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• The widespread use of Artificial Intelligence (AI) and Machine Learning (ML) 
systems in lending also brings a series of specific risks, mainly related to 
discrimination in the form of bias, ethics or fairness

• The main issue with AI and ML systems is that they are black boxes, being 
not interpretable as the traditional models used for determining the 
probability of default (such as the logit model)

• Using datasets from Fannie Mae and Freddie Mac, Bartlett et al. (2019) 
found that classical credit scoring systems have led to discrimination: 

➢ Latin and African-American borrowers have rates that are 7.9 and 3.6 
basis points higher, respectively, for mortgage loans and refinancing in 
this segment;

➢ during 2009-2015, between 0.74 and 1.3 million people belonging to 
minorities were rejected due to discrimination when applying for a loan

Introduction
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• Proposing a quantitative approach that addresses several limitations 
of the standard testing framework (measures such as Statistical Parity 
or Disparate Impact) for discrimination in the lending markets

• Use of a comprehensive sample (873,996 loans) that confer robustness 
to the obtained results and conclusions

• Use of a highly imbalanced sample (with a default rate of 1,78%), similar 
to the existing portfolios in the banks' balance sheets - useful in 
formulating potential best practice recommendations or policy 
measures

• Adapting the working methodology for the case of a highly imbalanced 
sample

Our contributions
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• Most measures used to account for bias, ethics or fairness have the 
following principle at their core: equal people, then equal rights 

• For credit risk, the Statistical Parity (SP) and Disparate Impact (DI)  
measures discrimination through erroneous rejection in lending 
markets are defined as following:

➢ SP: The difference between the proportion/probability of false 
positives (type I error) for the protected and unprotected attribute 
should be 0 in a no bias case

➢ DI: The ratio between the proportion/probability of false positives 
(type I error) for the protected and unprotected attribute should 
be 1 in a no bias case

Fairness measures
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Fairness measures
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Our proposal for fairness accounting
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• Our approach to account for bias/fairness is based on the idea that 
debtors should be treated similarly if they have similar features 

• This approach involves the following steps

i. Estimation of PDs on a training sample using the Logit 
methodology

ii. Selection of a variable with high predictive power (e.g., income 
or debt-to-income ratio), which corresponds to the systematic 
factor in the ASFR model

iii. Defining a protected attribute (e.g., gender).

iv. Estimation of PDs on a testing sample using a ML/AI based 
model and their calibration in a PIT manner

v. Investigating and testing if there exists stochastic dominance 
for the selected feature (step ii) between protected and 
unprotected attributes in the training sample and the sample 
of false positive cases in order to detect bias

Our approach: Conditional Statistical Parity under 

Stochastic Dominance 



➢ Source: Romanian Credit Registry

➢ Number of loans: 873,996

➢ Types: Consumers and mortgage loans

➢ Period under investigation: June 2023 – June 2024

➢ Default rate: 1,78 %

➢ Partition: 80 % for training and 20 % for testing

➢ Variables selected for estimation: 'Age', ‘Interest Rate', 'DSTI', ‘Loan 

Outstanding', 'Years from Origination’ 

➢ Debt Service-to-Income ratio (DSTI) transformed into a score as: 1 
for DSTI <= 20%, 2 for 20% < DSTI <= 40%, 3 for 40% < DSTI <= 60% 
and 4 for DSTI > 60%

Sample used for investigation 



Correlation matrix of the variables entering the model

• Selected variables do not show a strong correlation between them that 
could affect the statistical estimation of the PD model

Source: authors’ contribution



Deep Learning Network Architecture

• In this paper, we defined a pyramidal network architecture with four 
hidden layers of neurons (Deep) and backpropagation (Learning):



Deep Learning Network Architecture

• Comparison between Sigmoid and Softmax Activation Functions:

Source: authors’ contribution
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• Sign of the estimated coefficients (which are statistically significant) 
aligns with economic intuition, while from a discrimination perspective, 
the model performs quite well, with an AUC of 0.68

Estimation of the PD model using Logit 

Source: authors’ contribution

Model Estimation 

Estimate SE tStat 

Intercept -0.7290*** 0.0971 -7.5065

Age -0.0286*** 0.0008 -33.8642

Interest Rate 0.0163*** 0.0032 5.0763

DSTI 0.0542* 0.0233 2.3245

Loan 
Outstanding

-0.1969*** 0.0066 -29.6203

Years from 
Origination

-0.2250*** 0.0068 -33.2728

Chi^2-statistic 
vs. constant 

model
p-value = 0

Source: authors’ contribution
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• In terms of discriminatory power, the Deep Learning Network performs 
quite better than Logistic regression 

Estimation of PDs using the Deep Learning Network 

Source: authors’ contribution
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• Experiment 1: the sample is 
contamined with random defaults 
for loans with DSTI > 38 % such 
that the portfolio default rate will 
be 20%

• Experiment2: the sample is 
contamined with random defaults 
for loans with DSTI > 30 % such 
that the portfolio default rate will 
be 20%

➢ The Deep Learning Networks 
performs better when the defaults 
are more linked to the systematic 
factor (Experiment 1)

Counterfactual experiments with contamination

Source: authors’ contribution
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• For the default cases in the testing sample, we investigated the probability 
density functions of the Shapley values for each of the five predictors

• Interest rate and DSTI are responsible for significant changes in the 
predicted probability of default 

Shapley explanation of the predicted default rates in the 

testing sample

Source: authors’ contribution
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• Comparing Shapley based statistics for interest rate and loan outstanding, 
for the latter we observe that skewness measure is 0, the IQR level is more 
than double (indicating that most of the information is concentrated in the 
center of the distribution), while the standard deviation is similar

Shapley explanation of the predicted default rates in the 

testing sample

Source: authors’ contribution

Age
Interest 

Rate
DSTI

Loan 

Outstanding

Years from 

Origination

Standard 

deviation
0.1484 0.2500 0.2344 0.2819 0.1413

Skewness -0.4828 0.2495 0.7930 0.0037 -0.7529

Interquartile 

Range (IQR)
0.2043 0.2064 0.1330 0.4336 0.2950
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• In the training sample, the protected attribute (female) accounts for 
44.74% of the sample

• The quantile levels indicate similar DSTI distributions between the 
protected and unprotected attributes

Investigating the incidence of stochastic dominance 

Training sample

Quantiles for 
DSTI

5% 10%
50% 

(median)
90% 95%

Females 21.32 26.7 36.67 44 51.37

Males 19.58 24.71 36.67 44.3 51.43

Males with 
random under-

sampling
19.61 24.73 36.67 44.3 51.4

Source: authors’ contribution
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• In the false positive sample, the protected attribute accounts for 53.31%

• The quantile levels show that the DSTI distribution for the protected 
attribute is very similar to that for the unprotected attribute. 

Investigating the incidence of stochastic dominance 

False Positive sample

Quantiles for 
DSTI

5 % 10 %
50 % 

(median)
90 % 95 %

Females 21.96 26.00 36.67 38.99 39.84

Males 20.09 25.00 36.67 38.56 39.27

Females with 
random under-

sampling
21.90 25.95 36.67 38.99 39.80

Source: authors’ contribution
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• DI and SP measures are 1.14, respectively 0.06 for the false positive sample

• Figures for the conditional expected quality, respectively condition 
probability of making a Type I error show no significant differences between 
the protected and unprotected attribute

A structural interpretation for fairness

False Positive Sample

Quantiles for DSTI 5 % 10 %
50 % 

(median)
90 % 95 %

𝑬 𝒒𝑭|𝒚𝑭 21.3 26.7 36.67 44.03 51.37

𝑬 𝒒𝑴|𝒚𝑴
19.57 24.7 36.67 44.3 51.36

𝑷ሾ

ሿ

𝑬𝒓𝒓𝒐𝒓 𝑰𝑭

= 𝟏 | 𝑫𝑺𝑻𝑰𝑭 2.05 1.93 1.98 1.76 1.54

𝑷ሾ

ሿ

𝑬𝒓𝒓𝒐𝒓 𝑰𝑴

= 𝟏 | 𝑫𝑺𝑻𝑰𝑴 1.43 1.41 1.39 1.21 1.06

Source: authors’ contribution
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• The 90% and 95% quantile levels, as well the rigth tails are lower in the 
false positive sample → errors in the Deep Learning Network are less 
correlated with high levels of DSTI

Investigating the incidence of stochastic dominance

Source: authors’ contribution



21

• Densities for DSTI with Random Undersampling show no significant 
differences and the conclusions remain the same: there are no signs of 
stochastic dominance in the false positive sample → no indication of bias

Investigating the incidence of stochastic dominance

Source: authors’ contribution
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• Kolmogorov Smirnov test has the following null hypothesis: two data 
vector come from the same continuous distribution

• Linton, Maasoumi and Whang (LMW, 2003) proposed a test of ‘Prospect 
Stochastic Dominance’ with the following null hypothesis: there is no first
(d1st)/second (d2nd) stochastic dominance

• The performed tests indicate no sign of stochastic dominance in the false 
positive sample → no indication of bias

Testing for stochastic dominance 

Source: authors’ contribution

Testing for stochastic dominance 

pValues KS test
LMW test –

centered
bootstraping

LMW test –
uncentered

bootstraping

Training sample
0.0000

1 (d1st) / 
1 (d2nd)

1 (d1st) / 
1 (d2nd)

False Positive 
sample

0.0297
1 (d1st) / 
1 (d2nd)

1 (d1st) / 
1 (d2nd)
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• Investigating potential for Pareto 
dominance in the left tail:

➢ Using techniques specific to Extreme 
Value Theory, we set a DSTI threshold of 
25% in order to determine the left tail

➢ Using bootstrapping with 1000 
replications, we estimate the 
parameters of the Generalised Pareto 
distribution

➢With the parameters from 
bootstrapping, we constructed the 
Generalized Pareto densities for the left 
tail

• In the left tail, we observe no stochastic 
(Pareto) dominance to the detriment of 
the protected attribute

From stochastic dominance to Pareto left tail dominance

Source: authors’ contribution



Thank you for 

your attention!
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Abstract 

We investigate potential biases related to using AI/ML models for default predictions or credit 

scoring, choosing gender (female) as protective attribute. We propose a new methodology based 

on the principle of "equal risks, equal rights", using Deep Learning Networks. Specifically, we 

investigate the probability of AI/ML models generating Type I errors (false positives) depending 

on the borrowers' risk levels. We use a database containing all consumer and mortgage loans with 

value higher than EUR 4000 (nearly 900,000 debtors) granted by a European Union banking 

sector. The results show that proper use of ML model feeded with unbias dataset do not generate 

bias in outcome.  

 

Keywords: AI, bias, deep learning, default, lending decisions, DSTI, ethics, fairness, machine 

learning, neural networks, statistical parity, stochastic dominance 

JEL codes: G21, G29, C10, C38, C55.   

 
 

1. Introduction  
 

In the recent years, we have witnessed an exponential increase in the use of modern tools in 

finance, such as Artificial Intelligence (AI) and Machine Learning (ML). On the lending side, these 

                                                 
1 National Bank of Romania. 
2 Bucharest University of Economic Studies. 

* The opinions expressed herein are those of the authors and do not necessarily reflect the views of the National Bank 

of Romania. The authors wish to thank Andrés Alonso, Christopher Calabia, and Paolo Giudici for their valuable 

input, as well as the participants of the 15th Edition of the Seminar on Financial Stability Issues organized by National 

Bank of Romania and IMF. 
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tools are envisaged to be used for automate loan approval decisions and for assessing borrowers' 

ability to repay their loans. Compared to traditional tools, AI has a significantly superior ability to 

find correlations and causalities in very large structured or unstructured datasets (Big data), 

delivering also better probability of default predictions. 

Using data from a high-cost lender in the United Kingdom, Bartlett et al. (2019) find significant 

bias against immigrant and older loan applicants. Bartlett et al. (2019), using Fannie Mae and 

Freddie Mac databeses, discover that: i) Latin and African-American borrowers have rates that are 

7.9 and 3.6 basis points higher, respectively, for mortgage loans and refinancings in this segment 

and ii) during 2009-2015, between 0.74 and 1.3 million people belonging to minorities were 

rejected due to discrimination when applying for a loan. By using data from Prosper, a successful 

U.S. online lending web platform, Ravina (2019) highlights that borrowers who appear attractive 

are more likely to obtain a loan, but they also have a higher probability of default.3 

The motivation behind this paper is to propose a robust approach for investigating whether the use 

of modern AI and ML technologies is accompanied by issues of bias or lack of fairness. Hurlin, 

Pérignon and Saurin (2021), Alonso and Carbó (2022) or Giudici  and Raffinetti (2023) seek to 

unravel the black-box nature of the outcomes produced by AI/ML models. Our approach is based 

on the premise that false positive cases for the protected attribute (we choose to be in our case the 

gender of the debtor – female) and the non-protected attribute (male) should exhibit similar risk 

characteristics. More precisely, we assess borrowers’ risks using a well-documented indicator in 

the literature (DSTI - Debt Service to Income ratio), and we consider there is no bias or lack of 

fairness issue if, for the false positive cases, the DSTI distribution for the protected attribute is 

similar to that of the non-protected attribute. To evaluate the similarity of these two distributions, 

we resort to the concept of stochastic dominance, employing various methods, both direct and 

indirect, in order to ensure the robustness of the results.  

Unlike most studies in this field, we use a highly comprehensive dataset. Specifically, the dataset 

consists of all consumer and mortgage loans granted by the Romanian banks (873,996 records), 

                                                 
3 The European Union's Artificial Intelligence Act, which is the first comprehensive AI regulation by a major global 

authority, raise discussions about potential issues of bias, ethics, and fairness that may arise from using modern 

technologies such as AI and machine learning for credit scoring and approval. Article 10 of the EU AI Act refers to 

issues of ethics/fairness, particularly due to an existing bias in databases, while the Article 14 refers to the black-box 

nature of these modern technologies. 
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sourced from the Credit Registry Bureau. The investigation period covers June 2023 to June 2024, 

with a portfolio default rate of 1.78%. Given that the loan-level predictions are binary in nature 

(default or non-default), the investigated portfolio is highly imbalanced, with defaults occurring in 

less than 2% of the cases. Imbalanced datasets, like the one used in this paper, present a significant 

challenge for the application of machine learning technologies. We define a pyramidal network 

architecture with four hidden layers of neurons (Deep) and backpropagation (Learning). Our 

findings emphasize that there is no evidence of bias or lack of fairness arising from the use of a 

Deep Learning Network model in the chosen portfolio. 

 
 

2.  Methodology 
 

Vasicek (2002) and Gordy (2003) formulate a model with a single asymptotic risk factor 

(Asymptotic Single Risk Factor, ASRF), based on the credit risk model proposed by Merton 

(1974). According to the ASRF model, for a well-diversified portfolio, the value of the portfolio's 

assets or their state of default is determined by the combined effect of a systematic factor and a 

specific (idiosyncratic) factor: 

𝑋𝑖,𝑡 = 𝑆𝑡√𝜌 + 𝐼𝑖,𝑡√1 − 𝜌 (1) 

where 𝑋𝑖,𝑡 is a random variable defining the default status of a debtor or portfolio, 𝑆𝑡 is the 

systematic factor, while 𝐼𝑖,𝑡 represents the idiosyncratic factor. 𝜌 denotes the correlation factor of 

the assets in the respective portfolio. According to BCBS (2005, 2006), the ASRF model forms 

the basis for determining capital requirements under Basel II framework. From a probabilistic 

perspective, the systematic 𝑆𝑡 and 𝐼𝑖,𝑡 idiosyncratic factors follow a standardized Normal 

distribution with 0 mean and variance of 1. Therefore, the 𝑋𝑖,𝑡 random variable also follows a 

standard Normal distribution. It is important to note that the systematic 𝑆𝑡 and 𝐼𝑡 idiosyncratic 

factors are mutually independent. In this regard, the t time outcome of 𝑋𝑖,𝑡 depends on the 

systematic factor 𝑆𝑡 through 𝜌 and on the idiosyncratic factor 𝐼𝑖,𝑡 through 1− 𝜌.  

Most of these measures have the following principle at their core: equal people, then equal rights. 

Two of the most used measures in this regard are the Statistical Parity (SP) and Disparate Impact 

(DI), which assess the potential discrimination through erroneous rejection in lending markets. 

The SP and DI measures are defined as following: 
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➢ SP: The difference between the proportion/probability of false positives (type I error) for 

the protected and unprotected attribute should be 0 in a no bias case 

➢ DI: The ratio between the proportion/probability of false positives (type I error) for the 

protected and unprotected attribute should be 1 in a no bias case 

Therefore, in terms of conditional probabilities, the SP and DI can be expressed as: 

 

𝑆𝑃 = �̂�(�̂� = 1 | 𝐴 = 𝑓𝑒𝑚𝑎𝑙𝑒) − �̂�(�̂� = 1 | 𝐴 = 𝑚𝑎𝑙𝑒)   (2) 

𝐷𝐼 = �̂�(�̂� = 1 | 𝐴 = 𝑓𝑒𝑚𝑎𝑙𝑒)/ �̂�(�̂� = 1 | 𝐴 = 𝑚𝑎𝑙𝑒)    (3) 

where �̂� = 1 is used to account for default predictions of the model, and A denotes the protected 

attribute.  

In the expressions above, P is practically defined as probabilities. In certain articles, P may be 

explained as proportions or ratios. In practice, it is often defined as proportions. Regarding how 

SP and DI are constructed and how they are calculated, there are certain discrepancies and potential 

limitations for the conclusions that can be drawn. We provide two examples in this sense. 

We further focus on comparing the empirical density functions 𝑓𝐷𝑆𝑇𝐼𝐹,𝑀 | 𝐸𝑟𝑟𝑜𝑟 𝐼𝐹,𝑀=1, estimated 

using the kernel method. In a no bias framework, the kernel densities functions for females and 

males will be very close to each other and the following equivalence holds:  

𝑓𝐷𝑆𝑇𝐼𝐹 | 𝐸𝑟𝑟𝑜𝑟 𝐼𝐹=1 = 𝑓𝐷𝑆𝑇𝐼𝑀 | 𝐸𝑟𝑟𝑜𝑟 𝐼𝑀=1 (4) 

The concept of stochastic dominance is used to compare two density functions in order to provide 

a certain ranking in terms of poverty, wealth, income, or portfolio returns. In our case, we use the 

concept of stochastic dominance to investigate whether one group dominates the other in terms of 

risk (DSTI). Inspired by the tests formulated by McFadden (1989), Klecan, McFadden, and 

McFadden (1991) și Linton, Maasoumi, and Whang (2008), we use the bootstrapping method 

proposed by Politis and Romano (1993, 1994) to test for first- and second-order stochastic 

dominance. 

3.  Data and results 

We use a dataset consisting of all consumer and mortgage loans with value higher that EUR 4000 

granted by all Romanian banks. The period under investigation is June 2023 – June 2024. The 
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dataset includes information regarding: the age of the debtor, the interest rate of the loan, the Debt 

Service-to-Income ratio (DSTI), the outstanding loan amount, and the number of years the loan is 

originated.  

The two types of loans (i.e. consumer and mortgage loans) differ significantly in terms of 

outstanding value, maturity or default rate. Therefore, it might be improper to mix such loans in a 

classification model for credit risk. However, we decided to accept this drawback in order to 

increase the number of observations in the ML model and to improve the predictive power. 

Additionally, our primary aim in this paper is not to develop a credit scoring model, but to 

understand how a machine decides on potential default of a debtor, and the extent to which the 

decision-making process can lead to fairness issues.  

Table 1. Dataset characterization  
 

Number of loans 873,996 

Type pf loans Consumers and mortgage loans 

Period under investigation June 2023 – June 2024 

Default rate 1.78 % 

Partition 80 % for training and 20 % for testing 

Variables selected for 

estimation 

'Age',  

‘Interest Rate’ 

 ‘Debt Service-to-Income ratio (DSTI)’  

‘Loan outstanding value’ 

‘Years from Origination (maturity)’ 

                Source: Romanian Credit Registry 
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For credit scoring models or debtor-level default prediction models, it’s a common practice to use 

a mix of numerical, dummy and categorical variables. In this regard, we transform the DSTI 

variable into a risk score, according to the following scheme4:  

𝐷𝑆𝑇𝐼 =  {

1, 𝑓𝑜𝑟 𝐷𝑆𝑇𝐼 <=  20%
2, 𝑓𝑜𝑟 20% <  𝐷𝑆𝑇𝐼 <=  40%
3 𝑓𝑜𝑟 40% <  𝐷𝑆𝑇𝐼 <=  60% 

4, 𝑓 𝐷𝑆𝑇𝐼 =>  60%

 

(5) 

The debt service-to-income ratio (DSTI) has been proven to be an important factor in explaining 

systemic default (Drehman and Julius, 2014). In other words, as highlighted in the previous 

section, the DSTI variable can be associated with a systematic factor, in the language of the ASRF 

model. This transformation has the following effects on predictions in terms of classification: 

default cases are clearly mapped into the four risk classes, and default predictions are less sensitive 

to small variations in DSTI. Default predictions will be sensitive to significant changes in DSTI, 

while for the other variables, these predictions are sensitive even to small changes. In other words, 

DSTI has been transformed into a strong predictor. 

Table 2. Estimation of the logit model  

 Estimate SE tStat  

Intercept -0.7290*** 0.0971 -7.5065 

Age -0.0286*** 0.0008 -33.8642 

Interest Rate 0.0163*** 0.0032 5.0763 

DSTI 0.0542* 0.0233 2.3245 

Loan Outstanding -0.1969*** 0.0066 -29.6203 

Years from 

Origination 
-0.2250*** 0.0068 -33.2728 

                                                 

4 Currently, according to the Romanian regulations, the debt-to-income ratio for new loans is capped at 40%, so scores 

of 3 and 4 appear after the loan is granted and indicate high and very high risk classes. The distribution of DSTI in the 

dataset is quite granular, which facilitates this transformation. Additionally, among the three independent variables 

related to the type of credit (age, interest rate, and DSTI), the debt service-to-income ratio is the most suitable for 

transformation into a categorical variable. 
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Chi^2-statistic vs. 

constant model 
p-value = 0 

                                Source: own calculations 

Given the black box nature of AI/ML models, estimating a logit model in the first step offers an 

explainable counterpart. In other words, the logit model estimates provide an a priori view on the 

determinants of default. Obtained estimates for the logistic regression model (Table 2) confirm 

that, aside from the coefficient for the DSTI variable, which is statistically significant at a 5% 

confidence level, all other coefficients are statistically significant at 1%. Therefore, the model is 

statistically robust. Among the independent predictors related to credit type, the coefficient for 

DSTI is the highest one. The sign of the estimated coefficients aligns with the economic intuition.  

Table 3. Deep Learning Network Architecture  
 

Number of deep layers 4 

Neurons per layer 

1st layer: 512 neurons 

2nd layer: 256 neurons 

3rd layer: 128 neurons 

4th layer: 64 neurons 

Layer’s activation function Rectified Linear Unit (ReLU) 

Activation function for 

classification 
Softmax 

Partition 80 % for training and 20 % for testing 

Maximum number of epochs 30 

Size of the mini-batch 256 

Validation Frequency 500 iterations 

Learning rate 0.001 

Regularization 
L2 with a regularization coefficient of 

0.001 

Optimizer Adaptive Moment Estimation (ADAM) 

                Source: own contribution 
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The choices regarding the model architecture and hyperparameters (presented in Table 3) are made 

following recommendations from the literature, which were sequentially adjusted based on a trial-

and-see strategy.  

Practically, for a 1.78% default rate at the sample level, we can broadly say that each borrower has 

on average, an ex-ante probability of 1.78% of defaulting. For certain borrowers, the Softmax 

function might assign default probabilities of 4%, 5%, or even 6%—two to three times higher than 

the sample default rate—making them candidates for classification as likely defaulters. In this 

regard, we will select the (100-1.78%) percentile as the cutoff level for classifying borrowers as 

defaulters or non-defaulters. Therefore, the model will predict that 1.78% of borrowers in the 

testing sample will default, meaning that we are using a kind of Point-in-Time (PIT) calibration 

approach. 

Figure 1. ROC curves and the AUC metrics 

 

Source: own calculations 

In Figure 2 we report the ROC curves and the related AUC measure for the logit model, 

respectivelly the model of Deep Learning Networks. The AUC is a key metric that indicates model 

performance: the higher the AUC value, the better the model's ability to classify positive and 

negative instances. In an ideal classification scenario, the curve would reach a point corresponding 

to a true positive rate of 1 and a false positive rate of 0. In our investigation, we reach that the 
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performance of the Deep Learning Networks mildly but constantly surpasses that of the logistic 

regression model. 

Figure 2. ROC curves and the AUC metrics 

 

Source: own calculations 

Further, we conduct two experiments involving random contamination of the dataset. The number 

of random contaminations is chosen so that the default rate in the initial dataset to be 20% in each 

case. The initial dataset is then split into 80% for training and 20% for testing, ensuring a 20% 

default rate in each resulting sample. The two experiments are designed as follows: 

➢ Experiment 1: the sample is contamined with random defaults for loans with DSTI > 38%, 

such that the portfolio default rate will be 20% 

➢ Experiment 2: the sample is contamined with random defaults for loans with DSTI > 30%, 

such that the portfolio default rate will be 20% 

The ROC curves and the related AUC measures for the two experiments, compared to those 

obtained for the reference sample (where the default rate is 1.78%), are shown in Figure 3. The 

results show that the AUC measure obtained in the first experiment is higher than that obtained for 

the reference sample, as well as higher than in the second experiment. On the other hand, the AUC 

measure in the second experiment is very low. Overall, we can conclude that a sample with higher 

number of target events leads to better performance of the Deep Learning Networks model, but 
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only when defaults occur due to a systematic factor. Lastly, these experiments reinforce the idea 

that DSTI is a good predictor and can be interpreted as a systematic factor.  

Figure 3. Shapley explanation of the predicted default rates in the testing sample 

 

 

Source: own calculatios 

Figure 4 highlights the empirical densities of the Shapley values for each predictor. Since Shapley 

values show the difference between the individual score and the group's average score, the graphs 

above illustrate how each predictor contributes to the up or down differences between individual 

default probabilities and the average probability of the sample considered. For predictors 

independent of the credit type (top of the graph), we observe that DSTI and interest rate account 
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for significant differences between individual probabilities and the average probability, while age 

of the debtor generates smaller deviations.  

Table 4. Investigating the incidence of stochastic dominance in the training sample 
 

Quantiles for DSTI 5% 10% 
50% 

(median) 
90% 95% 

Females 21.32 26.7 36.67 44 51.37 

Males 19.58 24.71 36.67 44.3 51.43 

Males with random 

undersampling 
19.61 24.73 36.67 44.3 51.4 

             Source: own calculations 

Protected attributes (females) accounts for 44.74% of the training sample, so the DSTI sample for 

women is smaller than that one for men. Since the quantile levels may be influenced by sample 

size, we used a random under-sampling method to reduce the male sample to the size of the female 

sample. By comparing the quantiles of the related DSTI distributions, it provides a hint about a 

possible situation of stochastic dominance in the training sample. The values reported in the Table 

6 indicate that 90% and 95% quantiles are very close for the two groups. Additionally, both groups 

have the same DSTI median, while for the lower quantiles, the DSTI for women is higher, but the 

differences are minimal.  

Table 5. Investigating the incidence of stochastic dominance in the sample of false positive 

cases 

 

Percentiles for 

DSTI 
5% 10% 

50% 

(median) 
90% 95% 

Females 21.96 26.00 36.67 38.99 39.84 

Males 20.09 25.00 36.67 38.56 39.27 

Females with 

random under-

sampling 

21.90 25.95 36.67 38.99 39.80 

             Source: own calculations 
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Unlike the training sample, where men are slightly more numerous, in the false positive sample 

females account for 53.31%. In this case, we apply the random under-sampling method to the 

females’ sample. The most striking result is that the 90% and 95% quantile levels in the false 

positive sample, for both women and men, are much lower than in the training sample. Moreover, 

the 95% quantile level is below 40% for both the protected and unprotected attributes. Therefore, 

as it is suggested in the counterfactual contamination experiments, Type I errors of the Deep 

Learning Networks model occur for lower DSTI levels. Additionally, we note that 95% of the 

defaulters are from the low and moderate risk classes. As in the training sample, the differences 

between quantile levels for females and males (for both with and without random under-sampling) 

are insignificant. In this regard, preliminary results suggest that, in the sample of false positives. 

there is no stochastic dominance in terms of risks. 

Table 6. Investigating the incidence of stochastic dominance in the sample of true negative 

cases 

 

Percentiles for 

DSTI 
5% 10% 

50% 

(median) 
90% 95% 

Females 21.18 26.64 36.67 44.3 51.56 

Males 19.49 24.62 36.67 44.48 51.5 

Females with 

random under-

sampling 

21.18 26.64 36.67 44.3 51.56 

             Source: own calculations 

Since the false positive is defined by 1−specifity, and the specificity means true negative, we 

conduct a cross-check by investigating the incidence of stochastic dominance within the true 

negative sample. In table 6, we can observe that the percentiles are very close between the 

protected and non-protected attributes. Furthermore, when compared to the false positive sample, 

we see that the 5% and 10% percentile levels are very similar, while the median level is the same. 

However, the 90% and 95% percentile levels are significantly higher in the true negative sample, 

highlighting the strong discriminatory power of the DSTI. 
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Table 7. Investigating the incidence of stochastic dominance in the training sample 

considering the interest rate 

 

Percentiles for 

interest rate 
5% 10% 

50% 

(median) 
90% 95% 

Females 7.6 7.93 10.36 11.23 14.34 

Males 7.6 7.8 10.36 11.23 12.81 

Males with random 

under-sampling 
7.6 7.8 10.36 11.23 12.81 

            Source: own calculations 

For robustness we investigate the incidence of stochastic dominance between the protected and 

non-protected attributes in the case of interest rate. This investigation is conducted for both the 

training and testing samples. In the training sample, levels of the percentiles for the protected and 

non-protected attributes are very close, except for the 95% percentile, where a slightly more 

pronounced difference is observed. Conversely, in the testing sample, there are no differences up 

to the second decimal place between the percentiles for the protected and non-protected attributes. 

Table 8. Investigating the incidence of stochastic dominance in the sample of false positive 

cases considering the interest rate 

 

Percentiles for 

interest rate 
5% 10% 

50% 

(median) 
90% 95% 

Females 10 10.36 10.71 11.23 11.23 

Males 10 10.36 10.71 11.23 11.23 

Females with 

random under-

sampling 

10 10.36 10.71 11.23 11.23 

             Source: own calculations 

Additionally, in both samples is evident that the distributions are very compact, as the difference 

between the 5% and 95% percentiles is only 1.23 percentage points, and there are no differences 

up to the second decimal place between the 90% and 95% percentiles. Similar to the DSTI case, 

the 95% percentiles for the two groups (females and males) in the training set are lower than those 
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in the testing set, underlying that the interest rate is also a strong predictor within the Deep 

Learning Networks model. 

Figure 4. Empirical probability density functions for DSTI 

 

Source: own calculations 

In both samples, the empirical density functions show certain areas characterized by 

irregularities, where monotonicity is not well defined. Additionally, there are very long tails in 

the estimated density functions. These aspects may indicate that, in some areas, kernel functions 

do not provide a good approximation of the information in the datasets. In order to obtain a robust 
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view on this issue, we also estimate the empirical densities for the samples transformed with the 

random undersampling approach. In the Appendix, we can see that the shape of the empirical 

densities is very similar to the one obtained for the original samples. However, inspecting the 

density functions indicates that there are no signs of stochastic dominance, and therefore no bias, 

in either the training sample or the sample of false positives. 

Table 9. Benchmark fairness accounting  

 

Percentiles 

for DSTI 

Statistical 

Parity (SP)  

Disparate 

Impact (DI) 

Training 

sample  
-0.1052 0.8097 

False positive 

sample 
0.06 1.1416 

                                        Source: own calculations 

In table 9 we report the standard fairness measures (SP and DI) for the training and false positive 

samples. The obtained values somewhat reflect the weight of the protected attribute in the two 

samples. For the false positive sample, the two measures are below the thresholds generally 

considered in the literature to indicate a situation of bias. 
 

Table 10. Testing for stochastic dominance  

 

P-values KS test 

LMW test – 

centered 

bootstraping 

LMW test – 

uncentered 

bootstraping 

Training sample 0.0000 1 (d1st)/ 

1 (d2nd) 

1 (d1st)/  

1 (d2nd) 

False Positive 

sample 

0.0297 1 (d1st)/ 

1 (d2nd) 

1 (d1st)/ 

1 (d2nd) 

                       Source: own calculations 

So far, we have broadly investigated whether there is stochastic dominance in the two samples; 

now, however, we explicitly test this aspect. As a standard approach, we first use the two-sample 

Kolmogorov-Smirnov (KS) test. Given the irregularities, we expect the KS test to perform poorly. 

In this regard, we complement the result of KS with testing of first-order and second-order 

stochastic dominance according with the prospect test proposed by Linton, Maasoumi, and Whang 
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(LMW, 2008). The null hypothesis of the KS test is that the two data vectors come from the same 

continuous distribution, while the null hypothesis of the LMW test is that there is no first-order 

(d1st) or second-order (d2nd) stochastic dominance. In Table 10, p-values are reported for both 

tests, separately for the training sample and the false-positive sample. Note that the KS test rejects 

the null hypothesis for the training sample, but accepts it at a 5% significance level for the false-

positive sample. In contrast, the LMW test accepts the null hypothesis for both types of stochastic 

dominance in both the learning and false positive samples.  

Figure 5. Left Tail Generalized Pareto Distribution for the False Positive Cases 

 

Source: own calculations 

Further we fit the cumulative distribution function of the Generalized Pareto distribution in the 

false- positive sample, saying that we are investigating the incidence of a sort of Pareto dominance. 

For a random variable x, the cumulative distribution function for a Generalized Pareto distribution 

is defined by: 
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𝐹(𝑥) = 1 − (1 + 𝜉
𝑥 − 𝜇

𝜎
)

−(
1
𝜉

)

 
(6) 

where  𝜉 is the shape parameter, 𝜇 denotes location and 𝜎 represents the scale parameter. The 

above defined GPD is transform into a Pareto distribution with the shape parameter being 𝛼 =

− (
1

𝜉
). Considering the female and male samples, the first (d1st) and second (d2nd) order stochastic 

dominance conditions for a Pareto distribution are defined by:  

 {

𝑑1𝑠𝑡: 𝛼𝐹 ≥ 𝛼𝑀

𝑑2𝑛𝑑: 
𝜎𝐹

𝛼𝐹 + 1
≤

𝜎𝑀

𝛼𝑀 + 1
 

(7) 

 We follow the next strategy:  

➢ using techniques specific to Extreme Value Theory, we set a DSTI threshold of 25% in 

order to determine the left tail 

➢ using bootstrapping with 1000 replications, we estimate the parameters of the Generalised 

Pareto distribution based on the median estimates 

➢ having the parameters from bootstrapping, we build the functions of cumulative 

Generalized Pareto distribution for the left tails. 

Until now we have worked with density functions. But in this case, however, when the samples 

for females and males differ in their size, and given the number of observations in each sample is 

important for interpretation, we consider that cumulative distribution functions are more suitable. 

Moreover, the concept of dominance here has a different interpretation from that of prospective 

stochastic dominance: dominance in this sense occurs if the cumulative distribution function of 

one sample is above the other. Regarding the bias issue we have been investigating, in this case, 

we are interested in whether females stochastically dominate males in the false-positive sample at 

for a low level of risk. In other words, from a bias perspective, it is problematic if we observe that 

for a low-risk level, the Deep Learning Networks model tends to give females a lower score (higher 

probability of default).  
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Using the bootstrapping, we obtain the following median parameter estimates for the left tail:  

Table 11. Estimated shape and scale parameters of the Generalized Pareto Distribution 

 

Females Males 

Shape (𝝃𝑭) Scale (𝜎𝐹) Shape (𝝃𝑭) Scale (𝜎𝐹) 

-1.7756 44.2015 -1.7063 42.5883 

                          Source: own calculations 

From the comparison of the two cumulative distribution functions plotted above, we observe that, 

for the same risk level, there are more men in the false positive sample (this means that we have 

stochastic dominance of males over females, not the other way around), but the differences are 

very small. By feeding the estimates provided in table 11 into expression (7) we find again no sign 

of (first and second order) stochastic dominance of the protected attributed over the non-protected 

attribute. 

Figure 6. Left Tail Lorenz Curves for the False Positive Cases 

 

Source: own calculations 
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In fact, this approach has an interpretation similar to the Lorenz – Zonoids approach proposed by 

Giudici and Raffinetti (2020). Here, for simplicity, we use the Lorenz curves, which are not 

equivalent to stochastic dominance but still provide information about stochastic dominance. In 

this regard, we use the left-tail samples for females and males to compute the Gini coefficients and 

Lorenz curves. In terms of the Lorenz curves for the left-tail samples, we observe that the DSTI 

for males shows more inequality, confirming the results obtained from the investigation based on 

the Generalized Pareto Distribution 

4. Conclusions   

A series of recent studies, as well as the EU AI Act, highlight the risks arising from the use of 

modern AI/ML technologies for lending-related purposes. Despite high capacity to capture causal 

relationships in data, ML technologies may come with issues of bias or lack of fairness when used 

for credit scoring or lending approval. The black-box nature of these models and, consequently, 

the lower level of transparency compared to classical models raise the question about how potential 

biases might be spotted and eliminated. 

We examine whether the use of a Deep Learning Networks model for evaluating borrowers' 

repayment capacity may lead to bias issues. The value-added of this paper is two-fold. First, from 

theoretical and methodological perspective, we propose a new approach to defining the concept of 

bias and how to test it. Unlike standard statistical approaches that assess models biases (or lack of 

fairness) by comparing Type I error rates between specific groups, we investigate potential bias 

by evaluating the probability of error based on the principle ”equal risks, equal rights”. Second 

major contribution relates to the dataset used to investigate this issue. Unlike other studies in the 

field, we use a very large dataset, with nearly 900,000 loans. The approach includes all consumer 

and mortgage loans granted by the banking sector from one European Union country (Romania). 

The dataset is characterized by very low default rate (below 2%), similar to the non-performing 

loan rate in bank portfolios. In this regard, the conclusions drawn from such a dataset are robust 

and can be used for policy guidance to reduce potential bias issues stemming from the use of 

modern AI/ML technologies. 
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We find that the level of indebtedness (measured as debt service-to-income ratio) is an important 

predictor of default. We consider gender as a protected attribute, and our investigations highlight 

no differences in terms of indebtedness by gender. The overall results show that proper use of a 

Deep Learning Networks model for default prediction fed with proper dataset is not accompanied 

by biases in default predictions, by gender. However, we also acknowledged that the performance 

of these AI/ML technologies can vary significantly, depending on the dataset and the model 

architecture implemented. Without proper diligences about these two key elements, bias risk 

cannot be ruled out in default prediction by gender delivered by the AI/ML models. 
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APPENDIX 

Figure A1. Empirical probability density functions for DSTI under random undersampling

 
 

Source: own calculations 
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