be the inverse of the variance-covariance matrix Σ, i.e., Σ−1. Θ is also referred to as a
precision matrix and θij are its elements.

According to the above analysis, the precision matrix contains the structural information of the graph model,
so the structural learning of the Graphical Gaussian model can be transformed into the problem of calculate
the precision matrix.

Let S be the covariance matrix of samples, that is, S = ΣN
n=1X(n)X(n)T /N . The maximum likelihood

estimation problem of the precision matrix can be expressed as:

max
Θ>0

log|Θ| − tr(SΘ) (11)

where Θ > 0 denotes that all the elements of the matrix Θ are positive; tr(·) indicate trace of the matrix;
and |Θ| denotes determinant of Θ.

However, the resulting model is too complex to be interpreted in reality. This occurs because the maximum
likelihood estimation method cannot generate sparse solutions. In order to solve this problem, following
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Fan et al. (2021) and Banulescu & Dumitrescu (2015) a Lasso approach can be used by applying L1-norm
penalty to:

Θ̂ = arg max
Θ>0

log|Θ| − tr(SΘ) − λ||Θ||1 (12)

where λ ≥ 0; Θ is a positive definite matrix; ||Θ||1 =
∑

j=1
∑

i=1 |Θij | is L1-norm penalty for Θ. Since the
L1-norm penalty is used, the solution of Eq. (12), i.e., Θ̂, will be sparse. In another words, the proportion of
zero elements in the precision matrix Θ̂ is larger. These zero elements represent the conditional independence
between Xi and Xj and the absence of an edge between vertices i and j.

The remaining issue pertains to determining the optimal value for λ since different values can yield varying
partial correlations and, consequently, different connections in the Sentiment Network. While some authors,
such as Cerchiello et al. (2017), argue that the choice of λ is arbitrary, the literature does provide some
methods for obtaining the best value for λ.

Cross-validation is a widely used technique for model selection and hyperparameter tuning. In the case of
Lasso, cross-validation can help determine the optimal λ value by assessing the model’s performance on
different subsets of the data.

The process involves dividing the available data into multiple subsets or folds. The model is trained on
a combination of these folds and evaluated on the remaining fold. This process is repeated several times,
with different fold combinations, and the performance metric (such as mean squared error or accuracy) is
averaged across all iterations. By testing various λ values and selecting the one that results in the best
performance metric, the cross-validation approach helps identify the optimal λ for the Lasso method, which
is the approach I used in this work.

In summary, two or more banks will be connected when users exhibit similar sentiment towards these banks.
In other words, the network connections are formed based on the similarity of sentiment expressed by users
regarding the banks.

The main assumption underlying this approach is that if bank runs occur, they are more likely to spread
among banks that have established connections in the sentiment expressed by social media users. This
assumption suggests that the spread of a bank run is not random but rather influenced by the interconnected
sentiment dynamics among banks.

3.5 Financial Contagion with Bank Runs effects

To incorporate the effect of bank runs in the interbank financial contagion approach, I propose a methodology
that can be summarized in the following steps:

• for each bank, analyze the other banks that are sentiment connected to it
• check if the banks sentiment connected were not already contagioned by the interbank simulation. In

case negative, allow these banks also to fail due to the bank run effect
• check the interbank connections from these new banks that are assumed to fail
• check if there are no duplicate cases (banks that have already been considered fail due to the interbank

contagion)
• compute the number of additional banks that would fail in this approach
• compute the additional total assets from these banks
• compute the difference from this simulation from the simulation of only interbank contagion

Therefore, following these steps on simulations for each bank, I can compute the additional effects of con-
sidering bank runs in the simulation, both in number of banks and in total assets lost.
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3.6 An illustration

In this section I provide a simple example to helps illustrate the model and the methodologies proposed.
Consider Figure 1, where five stylized banks are represented. In this picture it is showed banks A, B,
C, D, and E and theirs respective assets, capital (tier 1 capital) and interbank liabilities. This values are
(100,10,30), (150,20,20), (120,12,0), (80,8,6), and (120,12,20) respectively.

To simplify the example, let’s assume that bank A’s interbank liabilities are evenly distributed among banks
B, C, and D. It’s important to note that this simplified scenario does not precisely reflect the behavior of the
MD method. Instead, it is more similar to the ME method. However, for the purpose of this illustration,
treating it in a similar manner would yield comparable results and make the analysis easier.

To consider the simulation of financial contagion in this approach, I first simulate that Bank A fails. In this
case, I will consider that this bank will not pay the whole liabilities to the banks B, C, and D. What we
have in this case is that Banks B and C, for having more financial robustness (they have capital of 20 and
12 respectively) could absorb this default of bank A and will not fail. However, bank D which has only 8 of
capital would fail.

After that, the approach is to go for a second round where I need to check the impacts of the interbank
liabilities of bank D, which has fail in the first round. Again for simplicity I will consider that bank D also
split its interbank liabilities equally among banks E and C. Bank E, as it happened to banks B and C in the
first round, has enough capital to absorb this loss and will not fail. However, now when we look to bank C,
this bank would also fail considering that it is necessary to keep track of the defaults in the previous round.
Therefore, bank C would be short of 13 (10 from default of Bank A in the first round plus 3 in the default
of Bank D in the second round) and would also fail.

The simulation continues for another round with the analyse of the interbank liabilities of bank C now.
However, since this bank has 0 of interbank liabilities the simulation would stop here.

Figure 1: Simulation interbank contagion

In this case, the default of Bank A would cause the additional default of other 2 banks (D and C) and the
additional amount of assets lost in this simulation would be 200 (80 from bank D and 120 from bank C).
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This examples follows closely the works of Acenad et al. (2015) and Battiston et al. (2012a).

In Figure 2 it is possible observe the representation of the network connecting the illustrated banks.

Figure 2: Interbank network with the illustration data

Now in my expansion, I will add the effects of a bank run in the simulation.

Consider Figure 3. Initially, it presents the same example as depicted in Figure 1, illustrating the interbank
market contagion. However, in this scenario, I introduce the additional effects of bank run contagion.

In this case, Bank A is “sentiment connected” to Bank E. Therefore, when simulating the default of Bank
A, I will also consider that, in addition to the interbank contagion effects explained earlier, Bank E would
also fail due to a bank run contagion originating from Bank A. This is because in a simulation where Bank
A experiences a bank run event and fails, it is likely that Bank E would also be affected by a bank run due
to their sentiment connection.

Finally, in this case, I have also to analyze for the effects of interbank connections of bank E. Considering
that, Bank G would also fail once it would not receive 10 from Bank E and its capital is only 8.

Therefore, now it is possible to analyze the effects of the default simulation of Bank A and compare the
results in both cases, i.e., considering just the contagion in the interbank market and considering also the
additional effect of bank runs.

As before we had that the simulation of the default in Bank A would cause the additional defaults of other
2 banks and 200 in assets. Now, considering the effects of a bank run, the effect of a simulated default in
Bank A would cause the additional default of 4 banks (D, C, E, and F) and the additional loss of 400 in
assets.

With this methodology it is possible to quantify the additional impacts that a bank run could cause in the
system as well as access which banks would spread more default in the system (more central and systemically
important).

Finally, it is crucial to emphasize that Sentiment Analysis is a highly dynamic process. As a matter of fact,
these metrics could be computed in virtually real-time basis, providing a significant advantage over certain
conventional indicators.
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Figure 3: Simulation interbank contagion with bank run effects

Let’s consider an example: suppose that today Bank Z experiences a bank run (for any given reason). Using
this methodology, it would be possible to reconstruct the sentiment network connections within a few days,
or even hours, and analyze the potential contagion effects. Moreover, it enables us to identify other banks
that are more likely to be affected by the bank run through sentiment analysis.

This scenario becomes highly plausible when we have concrete information confirming that Bank Z indeed
encountered a bank run. In such cases, if users who extensively comment on the bank run of Bank Z also
display a similar pattern of behavior towards another bank, let’s say Bank X, it is reasonable to assume that
Bank X is susceptible to experiencing a bank run alongside Bank Z.

4 Results

In this section I start by showing the results of the estimated Financial Network created for the simulation
on the interbank connections within the financial institutions’ data. After that, I present the Sentiment
Network constructed using the unstructured big data retrieved from Twitter.

In the sequence, I show the results of the simulations and how the contagious effect affect the institutions.
Finally, I compare the effects considering only interbank connections with those of my method that includes
bank run effects.

Therefore, this section provide two main approaches to analyzing the financial contagion and possible bank
runs effect: visually and quantitatively.

4.1 Financial Networks

Figure 4 illustrates the estimated interbank network, employing the minimum density estimation method
proposed by Anand et al. (2015). In this figure, nodes are weighted based on the total assets of each bank,
and the colors indicate the countries where the banks are headquartered.
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Figure 4: Financial Networks using Balance Sheet data

The resulting network demonstrates sparsity and disassortativity. Sparsity refers to a network with relatively
few connections compared to the total possible connections, resulting in few edges between nodes. Disassor-
tativity, or disassortative mixing, describes a network where nodes tend to connect to nodes with different
attributes or characteristics. Highly connected nodes are more likely to be connected to less connected nodes.

These characteristics are typical of a core-periphery network, which is commonly observed in interbank
financial networks. In a core-periphery network, a densely connected core of nodes interacts strongly among
themselves, while the periphery consists of nodes with fewer connections.

In fact, observing the network, it becomes apparent that AGRI appears to be the most central bank, which
aligns with its high interbank asset value. Despite not being the largest in terms of total assets, AGRI’s
significant interbank assets contribute to its centrality within the network. On the other hand, banks such
as NIK, BEL, SEB, and BIRG, with low interbank liabilities, occupy the “periphery” of the network. These
banks have only a few connections, reflecting their relatively small debts, which are primarily directed towards
larger banks like AGRI and BNP. These observations align with the assumptions of the ME methodology.

Moving forward, in the sequence I present the Sentiment Network constructed using the unstructured big
data retrieved from Twitter.

This Network can be seen in Figure 5.

As in the previous figure, here nodes are weighted based on the total assets of each bank, and the colors
indicate the countries where the banks are headquartered.

First of all, it is possible to noticed that the connections among banks in this case differ significantly from
the interbank connections in the previous case. This was expected, as stated by Cerchiello et al. (2017),
considering that the two networks aim to capture distinct information. The interbank network focuses on
the connections between banks, while this network is constructed based on the sentiment expressed by social
media users towards those banks.

This distinction is beneficial because if both networks captured similar issues, the simulation considering
both would duplicate these connections, leading to an overestimate of contagion. Furthermore, it would not
align with the overall objective of this work.

It is important to note that is is expected from the sentiment network to also capture non-fundamental
factors related to social media users’ sentiment, which are not included in the first network. Additionally,
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Figure 5: Sentiment Network using unstructured big data from Twitter

the comments in tweets cannot contain information about interbank connections since these connections are
often unknown, even to central banks and regulators, as stated by Anand et al. (2015).

With that in mind, let’s analyze the connections in Figure 5. We can observe certain connections that are
to be expected, such as those between French banks POST and AGRI, and GLE and BNP. Similarly, the
British BNS is connected to the Irish BIRG, and the German DBK is connected to the Swiss RAIF and the
Austrian RBI.

However, it is important to note that connections are not necessarily limited to banks from the same coun-
try or language. These connections reflect the sentiment towards the institutions, regardless of language.
Therefore, the presence of other connections is completely normal and somewhat expected.

The crucial aspect to emphasize is the dynamic nature of Sentiment Analysis. This process enables the
computation of metrics in near real-time, as emphasized in the illustration chapter, enabling the identification
of new connections as sentiments towards banks evolve.

By applying this methodology, it becomes feasible to reconstruct sentiment network connections within a
short timeframe, ranging from a few days to mere hours. Such rapid analysis facilitates the examination of
potential contagion effects in a turmoil situation.

4.2 Financial Contagion

After examining the visual aspects of the methodology’s results, this section delves into the quantitative
findings.

To begin with, the outcomes of the financial contagion simulations considering solely interbank connections
are presented. Table 2 displays the top 10 banks ranked by the potential contagion effect, measured by the
total assets that would be impacted in the event of their failure.
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Table 2: Rank of top 10 IB Financial Contagion (by assets default)

Bank Institution Name Rank Add Banks Default N
Add Assets

Default
%

Total
BNP BNP Paribas 2 AGRI, BPCE, GLE, ISP, MUT, UCG,

STAN, POST, DZ, KBC, LAND, EBS, BAY
13 11310.13 34.12

UCG UniCredit 14 AGRI, BPCE, GLE, ISP, MUT, STAN,
POST, DZ, KBC, LAND, EBS, BAY

12 10452.36 31.54

GLE Société Générale 7 AGRI, BPCE, ISP, MUT, STAN, POST, DZ,
KBC, LAND, EBS, BAY

11 8965.54 27.05

ISP Intesa Sanpaolo 11 AGRI, BPCE, MUT, STAN, POST, DZ,
KBC, LAND, EBS, BAY

10 7989.86 24.11

HSBA HSBC Holdings 1 AGRI, BPCE, MUT, STAN, POST, DZ,
LAND, EBS

8 7374.69 22.25

INGA ING Groep N.V. 12 AGRI, BPCE, MUT, STAN, POST, DZ,
LAND, EBS

8 7374.69 22.25

MUT Crédit Mutuel 13 AGRI, BPCE, STAN, POST, DZ, LAND,
EBS

7 6489.60 19.58

BPCE Groupe BPCE 6 AGRI, MUT, STAN, POST, DZ, LAND,
EBS

7 5843.55 17.63

AGRI Crédit Agricole 3 BPCE, MUT, STAN, POST, DZ, LAND,
EBS

7 5207.07 15.71

SAN Banco Santander 4 STAN, DZ, LAND, RBI 4 1928.39 5.82

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

The table highlights that BNP would have the most significant impact on the financial system if it were to
fail. Its failure would lead to the failure of 13 other banks, resulting in a combined impact of 11,310 billion
Euros. This amount represents over 34% of the total assets of all banks in the system.

Following BNP, the banks UCG, GLE, ISP, HSBA, and INGA are listed, and their failures would account
for impacts ranging from around 30% to 20% of the system’s total assets.

Interestingly, the spread of systemic contagion does not necessarily require banks to be extremely large
in terms of total assets. A case in point is bank UCG, which ranks only 14th in terms of total assets.
This effect may occur because banks can have significant interbank connections, leading to a domino effect.
Furthermore, these banks may have substantial interbank liabilities despite their size. In fact, bank UCG
would rank 6th if consider interbank liabilities.

Now turning to the results that incorporate the effects of bank runs in the simulations, I will analyze Table
3, which presents the top 10 banks also ranked by their total assets.

Table 3: Rank of top 10 Financial Contagion with Bank Run Effects
(by add assets default)

Bank Institution Name Rank Sentiment Connected
Add Banks

Default
Add Assets

Default
%

Total
GLE Société Générale 7 BNP, BARC, LLOY,

STAN, EBS
15 15202.88 45.87

LLOY Lloyds Banking 10 BPCE, GLE, CBK,
ABN, NORD

16 12386.52 37.37

BNP BNP Paribas 2 GLE 13 11310.13 34.12
BARC Barclays 5 GLE, SAB 13 10703.74 32.29
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Bank Institution Name Rank Sentiment Connected
Add Banks

Default
Add Assets

Default
%

Total
RAB Coöperatieve

Rabobank
19 HSBA, SAB 11 10690.81 32.25

UCG UniCredit 14 12 10452.36 31.54
EBS Erste Group Bank 29 GLE 11 10128.50 30.56
SAB Banco de Sabadell 38 BARC, RAB 11 9979.79 30.11
STAN Standard Chartered 16 GLE 11 9682.24 29.21
RAIF Raiffeisen Gruppe 35 DBK, CABK, RBI 12 9620.09 29.02

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

In this scenario, it is possible to observe a significant change in the top-ranked banks that would cause the
most substantial systemic contagion in the event of their failure.

While GLE and BNP maintain their positions in the top ranks, banks such as LLOY, BARC, and RAB now
emerge as contributors to significant systemic contagion.

Additionally, the total amount lost in this scenario is larger, with GLE potentially accounting for up to 45%
of total assets. The other banks, up to RAB, would fall within the range of up to 32% impact on total assets.

The change in rankings is primarily attributed to the fact that these banks are sentiment connected to other
banks that would experience significant contagion in case of distress. As a result, the contagion effect is
considerably amplified.

To gain a clearer understanding of this comparison, let’s refer to Table 4, which provides a comprehensive
overview of all the banks in both scenarios: counting only interbank connections and accounting for the
amplification mechanism through bank runs.

Table 4: Comparison Financial Contagion with IB and with Bank
Run Effects + IB (by total assets add)

Bank Defaults IB Assets IB Defaults IB+BR Assets IB+BR Add Banks Add Assets
LLOY 0 0.00 16 12386.52 16 12386.52
RAB 1 259.30 11 10690.81 10 10431.51
EBS 0 0.00 11 10128.50 11 10128.50
SAB 0 0.00 11 9979.79 11 9979.79
STAN 0 0.00 11 9682.24 11 9682.24
RAIF 0 0.00 12 9620.09 12 9620.09
BARC 3 1721.34 13 10703.74 10 8982.40
POST 0 0.00 7 6629.04 7 6629.04
GLE 11 8965.54 15 15202.88 4 6237.34
MUT 7 6489.60 8 9295.04 1 2805.44
CBK 0 0.00 2 1175.36 2 1175.36
ABN 0 0.00 1 995.90 1 995.90
NORD 0 0.00 1 995.90 1 995.90
BPCE 7 5843.55 8 6839.45 1 995.90
HSBA 8 7374.69 10 8262.50 2 887.81
BEL 0 0.00 1 477.44 1 477.44
BIRG 0 0.00 1 308.46 1 308.46
DBK 0 0.00 1 282.61 1 282.61
CABK 1 109.33 2 391.94 1 282.61
RBI 3 1721.34 4 2003.95 1 282.61
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Bank Defaults IB Assets IB Defaults IB+BR Assets IB+BR Add Banks Add Assets
NBS 0 0.00 1 151.32 1 151.32
BNP 13 11310.13 13 11310.13 0 0.00
AGRI 7 5207.07 7 5207.07 0 0.00
SAN 4 1928.39 4 1928.39 0 0.00
UBSG 0 0.00 0 0.00 0 0.00
ISP 10 7989.86 10 7989.86 0 0.00
INGA 8 7374.69 8 7374.69 0 0.00
UCG 12 10452.36 12 10452.36 0 0.00
NWG 1 745.64 1 745.64 0 0.00
BBVA 1 152.30 1 152.30 0 0.00
DZ 1 770.12 1 770.12 0 0.00
NDA 0 0.00 0 0.00 0 0.00
DANSKE 0 0.00 0 0.00 0 0.00
KBC 1 745.64 1 745.64 0 0.00
LAND 2 1397.16 2 1397.16 0 0.00
SEB 0 0.00 0 0.00 0 0.00
SHB 0 0.00 0 0.00 0 0.00
DNB 0 0.00 0 0.00 0 0.00
BAY 0 0.00 0 0.00 0 0.00
SWED 0 0.00 0 0.00 0 0.00
NYK 0 0.00 0 0.00 0 0.00
KANT 0 0.00 0 0.00 0 0.00
BAMI 0 0.00 0 0.00 0 0.00
OP 0 0.00 0 0.00 0 0.00
BPE 0 0.00 0 0.00 0 0.00
A5G 0 0.00 0 0.00 0 0.00
BMPS 0 0.00 0 0.00 0 0.00

NOTES: 1) assets are in Billions of Euros. 2) For the banks not listed in Stock Market, the column “Bank”
present an acronym, otherwise it is the Ticker.

This table is ranked based on the total assets that are added to the contagion when bank runs are included
in the simulations, compared to considering only interbank contagion. In other words, it represents the
difference between the contagion effects when just interbank contagion are considering and when both bank
runs and interbank connections are taken into account.

In this table, it is evident that bank LLOY contributes the most to the system’s defaults after considering
the amplification caused by bank runs. The significance of bank LLOY’s contribution stems from the fact
that, initially, it would not cause any defaults based solely on interbank contagion. The same holds true for
the other seven banks at the top of the table (excluding banks RAB and BARC, which would cause 1 and
3 defaults through interbank connections, respectively).

The total amount of assets that would be lost, considering only interbank connections, sums up to 80,558
billion euros. Comparing when bank runs are taken into consideration, this number increases to 174,276
billion euros, representing an 116.34% increase (over twice as much). Nevertheless, it’s important to note
that this measure purely holds for a hypothetical comparison among the simulation, as the simulation should
be considered only individually for each bank.

Although there may be convergence in results for certain banks, such as bank GLE, it is important to
emphasize that the inclusion of the proposed amplification mechanism leads to significant changes in the
results. This observation highlights the criticality of integrating different measures, as it allows for a more
comprehensive understanding. By combining multiple measures of systemic importance, one can obtain a
more accurate and holistic perspective of the potential risks that financial contagion poses to the stability
of the financial system.
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In light of the results obtained, it is evident that banks that were not highly central in the network before
now exhibit increased centrality. This finding is of particular importance and should attract the attention
of regulators. To mitigate these risks, a “sentiment buffer” policy could be considered. Such a buffer might
involve targeted capital requirements or liquidity provisions that increase during periods of high negative
sentiment, helping banks better withstand sentiment-driven liquidity demands. By proactively addressing
sentiment contagion risks, regulators could potentially reduce the impact of panic-driven behavior on financial
stability.

Finally, it is crucial to emphasize that the outcomes of this study lean towards a pessimistic perspective.
However, it is essential to view these results as a stress test in a worst-case scenario approach, offering
insights into the potential vulnerabilities of the financial system. In other words, these results should not
be interpreted too literally or used as the sole determinant of a financial institution’s systemic importance.
The additional stress indicator, represented by the bank runs amplification, can serve as another measure
of systemic importance. Therefore, it should be considered alongside other factors such as the institution’s
size, interconnectedness, and criticality to the overall functioning of the financial system.

5 Conclusion

Results obtained from this analysis provide valuable insights into the potential effects of bank runs and
sentiment-driven contagion in the financial system. The combination of interbank connections and sentiment
networks allows for a more comprehensive understanding of systemic risk and its propagation through the
system.

The estimated interbank network demonstrates a core-periphery structure, where a densely connected core
of banks interacts strongly among themselves, while the periphery consists of banks with fewer connections.
This finding aligns with previous studies on interbank networks and reflects the hierarchical nature of the
financial system. The centrality of certain banks, such as AGRI, highlights their importance in the network
due to their high interbank assets. On the other hand, banks with low interbank liabilities occupy the
periphery of the network, indicating their relatively smaller debts directed towards larger banks.

Sentiment network constructed from Twitter data provides a different perspective on the connections between
banks. It captures non-fundamental factors, reflecting users’ sentiments towards banks regardless of their
country or language. This network is dynamic in nature and allows for near real-time analysis, enabling
the identification of new connections as sentiments evolve. The sentiment network provides additional
information that complements the interbank network and contributes to a more holistic understanding of
contagion dynamics.

Simulation results highlight the potential impact of bank failures on the financial system. In the case of
interbank contagion without considering bank runs, BNP emerges as the bank with the most significant
potential contagion effect, followed by UCG, GLE, ISP, and HSBA. However, when bank runs are included
in the simulations, the ranking of banks experiencing significant contagion changes. Banks like LLOY,
BARC, and RAB emerge as contributors to systemic contagion due to their sentiment connections with
other banks.

The comparison between interbank contagion and contagion with bank runs amplification shows a substantial
increase in the potential losses and defaults in the system when bank runs are considered. Banks that initially
would not cause any defaults based solely on interbank contagion can become significant contributors to
systemic risk when sentiment-driven bank runs are taken into account. The inclusion of the amplification
mechanism through bank runs provides a more comprehensive perspective on systemic importance and
potential vulnerabilities.

These results emphasize the importance of integrating multiple measures of systemic risk to gain a more
accurate understanding. By considering both interbank connections and sentiment-driven bank runs, reg-
ulators can identify systemically important banks that may not be apparent solely based on traditional
measures. In this sense, a sentiment-buffering mechanism could serve as a proactive policy to help mitigate
contagion risk driven by shifts in public sentiment.
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While these findings highlight specific vulnerabilities within financial networks, they should be interpreted
cautiously, as the simulations reflect stress-test scenarios rather than precise predictions. Additional research
will be necessary to validate and enhance these findings. The sentiment analysis, for instance, relies on social
media data that may not fully represent market sentiment. Similarly, the interbank network estimations are
constrained by data quality and availability, and the simplified contagion model proposed does not capture all
complexities of real-world events. Moreover, the sentiment analysis tool used is based on general vocabulary
rather than finance-specific language.

Looking ahead, this research opens several avenues for further exploration. Advances in Artificial Intelligence,
particularly NLP and LLMs, provide promising tools for enhancing sentiment analysis in financial contexts.
Future work will involve developing a finance-specific language model to better capture nuanced sentiment
dynamics. Additionally, further refinement of the contagion mechanism proposed in this study — to better
integrate interbank and sentiment networks — could improve the accuracy of contagion predictions. Finally,
real-world applications of this network methodology will also be explored by comparing network structures
immediately before and after market distress events, allowing for validation under actual conditions.

Through these efforts, this study aims to offer a more comprehensive measurement framework for assess-
ing systemic risk and understanding the interplay between fundamental and non-fundamental factors. By
advancing these methodologies, this research can provide insights for regulators to enhance risk manage-
ment and supervision practices, enriching both theoretical knowledge and practical applications in financial
stability and risk management.

References

Acharya, V. V., Pedersen, L. H., Philippon, T., & Richardson, M. (2017). Measuring systemic risk. The
review of financial studies, 30(1), 2-47. DOI: https://doi.org/10.1093/rfs/hhw088

Allen, F., & Gale, D. (2000). Financial contagion. Journal of political Economy, 108(1), 1-33. DOI:
https://doi.org/10.1086/262109

Anand, K., Craig, B. and G. von Peter (2015). Filling in the blanks: network structure and interbank
contagion. Quantitative Finance 15:4, 625-636. DOI: https://doi.org/10.1080/14697688.2014.968195

Banulescu, G. D., & Dumitrescu, E. I. (2015). Which are the SIFIs? A Component Expected Shortfall
approach to systemic risk. Journal of Banking & Finance, 50, 575-588. DOI: https://doi.org/10.1016/j.
jbankfin.2014.01.037

Battiston, S., Gatti, D. D., Gallegati, M., Greenwald, B., & Stiglitz, J. E. (2012a). Default cascades:
When does risk diversification increase stability?. Journal of Financial Stability, 8(3), 138-149. DOI: https:
//doi.org/10.1016/j.jfs.2012.01.002

Battiston, S., Puliga, M., Kaushik, R., Tasca, P., & Caldarelli, G. (2012b). DebtRank: Too Central to Fail?
Financial Networks, the FED and Systemic Risk. Scientific Reports, 2, 541.

Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and
systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3), 535-559. DOI:
https://doi.org/10.1016/j.jfineco.2011.12.010

Bricco, M. J., & Xu, M. T. (2019). Interconnectedness and contagion analysis: A practical framework.
International Monetary Fund. DOI: https://doi.org/10.5089/9781513516226.001

Calomiris, C. W., & Mason, J. (1997). Contagion and bank failures during the Great Depression: The June
1932. Chicago banking panic. http://www.jstor.org/stable/2951329

Cerchiello, P., & Giudici, P. (2016). Big data analysis for financial risk management. Journal of Big Data,
3(1), 1-12.

Cerchiello, P., Giudici, P., & Nicola, G. (2017). Twitter data models for bank risk contagion.Neurocomputing,
264, 50-56. DOI: https://doi.org/10.1016/j.neucom.2016.10.101

20

https://doi.org/10.1093/rfs/hhw088
https://doi.org/10.1086/262109
https://doi.org/10.1080/14697688.2014.968195
https://doi.org/10.1016/j.jbankfin.2014.01.037
https://doi.org/10.1016/j.jbankfin.2014.01.037
https://doi.org/10.1016/j.jfs.2012.01.002
https://doi.org/10.1016/j.jfs.2012.01.002
https://doi.org/10.1016/j.jfineco.2011.12.010
https://doi.org/10.5089/9781513516226.001
http://www.jstor.org/stable/2951329
https://doi.org/10.1016/j.neucom.2016.10.101


Cookson, J. A., Fox, C., Gil-Bazo, J., Imbet, J. F., & Schiller, C. (2023). Social media as a bank run catalyst.
Available at SSRN: https://ssrn.com/abstract=4422754 or http://dx.doi.org/10.2139/ssrn.4422754

Diamond, D. W., & Dybvig, P. H. (1983). Bank runs, deposit insurance, and liquidity. Journal of political
economy, 91(3), 401-419. https://www.jstor.org/stable/1837095

Elliott, M., Golub, B., & Jackson, M. O. (2014). Financial networks and contagion. American Economic
Review, 104(10), 3115-3153. DOI: http://dx.doi.org/10.2139/ssrn.2175056

Fan, X., Wang, Y., & Wang, D. (2021). Network connectedness and China’s systemic financial risk
contagion——An analysis based on big data. Pacific-Basin Finance Journal, 68, 101322. DOI: https:
//doi.org/10.1016/j.pacfin.2020.101322

Iyer, R., & Puri, M. (2012). Understanding bank runs: The importance of depositor-bank relationships and
networks. American Economic Review, 102(4), 1414-1445.

Jackson, M. O., & Pernoud, A. (2021). Systemic risk in financial networks: A survey. Annual Review of
Economics, 13, 171-202. DOI: http://dx.doi.org/10.2139/ssrn.3651864

Lauritzen, S. L. (1996). Graphical models (Vol. 17). Clarendon Press.

Mistrulli, P. E. (2011). Assessing financial contagion in the interbank market: Maximum entropy versus
observed interbank lending patterns. Journal of Banking & Finance, 35(5), 1114-1127. DOI: https://doi.
org/10.1016/j.jbankfin.2010.09.018

Nopp, C., & Hanbury, A. (2015, September). Detecting risks in the banking system by sentiment analysis.
In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 591-600).

Nyman, R., Kapadia, S., & Tuckett, D. (2021). News and narratives in financial systems: exploiting big
data for systemic risk assessment. Journal of Economic Dynamics and Control, 127, 104119. DOI: https:
//doi.org/10.1016/j.jedc.2021.104119

Rönnqvist, S., & Sarlin, P. (2015). Bank networks from text: interrelations, centrality and determinants.
Quantitative Finance, 15(10), 1619-1635. DOI: https://doi.org/10.1080/14697688.2015.1071076

Shiller, R. J. (2019). Narrative economics: How stories go viral and drive major economic events. Princeton
University Press.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank markets. Journal of
financial stability, 7(3), 111-125. DOI: https://doi.org/10.1016/j.jfs.2010.12.001

Upper, C. and A. Worms (2004). Estimating bilateral exposures in the German interbank market: Is there a
danger of contagion? European Economic Review 48, 827-849. DOI: https://doi.org/10.1016/j.euroecorev.
2003.12.009

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics Wiley New York 1. Zbl0732,
62056.

21

https://ssrn.com/abstract=4422754
http://dx.doi.org/10.2139/ssrn.4422754
https://www.jstor.org/stable/1837095
http://dx.doi.org/10.2139/ssrn.2175056
https://doi.org/10.1016/j.pacfin.2020.101322
https://doi.org/10.1016/j.pacfin.2020.101322
http://dx.doi.org/10.2139/ssrn.3651864
https://doi.org/10.1016/j.jbankfin.2010.09.018
https://doi.org/10.1016/j.jbankfin.2010.09.018
https://doi.org/10.1016/j.jedc.2021.104119
https://doi.org/10.1016/j.jedc.2021.104119
https://doi.org/10.1080/14697688.2015.1071076
https://doi.org/10.1016/j.jfs.2010.12.001
https://doi.org/10.1016/j.euroecorev.2003.12.009
https://doi.org/10.1016/j.euroecorev.2003.12.009

	14. Beyond the Balance Sheet. The Role of Social Sentiment in Financial Contagion Wagner Eduardo Schuster (Goethe University Frankfurt)
	Beyond the Balance Sheet_ The Role of Social Sentiment in Financial Contagion_Wagner Eduardo Schuster
	Abstract
	Introduction
	Literature review: Financial Networks
	Methodology and data
	Data
	Direct Financial Network: interbank connections trough Balance Sheet
	Financial Contagion
	Sentiment Network: unstructured big data from Twitter
	Measuring the sentiment
	Construct the Sentimental Network to connect the banks

	Financial Contagion with Bank Runs effects
	An illustration

	Results
	Financial Networks
	Financial Contagion

	Conclusion
	References


