

USER MANUAL
BOF-PSS3

Version 1.04

12.1.2024

Bank of Finland
PAYMENT AND
SETTLEMENT SYSTEM
SIMULATOR

Table of Contents
Quick installation guide ... 1

1 Introduction ... 2

1.1 General architectural overview .. 2
1.2 Input data .. 2

1.2.1 Simulation execution ... 3
1.3 Analysis functionalities and simulation results .. 4
1.4 Supported system structures and simulation examples 4

2 Installation ... 6
2.1 Hardware and software requirements ... 6
2.2 Possible deployment setups .. 8
2.3 Installing a database server ... 8

2.3.1 Installing MariaDB .. 8

2.4 Installing the simulator ... 12

2.5 Starting the BoF-PSS3 simulator ... 13

2.6 Run time start-up parameters ... 14

3 Functionning of a simulation day .. 14

4 Operating the BoF-PSS3 simulator ... 16
4.1 Short description of BoF-PSS3 simulator use .. 16

4.2 Working with projects .. 17
4.2.1 Project duplicates and backups .. 18

4.3 Setting up a payment and settlement system .. 18
4.4 Importing data .. 21

4.4.1 Errors in import .. 24

4.5 Defining a simulation ... 25

4.5.1 Cross-checking data sets .. 26

4.5.2 Creating multi system simulations ... 28
4.5.3 ABM Simulations .. 28

4.6 Executing simulations .. 29
4.6.1 Errors in simulations .. 29

4.7 Analysing results .. 29
4.8 Automated stress testing module .. 30

4.8.1 Creating a new analysis ... 30
4.8.2 Selecting the accounts to be affected in a scenario 31
4.8.3 SQL-query filters for scenario creation 32
4.8.4 Running of the analysis .. 33
4.8.5 Working with the results .. 33

4.9 Task Automation Tool and Task Sets .. 37
4.9.1 Import tasks .. 38

4.9.2 CCP tasks ... 41

5 Operating the simulator via HTTP API ... 43
5.1 Used technology ... 44

5.1.1 HTTP protocol ... 44
5.1.2 JSON notation .. 44

5.2 Simulator API methods .. 45

6 Algorithms and user modules .. 46

6.1 Algorithms .. 46
6.2 Example algorithm selection for a pure RTGS or instant payment system

 55
6.2.1 Example of a DNS or batch systemstems 56

6.3 Calculation of bilateral limits ... 58

6.4 Algorithms for special cases ... 60
6.4.1 Receipt-reactive RTGS .. 60

6.5 System event handler algorithms (SEH) .. 63
6.6 Time estimation algorithms (TEA) .. 63
6.7 Agent based modelling (ABM) algorithms .. 65

6.7.1 Basic functioning ... 65
6.7.2 When and how are agents activated? ... 66
6.7.2.1 Simulation initialisation .. 66
6.7.2.2 Processing of a wake up event .. 66
6.7.2.3 Sending a payment for settlement ... 67

6.7.2.4 Transaction booking .. 68

6.7.2.5 End of day calls ... 68

6.7.3 Account management AI algorithms ... 68
6.7.4 ABM Object model .. 72

6.8 User module interface .. 73
6.8.1 Adding a user module .. 73

7 Data content and databases ... 74
7.1 File directory structure ... 74
7.2 Database files and locations ... 75

7.3 Data sets ... 76
7.4 About MariaDB .. 76

7.4.1 HeidiSQL database browser .. 77
7.4.2 ODBC interface ... 78

7.4.3 Direct modifications of simulator database 78

8 Description of database tables ... 79

8.1 System database ... 80
8.1.1 Defaults [DEFA] .. 80
Contains default information for projects. .. 80

8.1.2 Project [PROJ] ... 80
8.1.3 Algorithm definition [ALDE] .. 80

8.1.4 Template [TEMP] .. 81
8.1.5 Database version [db_version] ... 81
8.1.6 Acceptable system Ids [ASID] ... 81

8.2 Project’s input data tables ... 82
8.2.1 System [system] ... 82

8.2.2 Dataset [dataset] ... 82

8.2.3 System setupdataset [SYCD] ... 83

8.2.4 Participant data table [PART] .. 84
8.2.5 Daily balances table [DBAL] ... 85
8.2.6 Intraday changes in credit limit [ICCL] 86
8.2.7 Bilateral limit table [BLIM] ... 86
8.2.8 Reservations table [RSRV] .. 88

8.2.9 Transaction data table [TRAN] .. 88
8.2.10 Transactions generated by simulations

[tran_generated_by_simulation] ... 90

8.2.11 Simulation events [business_day_event] 90
8.2.12 System algorithms [SALG] .. 91

8.2.13 Analysis [analysis] ... 91
8.2.14 Analysis accounts [analysis_account] 92
8.2.15 Failing accounts [failing_account] ... 92

8.2.16 Scenario data[scenario] .. 92
8.3 Project’s output tables .. 93

8.3.1 System level statistics [SYLS] ... 93
8.3.2 Account statistics [ACST] ... 94
8.3.3 Bilateral statistics table [BIST] .. 96

8.3.4 Transaction event statistics [TEST] ... 96
8.3.5 Intraday credit limit order execution statistics

[iccl_order_execution_statistics] .. 97
8.3.6 Netting event statistics [NEST] ... 98
8.3.7 Account violation statistics [AVST] .. 98

8.3.8 Queue reason information [QURE] ... 99

8.3.9 Analysis indicators [analysis_indicator] 99

8.4 Technical tables .. 100
8.4.1 Batch run information [BARI] ... 100
8.4.2 Simulation run information [SIRI] ... 100
8.4.3 Applicationruns [Applicationruns] (Not in use) 101

8.4.4 Process log [Processlog] .. 102

9 Miscellaneous .. 102
9.1 Date format ... 102

9.2 Time format .. 102
9.3 File template ... 103

9.4 About using Microsoft Excel with the simulator 103
9.5 Error list .. 104

9.6 CSV and Excel files ... 104

10 Technical documentation ... 105

11 Troubleshooting guide .. 105
11.1 Database table repairs ... 107

12 Acknowledgements ... 108

ANNEXES .. 113

I. Calculation of specific indicators .. 113

II. List of cross-check messages .. 115

III. ABM property file example ... 117

IV. Example ABM bank agent implementation ... 119

V. HTTP API examples .. 122

1. Template methods .. 122

2. Project methods .. 126

3. System methods .. 127

4. System dataset methods ... 128

5. File methods .. 130

6. Dataset methods .. 131

7. Simulation methods .. 131

8. Analysis methods .. 135

9. CURL API example .. 139
CURL example JSON files .. 140

project.json 140
system.json 141

systemDataset.json .. 141
importPartData.json .. 141

importTranData.json ... 142
importIcclData.json ... 142
simulation.json .. 142
analysis.json .. 143

BoF-PSS3 User Manual 1

Quick installation guide

1) Download and install MariaDB 10.11

2) Request a simulator downloading link from BoF

3) Unzip the simulator package to C:\BoF-PSS\

4) Start the simulator by clicking C:\BoF-PSS\startMin.cmd

5) Open Chrome browser and open: http://localhost:8080/

For more detailed installation instructions, please refer to CH 2.

BoF-PSS3 User Manual 2

1 Introduction

The Bank of Finland Payment and Settlement System Simulator (BoF-PSS3), is an

analysis software designed for payment and settlement system simulations. The

simulator can be used for studying liquidity needs and risks in payment and

settlement systems. Special situations, which are often difficult or impossible to test

in a real environment, can be simulated with this tool.

This document is the user manual of BoF-PSS3. It describes features of the software

and their use. It also provides an overview of technical details of the simulator.

1.1 General architectural overview

The BoF-PSS3 simulator consists of 3 main parts:

a) A graphical user interface implemented as a web-application using mainly

techniques like html and javascript.

b) A back end server than can be installed on a regular windows PC.

c) Database storage. Currently MariaDB is used in development.

The architecture of the PSS3 program is pictured below:

1.2 Input data

In order to function, the simulator needs at least transaction data as input data.

Here is a list of the datasets that can be given to the simulator for simulations:

BoF-PSS3 User Manual 3

❑ Account balances (PART)

❑ Transactions (TRAN)

❑ Intraday credit limits (ICCL)

❑ Bilateral and multilateral limits (BLIM)

Credit caps are also supported.

❑ Events information (EVNT)

❑ Reservations (RSRV).

Taylored systems only.

Usually production data is favored but n some cases artificial data is also used.

This woud depend on the study.

The simulator includes tools to import and validate these data. All the data are

stored in project specific databases. The users responsivbility is to check that the

input data is formally valid and then import it into the simulator. The correctness of

the input data is vital. Account ids in all files must correspond to the account ids in

a participant dataset.

All input data must be presented in CSV (comma separated values) format, but it

can be entered in a user-defined order. The input data can be edited by exporting

them from the input database as CSV files to Excel. They can then be re-imported

after the changes. Older Excel versions can handle about 65,000 rows. Excel 2010

is already able to handle ~1 000 000 rows. If larger files need to be edited, other

tools (e.g. Python, Matlab, R, Access or SAS) or programming is usually needed.

One option is to edit the data directly in the simulator’s databases with SQL-queries.

The use of SQL-queries requires some moderate technical skills. In rare situations,

splitting tables in sub-tables may be a suitable solution. The simulator does not

include a proprietary editor for this purpose.

1.2.1 Simulation execution

The simulator includes tools for configuring payment and settlement system setups

and running simulations. The simulator records all events and bookings. Some

premade reports and statistics on simulation runs are available. The simulator

allows to set up and manage settlement structures, configure settlement rules and

launch, monitor and control simulation runs. The simulator keeps a log file for the

user of all simulations made.

BoF-PSS3 User Manual 4

1.3 Analysis functionalities and simulation results

The simulator has functionality for reporting basic statistics for common result

parameters. The output database tables contain data amongst other for the booking

order of transactions and balances of settlement accounts. The input database tables

contain the transactions posted to the production system, while the output tables

contain the settlement flow, i.e. settlement order and timing of submitted

transactions.

Users typically perform many different simulations and want to compare the results

of the different runs. When the simulator’s basic reports are not enough, more

complex or tailored analyses may require exporting CSV files for use with tools

such as Excel or other statistical software. It is thus advisable to create a structure

beforehand for simulation runs and determine which results are to be stored in

databases for further analysis. The databases can become overly massive when

transaction volumes are high and all transaction-level events are retained in the

databases. This is specifically the case when the automated stresstester is not used.

1.4 Supported system structures and simulation examples

BoF-PSS3 software supports a large variety of general system structures. It can

model most of the payment and securities settlement system structures and

processes found in real systems.

The simulator supports real-time gross settlement (RTGS), continuous net

settlement (CNS) and deferred net settlement (DNS) systems and hybrid systems.

The processing options for these systems are defined by selecting appropriate

algorithms. For example, QUE algorithms define how transactions are released

from queues, while PNS algorithms define when and how partial net settlement of

queued transactions will be invoked.

Here is a list of central supported features:

❑ RTGS, DNS, CNS

❑ Hybrid (combinations of the above)

❑ LVPS and Retail

❑ DVP, PVP

❑ Bilateral and multilateral limits (credit and debit caps)

❑ Multicurrency

❑ Multisystem

❑ Securities settlement systems

BoF-PSS3 User Manual 5

❑ CCP (limited)

The focal output factors in simulations are typically counterparty risk and overall

risk, liquidity consumption, settlement volumes, gridlock situations and queuing

time. Here are some purposes the simulator is used for:

❑ Identify and quantify risks

❑ Counterparty risk

❑ Critical participants

❑ Warning indicators

❑ Scenario analysis

❑ Stress testing

❑ Feature prototyping

❑ System design

❑ Academic research

Here are some possible scenario types:

❑ Participant Default

❑ Cyber attacks

❑ Terror attack

❑ Earthquake

❑ Operational incidents

❑ Bank run

❑ Devaluation of Collateral

❑ System change

❑ Policy change

❑ Mergers

❑ Scenarios are usually generated by affecting input data and system setups in

various ways. Most commonly affected factors are the following:

Transactions (canceled, delayed, introduction order,…)

❑ Beginning of day balances

❑ Credit limits

❑ Bilateral and multilateral limits (credit and debit caps)

❑ System setups

❑ Algorithms

❑ Account structure

BoF-PSS3 User Manual 6

Simulations may use available data from current systems or fictional, but

representative, data. The simulator can be described as a deterministic model with

stochastic input.

Data for some examples are distributed with the simulator software, e.g. an RTGS

simulation, an RTGS system with an ancillary CNS or DNS system and a real-

time DVP securities settlement system. Some correct results are provided for all

examples as illustration of what can be obtained as simulation output. All

examples use semicolon as data separator points as decimal separator. The data

for the examples and system descriptions are found in the directory C:\BoF-

PSS\examples\DECIMAL_POINT.

2 Installation

Before using BoF-PSS software, you need to install MariaDB, MySQL (old) or MS

SQL (not tested) database server. The simulator is distributed with a JDBC database

connector. We recommend to use a MariaDB connector (mariadb-java-client-

2.2.5.jar or newer) with MariaDB 10.11.

Information on how to order and download the BoF-PSS3 program is posted at

https://www.suomenpankki.fi/en/financial-stability/bof-pss2-simulator/ordering/.

In case you are a user of BOF-PSS2 and wich to upgrade to PSS3. You should

consider the following. We recommend to make a clean install. According to our

instructions, PSS3 will anyway be installed in a different folder than PSS2. So in

this sence you don’t need to uninstall PSS2.

PSS3 doesn’t use the same system database as PSS2. so here you might enter into

conflicts. If you want to reset the pss2_systemdb you can simply make the SQl drop

command on with Heidi SQL. When launched for the first time or if the pss_system

database is missing, PSS3 will recreate the pss_system database .

2.1 Hardware and software requirements

Hardware

At least 64-bit system with a regular 4 core processor with 8 GB of memory is

considered a minimum. Sufficient main memory is essential for rapid execution of

https://www.suomenpankki.fi/en/financial-stability/bof-pss2-simulator/ordering/

BoF-PSS3 User Manual 7

large transaction volumes. For large simulations 6-10 cores and 16-24 GB or more

(>1,2 million transactions and >1000 participants) is recommended.

Note that the 32-bit version of the Java virtual machine is able to use only

approximately 1.5 GB of memory. In order to be able to allocate more memory than

1.5 GB to the Java virtual machine and the simulator, 64-bit versions of the Java

Runtime Environment and the simulator are needed. Naturally the operating system

also needs to be a 64-bit environment.

Since the version 9.3.0 the simulator supports parallelisation of simulations . To

leverage this, you should run the simulator in an environement with at least 4

CPU’s, preferably more than 6. RAM memory should be scaled up respectively.

Approximately 1-2 GB per parallel simulation (eg. number of available cores). It

has to be noted that bottle neck processes like DB operations do strongly benefit

from higher performance cores and local SSD or NVMe hard drives. Unfortunately,

for some reason, cloud environments and virtual desktops (VDT) are often provided

with low performance server processors underperforming by far main stream retail

consumer PCs.

The BoF-PSS3 simulator can process massive transaction flows effectively with

adequate available memory resources. The complexity of the algorithms used and

the selected output tables to be computed during the simulations strongly influence

the running times and memory usage of simulations.

The BoF-PSS3 simulator keeps all transactions and other input data to be processed

during a simulation in the main memory. The amount of transactions is the decisive

factor in main memory use. When there are more transactions than space in the

main memory, system performance is likely to degrade strongly due to necessary

disk swaps. Even then, the simulator continues processing during such

circumstances until the limit of 1.5 GB is achieved for the 32-bit version.

If you try to run too many simulations in parallel you might encounter crashes. In

these cases it is simply recommended to try with less simulations at a time. As at

10.12.2020 we have successful experience on running a 10 day simulation with 1,5

mlj. transactions per day in 5 parallel threads in a 10 CPU machine with 4-5 minutes

average processing time per day. This is not a explicit limit but just one observation.

Needed Software

Windows 10 (newer DB software might not work with older windows versions)

Microsoft Excel installed (required to open reports from the user interface)

MariaDB/ MySQL /MS SQL-SERVER database server.

Sun Microsystem’s Java Runtime Environment (JRE) 11 (distributed and installed

with the BoF-PSS3 program).

BoF-PSS3 User Manual 8

The BoF-PSS3 program should work with limitations in Linux, although this is yet

to be tested. Please contact the Bank of Finland if you are interested in running the

software in a Linux environment.

2.2 Possible deployment setups

The architecture of the simulator allows several installation possibilities. Because

BOF-PSS3 simulator engine has been implemented as a back end server application

with an http API, the simulator engine can be installed locally on a PC or on a

remote server. As at 4.12.2023 we still have little experience on running the

simulator on a server, we recommend to deploy it on a PC or on a virtual PC (VPC).

The picture bellow illustrates the different configuration possibilities.

2.3 Installing a database server

The BoF-PSS3 program assumes that Microsoft Excel and MariaDB, MySQL, or

MS SQL Server are installed before the installation of the Simulator. Currently the

main database version used for development and by the simulator team is MariaDB

10.11 (as at 8.1.2024).

2.3.1 Installing MariaDB

MariaDB database server offers a drop-in replacement functionality for MySQL. It

is built by some of the original authors of MySQL together with assistance of free

BoF-PSS3 User Manual 9

and open source software developers. Note that all DB versions do not allow to save

database files to other directories than the data directory of the DB engine. We know

that 5.2 and 5.3 do allow saving database table files freely, but for instance version

MariaDB 10 does not. This is not an issue for the simulator as the simulator has

always allowed to store databases to arbitrary locations. The simulator has an

automated database storing policy recognition system which will guide project

creation. MariaDB 10 is better performing than older versions in terms of speed.

Installation steps of the MariaDB 10 database server:

1. Download the latest MariaDB 10 installation utility corresponding to your

operation system.

2. Double click the installation file to start the installation and click Next in

the setup wizard window.

BoF-PSS3 User Manual 10

3. Accept all the features and the installation location folder, the default

selections are recommended.

BoF-PSS3 User Manual 11

4. Please make sure you unselect the “Modify password for database user

‘root’”, since Simulator uses the root user’s access rights without password

set. Also unselect the “Use UTF8 as default server’s character set” since

that consumes approximately 10 percent more disk space compared to the

default “Latin character set”.

5. Please accept “Install as service” with MariaDB as the service name and

”Enable networking” on TCP port 3306 are selected and “Innodb engine

settings” with defaults settings.

BoF-PSS3 User Manual 12

6. Click Install when Ready to install MariaDB.

Please note that you need to have full access rights on the data folder under the

MariaDB installation folder. After installing with defaults the data folder path

would be C:\Program Files\MariaDB 10.11\data

2.4 Installing the simulator

The Simulator application is delivered as a Zip file with naming convention:

BoF-PSS-[domain]-[version label as YYYYMMDD].zip

E.g. BoF-PSS-gen-20201127.zip

1. Uninstall old PSS2 Simulator (recommended)

1.1 Take a backup of your old simulator projects if needed.

1.2. Remove the existing \BoF-PSS2 folder structure as obsolete.

1.3 Drop the pss2_systemdb and the old project database created by PSS2.

The simulator will create a new upon launch. It might be possible to keep

the old pss2-systemdb but you might encounter some compatibility issues

depending on versions. If the pss2_systemdb is kept it wil continue to

point to old projects. Old PSS2 project databases are not supported by

PSS3. If you drop the pss2_systemdb, and leave old PSS2 project

databases, you might also face issues if you create a project with PSS3

BoF-PSS3 User Manual 13

with the same name as the old project. To recap the best is you drop the

pss2_systemdb and the project databases for clan start.

2. Copy the zip file to your C: root folder

3. Extract the zip file using "Extract to here"

After extracting the zip file the Simulator folder should contain:

- Simulator application (war file)

- startup scripts

- Simulator examples

- Java virtual machine binaries

- under the system's C: drive with a folder structure looking like:

 C:\BoF-PSS

 C:\BoF-PSS\EXAMPLES

 C:\BoF-PSS\PROGRAM

 C:\BoF-PSS\PROGRAM\JRE

2.5 Starting the BoF-PSS3 simulator

With your Windows file manager navigate to folder C:\BoF-PSS and double-click the

file startMin.cmd that starts the Simulator application server in minimized command

Prompt window. You can verify the Simulator started OK by clicking the black

command prompt in Window's Task bar which opens the minimized Simulator

command prompt window (the Simulator's primary log window). When the

simulator is running OK you should see the following lines as last rows:

 . ____ _ _ _____
 / \ / ___(_)_ _ _ _ _| | __|_ _|__ _ _
 (()___ | | ' ' \| | | | |/ \ | | / \| '_|
 \ / ___)| | | |_| | | () || || () | |
 ' |____|_|_/|_|_|___/|_|_/_||_| __/|_|
 ==
 SimulatorWeb Version 2020-12-02 gen - Bank of Finland © 2020
 Java version: 11
 Database: MariaDB.10.5 (NOTE! value may vary depending on driver in

use.)
 Datasource URL: jdbc:mysql://localhost:3306/pss2_systemdb
 Driver: MariaDB Connector/J, version: 2.6.0

Open Chrome browser and add the following URL to address bar:

http://localhost:8080/ and press enter. The Simulator main view opens with open

Project panel where you can create your first analysis project.

BoF-PSS3 User Manual 14

2.6 Run time start-up parameters

The simulator itself is a Java application and it is run in a Java virtual machine. The

parameters of Java are defined in the start-up script of simulator in file C:\BoF-

PSS\PROGRAM\startServer.bat. This file contains a code line starting the Java virtual

machine with default memory usage settings.

In case of memory problems the memory parameters can be extended like

 –Xms***m and –Xmx***m where –Xms sets the amount of memory given for the

simulator applications directly at start-up and –Xmx sets the maximum amount of

memory that can be given for the application. The asterisks *** represent the

amount of memory in megabytes.

Below is an example for reserving memory for Java environment:
set jvmParams=-Xms512m -Xmx1g

3 Functionning of a simulation day

The simulators main functionning philosophy when executing a simulation is the

following:

1. When a simulation day starts the simulator reads in all the input data and

sets up the defined payment system and its algorithms. These are defined

by defining the simulation.

2. The input data is stacked as various events in what we call the event queue

of a simulation day. It consists of transactions, credit limit changes,

beginning of day and end of day events, direct algorithm calls, etc… .

3. The events are taken for execution in the order of their occurrence, thus

they make the schedule for the simulation day.

4. These events are sent one by one to the event handler algorithm that has

methods to handle different types of events. The event handler can be

tailored.

5. Under the event handler there is always an entry algorithm and an end

algorithm.

6. The entry algorithm is called by the event handler when a new transaction

is introduced from the event queue

7. The entry algorithm has parameters such as “is entry settlement enabled”

or “FIFO enabled”. If entry settlement is not enabled, all transactions go to

the primary queue. Transactions are also put to queue if there is

insufficient liquidity to settle the transaction/payment. Exact behavior will

depend on the selected algorithm and parameters.

8. If there are subalgorithms selected in the system setup, the entry algorithm

will call them one by one in the order of definition. Only algorithms that

have no interval or timeschedule parameters set are called!

BoF-PSS3 User Manual 15

9. All subalgorithms with time parameters set will have call events scheduled

separately at the beginning of the simulation and these call events will

trigger the running of these algos. In practice it is the event handler that

gets the “run algo x” event and starts it.

10. The settlement algorithm when defined will loop all the sub algorithms

that do not have time parameters like the Entry. The settlement algorithm

is called when there is a change in liquidity conditions: ICCL change or

settlement of a transaction, … .

BoF-PSS3 User Manual 16

4 Operating the BoF-PSS3 simulator

This chapter describes the basic features of BoF-PSS3

4.1 Short description of BoF-PSS3 simulator use

Basically the simulator consists of 3 types of functionalities. First it contains

features for managing projects, importing datasets, defining systems setups and

combining these to simulations. To make the use easier some tools like the

automated stress tester helps users to run stress tests automatedly. Under tasks you

can find predefined task lists which will allow users to execute consecutive tasks in

one go.

A basic simulation process is normally divided into the following distinct phases.

• Creating a project

• Defining the payment and settlement systems

You begin by specifying the systems you want to simulate. This includes

stating the system name, setting the open hours, and selecting the

processing logics and algorithms that are used in a system, see 4.3.

• Importing input data

Next, you import input data for the system just specified into the input

database (participant names and transactions and optionally daily

opening balances, intraday credit limits and bilateral balances), see 4.4.

• Defining simulations

Once you have specified the system structure and input data, you

configure simulations and cross-check data sets belonging to the

simulations.

• Executing simulations

Simulations are executed by pressing the button at the end of each

simulation row. You can run one or more simulations at a time in

parallel. Running too many simulations at the same time might crash the

simulator due to resource constraints.

• Analysing results

After running the simulations, you can download ouput tables, browse

outputtables with SQL, view some basic graphs. The outputdata can be

further analysed and processed outside the simulator.

BoF-PSS3 User Manual 17

4.2 Working with projects

Each project has its own directory that carries the project name. Note that the project

folder is used by the back end server. This means that in a setup where the back end

runs on a separate server, users might not have direct access to these folders. Under

this directory following sub-directories are created:

– Default directory where input files are located,

– Default directory where error lists are saved,

– Default directory where output files are saved, and

– Default directory where output reports are saved.

The simulator database files are stored under the data folder of the database engine’s

installation folder.

1. Add a new project

5. Add a new simulation

2. Add a new system

4. Import datasets

3. Create system dataset

BoF-PSS3 User Manual 18

4.2.1 Project duplicates and backups

All data which is defined or created in a simulation project is stored in project’s

database. This makes it possible to easily backup and restore or duplicate projects.

By copying the involved databases or parts of it.

Similarly backups can be made of simulation projects. The same procedure can also

be used for transferring only some parts of the projects such as input database.

NOTE! The simulator application and the databases it uses (projects) must be

compatible.

The output database can be updated to a newer version by simply deleting it. When

a simulation is run, and the output DB is missing, the system recreates the output

DB according to the used version. The same occurs when the system DB is missing.

4.3 Setting up a payment and settlement system

The system data set is referred to with the acronym SYCD. The name is also used

in the database. You can add a new system dataset by hoovering over the SYCD

title and pressing the New button that will appear.

BoF-PSS3 User Manual 19

The system setup view looks like the following.

In order to setup a system you need to define: an ID for the system, the opening

hours, the availability of credit limits, the handling of unsettled transactions and

their effect to statistics and the algorithms in use.

Opening and closing hours must be between 00:00 and 24:00. The simulator

supports business days that can take place on 2 calendar days or start before the

weekend. Also default opening hours can be overridden by using an event data set

that defines exact opening and closing times and dates for each business day. The

use of event files is recommended in cases where business days extend over

calendar days.

If an event dataset is not available, the simulator performs Business day

deduction from transaction data. This means that the transaction data defines the

business days present in a simulation. If transactions of one business day are

introduced on 2 calendar days the simulator will deduct that the business day occurs

on 2 calendar days and thus the opening and closing hours will be deducted to

belong to different days. A business day cannot take place on more than 2 days.

Weekends and holidays are supported. If a business day occurs on several calendar

days, it is recommended to use event data sets to explicitely define the starts and

BoF-PSS3 User Manual 20

ends of business days. Especially in cases that transactions do occur only on one

calendar day but some other processes can occur on other days for example.

Transfer balances to next day can be used in multi-day simulations for

transferring the end-of-day balances to become the beginning-of-day balances for

the next day.

Intraday credit availability requires a choice between three options. The selection

‘Credits according to limit table’ requires an ICCL dataset containing the intraday

credit limits to be defined. ‘No credits available’ indicates that only the liquidity

on accounts is available. This means that only a DBAL data set is needed. The last

option ‘credit available without limits’ indicates that overdrafts are freely

available. This option can be used to find out the upper bound of liquidity. Note

that liquidity has to be provided in some form, otherwise no transactions will settle.

Handling of unsettled transactions has four options. All unsettled transactions

will be kept in a special queue for unsettled transactions until the end-of-day and

the processing will be dependent on the selected option.

1. Transfer unsettled transactions to next day/settlement occasion will place

unsettled transactions back in the transaction queues to be settled later if

possible.

2. Delete unsettled transactions (include in statistics) will remove the

transactions from queue but still include them in output statistics and reports.

3. Delete unsettled transactions (exclude from statistics) means that the unsettled

transactions will be removed from queue and also from all transaction level

statistics and most system and account level statistics. They will only be

included in aggregate transaction value and transaction count numbers in

system and account level statistics.

4. Force end-of-day settlement will result in bookings on the accounts irrespective

of any credit limit violations. This can lead to negative account balances at end

of day. Forced end-of-day settlement can be used to find out the minimum

liquidity needed to settle all transactions at least at the ends of the day. An

account violation record (AVST) will be written for every violating transaction.

These transactions are not affecting delay indicators and are not recorded to

test statistics. These transactions do not count as settled in SYLS and ACST.

QURE statistic is updated normally.

Selected algorithms define the processing methods. At least an Entry (ENT) and an

end-of-day (END) algorithm must be selected for all systems. Simulations use by

default a general event handler algorithm which does not need to be selected. Only

if a tailored eventhandler is wished to be used, it needs to be included to the

simulator and selected. Other wise the eventhandler selection can be left empty.

BoF-PSS3 User Manual 21

Algorithms are selected by clicking the respective algorithm category field and

checking the boxes of the corresponding algortihms that are wanted to be included

to the simulations . Selected algorithms can have parameters that need to be set

separately. The parameters can be edited by pressing te icon at the end of the

name of each displayed algorithm.

For more details on algorithms please see 6.1 Algorithms .

4.4 Importing data

You can import participant data, daily balances data, intraday credit limits data,

transaction data, bilateral credit limit and daily event (EVNT) data. The input file

has to be a text file, e.g. .txt or .csv.

The supported default values for the csv data separtor and decimal are ‘;’ and ‘.’.

Time is displayed as 'hhmmss.SSSSSS' and dates are displayed as 'yyyymmdd'. The

amount of rows to be skipped at the beginning is 2.

Long account names and ID’s are only stored to the PART table with a technical id

which numbering starts from 1. This makes referencing of data significantly faster

and less storage space consuming. But in order to allow coherent account id

indexing, the importing must be done in a more disciplined way. All input data sets

have to be associated with a participant dataset explicitely. Before importing any

other data set, there must be participant dataset in the system. Or, a participant

dataset must be generated from the imported data.

It is also possible to inport the data without PART data. In this case part data will

be created by the import process. For this, it is recommendable to create it first with

the TRAN data.

For more details on the technical referencing please refer to the chapter 6 on

database table descritpions.

The different input data types/data tables are coded as follows:

– PART contains participant and account data. This can be defined on participant

level only or alternatively on combined participant and account level. In the

latter case, the same participant may have multiple accounts, but for each both

the participant and account ID should be specified. This feature can be used to

BoF-PSS3 User Manual 22

define different omnibus accounts for clearing parties in a securities settlement

system.

– DBAL contains the initial daily balances data of participants or accounts. It is

optional. Null values are considered as zero.

– ICCL contains intraday credit limit changes of participants. It is also optional.

Null values are considered as zeros.

– TRAN contains the transactions of a given system. There can also be

transactions pointing to other systems. This is done by defining the ‘to-system’

field for transactions. The ‘from-system’ field must always contain the same

ID, which is defined as the system ID of the dataset.

– BLIM contains the bilateral limits between pairs of participants. It is optional.

– RSRV contains information on reservations. Reservations are used to reserve a

specific amount of the available liquidity to be used to settle some specific type

of transactions. Support for reservations is algorithm specific and for the

moment there are no built in algorithms in the generally available version of

BoF-PSS3 which support the use of reservations. Reservations data can be used

in own user modules. For the availability RSRV supporting algorithms you

should check with the simulator team. There can be many different reservations

defined for one account.

– SYCD contains system control data. These data must be specified for each

system. This specification is done in the System control data specification –

screen, not by importing a dataset.

– EVNT refers to data sets that contain timing of events such as start and end of

days. Can be used to introduce some new tailored eventhandler specific events.

A system ID has to be defined for each imported data table. It is used when

searching and configuring data that belongs to the same system. System ID is

selected from a drop down list, which includes all system IDs that have been defined

in the system definition window, see chapter 4.3.

Multiple data sets can be used for running the simulations with varying input data.

This is facilitated by a data set ID specified for each data table. The input database

will thus contain parallel data sets with the same information, e.g. different data sets

for intraday credits to simulate a situation with varying liquidity. There may also

be different transaction flows depicting e.g. crisis situations. To manage a large

number of parallel data sets effectively, it is important to create a consistent naming

convention. The data set ID can be up to eight characters long.

It is important to note that the input systems only check the data content at the field

level. Due to possibility of multiple parallel data sets, comprehensive cross-

checking can only be performed after simulations are configured and parallel data

sets selected.

BoF-PSS3 User Manual 23

Templates are used for inputting data using CSV files. The templates describe the

data field order in the CSV files.

When you create input data in a CSV file, consider the following:

– Make sure that the data and decimal delimiters are specified correctly.

– Values of currency can only be stated to two places after the decimal point.

– All data rows in the CSV-file should have the same number of data fields and

the input template defines how these correspond to the input data base of the

simulator.

– Transaction ID in TRAN tables can be numeric or alphabetical, they are sorted

alphabetically. The transaction ID must be unique as it is a sorting parameter to

distinguish between transactions that otherwise would occur in the same order.

It is also used as a key when reporting input errors. If you use numeric values,

use a sufficiently large first number (e.g. 10001) for transaction files involving

ten thousand transactions to assure successful alphabetic sorting.

– When the simulation contains more than one system and interlinked

transactions the TRAN data of a given system must hold all debit transactions

(FROM-transactions) of that system. The simulator operates on credit transfer

basis so intersystem transactions can only be made as credits to another system

(i.e. all direct debit type of transactions in real systems must be converted to

credit transfers in the simulator.)

– When DVP/PVP transactions are introduced, a link code is needed to define the

linked transactions. A system can have both linked and unlinked transactions.

More than 2 trades or payments can be linked together.

BoF-PSS3 User Manual 24

4.4.1 Errors in import

The simulator is able to report some errors occurring in the error process or the data.

The notification window will shoe an erro status in red if errors are found. Detailed

error reports can be found from the tasks window’s task run component.

The error list file is located in the ERRORLIST directory of the project. It is named

like ImportInputError_[YYYYMMDD]_[HHMMSS].csv,

for example, ImportInputError_090407_121030.csv.

In the error list the row refers to the row number in the input file and the col to the

column number in the input file. The most common errors found are format errors.

For date and time fields the formats used in the imported file should be the same as

specified in the data format defaults. Numeric fields should be completely numeric

and the decimal sign should be the same as stated in the import screen. The

simulator does not support ‘thousand’ signs. The error ‘duplicate entry’ indicates

that there are duplicated key information in the input file e.g. two rows with

transaction data with coinciding transaction IDs. In case of coinciding keys the first

data row is imported and the next ones are discarded with an error message.

Different kind of format errors and delimiter changes can arise when the input CSV

file has been exported from another program, like Excel. It is advisable to check the

content of exported CSV files with a software showing the true content of the CSV

1. Hoover on the item you

want to import to make the

selections available.

2. Press new to start the import

process

BoF-PSS3 User Manual 25

file e.g. Notepad. Check delimiters, date and time formats and decimal information,

because there seems often to be small differences in these details if the simulator

and the CSV data exporting software have not been synchronized earlier.

4.5 Defining a simulation

Once a system has been created, the system dataset defined, the import datasets

imported, a simulation can be defined.

This is done by following the following steps:

1. Click the add simulation button-

2. The following form will open which you will have to fill

You need to give the simulation a simulation id, select a submission

algorithm, select a system and associate it with your import data. You don’t

need to mind about the ABM property file unless you want to perform a ABM

simulation. ABM simulations are complicated and require deep knowledge of

the simulator and probably support from the simulator tem.

3. Finally press save

BoF-PSS3 User Manual 26

4.5.1 Cross-checking data sets

After creating a simulations it is possible to run cross-checks. Cross-checking is

recommended when there have been changes in the input data. This functionality

performs some checks on the input datasets selected for a simulation (e.g., all

accounts needed are available for booking transactions, intraday credit changes take

place within business hours).

The cross-check functionality creates an input data analysis report that might reveal

findings in the data. The cross-check functionality is intended to help users to find

errors in the input data. Cross-check findings do not automatically prevent users

from performing successful simulations. It is good practice to run a cross-check

after a simulation is defined and data is used for the first time.

The import functionality already makes sure some mistakes are not possible, thus

some of the issues the cross-checks can identify are already recognized at an earlier

stage.

To run the cross-checks on datasets, first a simulation must be created (see section

2.5). After a simulation has been created, the cross-checks can be run by pressing

the button and clicking the Run cross-check row of the list see picture below. A

report will be created and the results can be viewed by clicking the button .

It should be noted that, if the cross-check reporting succeeds technically, the status

of the task is set to green. There can still be many findings on the given data in the

report.

BoF-PSS3 User Manual 27

The executing of the cross-check tool can also end to Status Fail (red balloon). This

means that the cross-check report could not be run for the given data technically. In

this case the error report is created, and it is located in the ERRORLIST directory

of the project. It does not tell anything about the content of the given data.

 The full list of cross-check messages are documented in the Annex II

The error list contains a reference to the incoherent input data record and

information about the missing relationship data. The dataset ID and a short

description will be shown for each error.

Typical cross-check errors are

- Date errors: the dates in DBAL, BLIM or ICCL tables are outside the simulation

dates, i.e. dates for which transactions are specified in the TRAN table. Limits

and balances should only be defined for those days which are simulated.

- Time errors: the transaction introduction times specified in the TRAN table are

outside the opening hours of the simulated system, as defined in system data or

selected EVNT dataset. This might cause confusion to users in cases

transactions are introduced before the opening of the business day. In this case

simulations can still be run and the users should disregard this kind of errors.

Also in these cases simulations should be run without cross-checks as these

cross-checks will stop the simulation execution.

- Participant errors: there are missing participants (or typing errors) in the

participant data. TRAN-PART refers to transactions with missing participants

in PART data, DBAL-PART refers to missing participant data for DBAL data

and ICCL-PART refers to missing participant data for ICCL data. For all

participants quoted in TRAN, ICCL, BLIM and DBAL records there must be

the corresponding participant in the PART data. If multiple systems or accounts

are defined, the participant is checked as a combination of the system ID,

participant ID and account ID.

- Erroneous system ID’s in TRAN data: if the from system id field is explicitly

defined, it should be the same as the ID of the system which this data set is

attached to.

BoF-PSS3 User Manual 28

4.5.2 Creating multi system simulations

Simulations with multiple interacting systems can be created and simulated with

BoF-PSS. This enables simulation and analysis of parallel systems with

independent processing logics, such as network of several RTGS systems such as

TARGET, combination of a RTGS system and an ancillary CNS or DNS system or

a RTGS payment system together with a securities settlement system working with

DVP processing.

In multi system simulations individual systems are set up independently one by one:

system definition and data imports are performed for each simulated system

separately. System ID field is used to collect together definitions and input data of

individual systems.

For transactions between systems the receiving system name has to be defined in

input data. Transactions are always included in transaction data set of that system,

where the from-participant of each transaction is located. The system names used

in input data (e.g. From-system and To-system in transactions) need to be the same

which are used as System IDs in system definition.

The transaction IDs must be unique simulation-wide, i.e. the transaction data

sets of the different systems cannot use same transaction IDs. Cross-check will

display reused IDs as errors of the second transaction data set that uses them.

An example of multi system simulation is provided in example2 material included

with the simulator (C:\BoF-PSS\EXAMPLES). It presents a main RTGS system

and an ancillary CNS using the accounts in the RTGS system as the source of

liquidity. In the input data the “liquidity injections from system” and “liquidity

injections from participant”-fields are defined for each participant. In the input data

of this example the RTGS system is referred as “M” and the ancillary system is

referred with “K”. These names have to be used also as System IDs in the

simulation. In multi system simulations, the cross-check is checking also coherency

of multi system transactions and used System IDs.

Multi system simulations are created in simulation configuration screen by

including all necessary systems one by one on their own rows. Screenshot from

example 2 simulation configuration is shown below.

4.5.3 ABM Simulations

Users can instruct the simulator to associate active account management to

accounts. This is done by selecting a ABM configuration file on the screen.

BoF-PSS3 User Manual 29

See the new field called “Agent file”.

The property file can by edited and copies can be made. The ABM property files

are fetched by default from the BOF-PSS\program\ABM directory. The default

example property file can also be found from BOF-PSS\program\ABM directory

The Browse function allows to store the files also into other places.

The property file contains the information on accounts that have been allocated an

account management algorithm with the specific parameters. There can be many

account management algorithms and users can meake new one’s based on the ones

distributed with the simulator. For more specific description on the ABM

algorithms and parameters, please refer to the section 6.7 .

When a simulation is executed as an ABM simulation, additional ABM log files

are created besides the basic simulation log. The ABM logs are created by account.

4.6 Executing simulations

You can execute simulations on the Simulation execution screen. The screen opens

by clicking the Simulation execution button on the Main menu. Simulations can

be executed as single runs or in batches consisting of many simulations.

4.6.1 Errors in simulations

On the Simulation execution screen:

View errors arising in the simulations by clicking the View error report button.

The error list file is located in the error list directory of the project. It is named

SimulationExecutionError_[YYYYMMDD]_[HHMMSS].txt for example,

SimulationExecutionError_090407_121030.csv. Unnecessary error lists should be

deleted. All errors or relevant simulation related information might not be present

in the error file, thus one should always also check the simulation log file.

4.7 Analysing results

Simulation results are stored in the output tables of the project database. The results

can be viewed using available reporting features and by accessing the database

tables directly with SQL or other tools. All data can also be downloaded as CSVs.

http://vety/RM/BOF-PSS2/Simulaattorin%20dokumentit/03_02_02.htm
http://vety/RM/BOF-PSS2/Simulaattorin%20dokumentit/03_02_02.htm

BoF-PSS3 User Manual 30

The automated stress testing module 4.8 provides some reporting features of its

own.

4.8 Automated stress testing module

The Automated stress testing module has been developed to make the running and

analysis of the data and stress tests results easier.

The stress tester supports one analysis type: stress testing based on removal and

transformation of transactions. It ispossible to affect the way accounts are treated

for scenario creations. Accounts can be affected either individually for each

scenario or all selected accounts of a participant can be affected at the same time.

As a third option, all selected accounts can be affected in one simulation(scenario).

The interface allows to alter the SQL-query and its conditions used to retrieve the

transactions for each scenario. This allows the user to define for example, that only

payments not belonging to a certain category or occurring between a specific time

period are dropped.

In short, the module works in the following way. First you need to define a

benchmark simulation with the data and the system setups you wish to analyse and

put under stress. After that, you can open the stress testing analysis tool and create

a new analysis for which you will define the benchmark scenario to be used as a

starting point. The user will have to select the accounts to be included in the

analysis. Stress scenarios will be run for all the selected accounts. After all the

scenarios have been run the user can generate a report tailored for comparative

stress testing analysis. The report contains account level information such as

upperbounds, maximum upperbounds, liquidity deterioration figures, values of

unsettled sent and received transactions and many others. For further details see

following chapters.

4.8.1 Creating a new analysis

To create a new stress analysis or access an existing one you need to open the stress

testing analysis window from the main menu. The Stress testing view will open.

BoF-PSS3 User Manual 31

From this view it is possible to view old analysis made with the selected project and

create new one’s by pressing the button selecting a benchmark simulation,

giving it a name and saving it,.

4.8.2 Selecting the accounts to be affected in a scenario

To select the accounts to be affected in the scenarios, the user needs to open the

“setup scenarios and accounts to be failed” view. On the left all the non selected

accounts are visible. Accounts can be selected by dragging accounts to the right.

BoF-PSS3 User Manual 32

The “Scenario rule” selection affects how the scenarios are generated. “by

accounts” means that scenarios will be generated for each account and the scenario

definition behind #scenario_id# tag used in the SQL Data filters, will contain only

one account id at a time. “by participants” means that scenarios will be generated

by participants and the scenario definition behind #scenario_id# tag will contain all

the selected accounts of one participant at a time. This allows to have all the

accounts of one participant to be affected in the same scenario. “All selected” means

that only one scenario will be created and the # scenario_id # tag will refer to all

the selected accounts. For more details see below.

The selections are saved only when the save button is pressed. Be aware that saving

will discard any priorly run results for this analysis.

4.8.3 SQL-query filters for scenario creation

The Data filter selection allows to select a specific SQL-query to be used in the

generation of the scenarios. The queries are used to get the set of transactions to be

BoF-PSS3 User Manual 33

used in each scenario. The queries contain tags that are replaced by scenario specific

values when the stress tester runs scenarios.

The SQL-queries are stored in text files in folder

C:\BoF-PSS\PROGRAM\filters\stressTester. The defaultFilter is a query for generating

failure scenarios by removing transactions belonging to selected accounts. Users

can use the default filter to create customized queries to direct the scenario creation.

Users cannot modify the defaultFilter, but can create copies of it.

The following tags are supported since version 7.0.3:

scenario_id #: substitutes the analysis id to the sql query allowing to link to the

list of account ids involved with the scenario.

#system_id#: Derived from benchmark definition

#dataset_id#: Derived from benchmark definition

#business_day#: Stress test are run day by day separately.

4.8.4 Running of the analysis

To obtain the analysis report, one needs to run the scenarios first. When pressing

the Run scenarios button the system will:

1. run the benchmark if it has not been run yet

2. run the benchmark with illimited intraday credits to calculate figures for the

upperbound of liquidity

3. it will generate and run the one day scenarios for each selected account. In

order to save space the input data for scenarios is not stored to the input

database’s tran table. Simulation results are stored only to the tables SYLS,

ACST and TEST of the output database.

4.8.5 Working with the results

After you have run the scenarios you can obtain the results by pressing the Run

report button. The analyser will collect the account level results for all the scenarios

and the benchmark into an excel. The data content is sufficient to obtain basic

charts, reports and comparisons related to the benchmark and run scenarios. The

report contains all the sufficient data amongst other to:

- obtain rankings for systemical importance of counterparts in terms of casued

unsettled payments, intermediated stress

- draw counterparty exposure matrixes in terms of unsettled payments, liquidity

deterioration

- observe average sending and receiving times and the differences to the

benchmark case

BoF-PSS3 User Manual 34

The report will contain account level information rows for each day, scenario and

benchmark. The data is partly extracted from the ACST and calculated from the

TEST table. The report contains two automatically updated charts and the

counterparty risk matrixes.

The analysis report contains the following data fields:

BenchScenario This field can have 2 values and it indicates

whether the row information relates to the

benchmark simulation or a scenario. Possible

values: Bench, Scenario

SimRunId Name and ID of the simulation. For scenarios

the name is generated by concatenating the

name given to the analysis and the accountID

SystemId System ID of the Benchmark

failingAccountId Account ID of the failig account

AccountId Account ID to which the figures belong

BusinessDay Business day of the figures

BoDBalance Beginning of day balance for the account as

in ACST-table

EoDBalance End of day balance for the account as in

ACST-table

MinBalance Minimum balance during the day for the

account as in ACST-table

EoDCreditLimit Intraday credit limit at the end of the day for

the account as in ACST-table

CreditLimitMaxUsage If the account has had a negative balance

during the day (e.g. has relied on credit limit),

the value here is: minimum account balance

*-1 / Eod credit limit * 100

SettledCount Count of the sent and settled transactions

SettledValue Value of the sent and settled transactions

SentUnstCountDirect Count of the transactions removed due to the

scenario

SentUnstValueDirect Value of the transactions removed due to the

scenario

SentUnstCCPValueDirect This column is present only if the simulator

recognizes, the data to bemorphologically

complient with trade data. The field is

calculated form usercod_4. The field will

contain meaningfull results only if all values

entered into usercod4 field are in same

currency. The values in the value field used

for the other calculations can contain

amounts and values in different currencies

making them uncomparable.

SentUnstSystemicEffectCount Count of the unsettled transactions in the

simulation or scenario. In scenarios these

BoF-PSS3 User Manual 35

would correspond to the systemic or second

round effects due to the altered situation.

When calculated for the benchmark, the

count is just the count of unsettled

transactions. When the value is calculated for

a scenario, the benchmark’s corresponding

value is substracted from the count.

SentUnstSystemicEffectValue Value of the unsettled transactions in the

simulation or scenario. In scenarios these

would correspond to the systemic or second

round effects due to the altered situation.

When calculated for the benchmark, the

value is just the sum of unsettled transactions.

When the value is calculated for a scenario,

the benchmark’s corresponding value is

substracted from the sum.

ReceivedPaymentsCount Count of payments received as in the ACST

table

ReceivedPaymentsValue Value of payments received as in the ACST

table

ReceivedUnstCountDirect Count of payments not received because the

transactions removed due to the scenario.

Calculation is based on TEST data.

ReceivedUnstValueDirect Value of payments not received because the

transactions removed due to the scenario.

Calculation is based on TEST data.

ReceivedUnstCCPValueDirect This column is present only if the simulator

recognizes, the data to bemorphologically

complient with trade data. The field is

calculated form usercod_4. The field will

contain meaningfull results only if all values

entered into usercod4 field are in same

currency. The values in the value field used

for the other calculations can contain

amounts and values in different currencies

making them uncomparable.

ReceivedUnstSystemicEffectCount Count of payments not received in the

simulation. In scenarios these would

correspond to the systemic or second round

effects due to the altered situation.

ReceivedUnstSystemicEffectValue Value of payments not received in the

simulation. In scenarios these would

correspond to the systemic or second round

effects due to the altered situation.

ReceivedPaymentsDiffValue Value of received payments in the

benchmark – value of received payments.

Positive value indicates a decrease in original

value.

BoF-PSS3 User Manual 36

LB Lower bound of liquidity. Net liquidity

needed for the day.

LBDiff LB of benchmark – LB of scenario

UB Upper bound of liquidity. The amount of

initial liquidity needed to settle all payments

introduced in the order of the input data.

Currently this is only calculated for the

benchmark. Calculation occurs by rerunning

the benchmark scenario with the selection

intraday credits available without limits. UB

= beginning of day balance – minimum

balance of the simulation with unlimited

credits.

MaxUpperBound Sum of values of all outgoing payments.

Total gross outflow.

MinLiquidityDeterioration Needed extra liquidity to keep end of

day(EOD) balance in the scenario,

unchanged when other non-failing

participants are able to compensate and still

send their unsettled payments.

MinLiquidityDeterioration =

End of day balance in benchmark simulation

- End of day balance in scenario

+ outgoing unsettled in scenario (outgoing

systemic)

- Unsettled in benchmark (can be used for

modell accuracy correction)

- incoming unsettled (systemic, not direct) in

scenario (it is assumed that others are able to

send even if not in the simulation).

It reflects the needed extra liquidity to settle

all unsettled payments and achieve same

level of liquidity as in benchmark. It is

assumed that unsettled incoming payments

are settled and the buffers of other

participants are sufficient and they are able to

bring in extra liquidity. If value is negative it

is an improvement and it is rounded to 0.

MaxLiquidityDeterioration Needed extra liquidity to keep end of

day(EOD) balance in the scenario,

unchanged when other participants are not

able to compensate and cannot send all of

their payments.

Maximum Liquidity Deterioration =

End of day balance in benchmark simulation

- End of day balance in scenario

+ outgoing unsettled in scenario (systemic)

BoF-PSS3 User Manual 37

- Unsettled in benchmark (systemic, can be

used for model correction)

It reflects the needed extra liquidity to settle

all unsettled payments and achieve same

level of end of day liquidity as in the

benchmark. It is assumed that other

participants are not able to bring in extra

liquidity intra day. If value is negative it is an

improvement and it is rounded to 0.

SettlementDelay Same as a_setdelay from the ACST table.

SettlementDelayDiff Settlement delay of the scenario – Settlement

delay of the benchmark

WeightedAvgReceivingTime Value weighted average of settlement time of

received payments

WeightedAvgReceivingTimeDiff WeightedAvgReceivingTime of the

scenario- respective value of the benchmark

WeightedAvgSendingTime Value weighted average of settlement time of

sent payments

WeightedAvgSendingTimeDiff WeightedAvgSendingTime of the scenario –

respective value of the benchmark.

4.9 Task Automation Tool and Task Sets

The task automation tools functionality is meant to create task lists to allow easier

repeatability of specific task sequences. Also new functionalities can be introduced

as tasks. The initial versions are still hard coded. In the future releases, more tasks

and flexibility are likely to be made available.The idea is that the task automation

tool allows the user to define tasks to be performed in one go. The task set for

importing and running a benchmark simulation can be found under the Task

automation tools. First you need to select the task set called “Import tasks”. Once

this is done all the tasks belonging to the task set will be displayed on the right.

In order to instruct the automation tool which tasks to include to the run, the user

needs to check the corresponding boxes in the Run column. If the run box of the

task is checked, the task will be run. The tasks are run in the top down order.

Many of the tasks need some additional parameter information to function. The

parameters can be edited by double clicking the parameter field of a task.

The Import tasks task set has 3 common parameters used by the individual tasks.

The system id indicates the system under which the data is imported. The value

entered to the field “Data set name of imported datasets”, is used as a dataset name

BoF-PSS3 User Manual 38

for all imported datasets. The value is also used by other tasks to indicate the name

of the datasets to which a task is targeted.

4.9.1 Import tasks

The import taks set provides the tasks to perform the steps to import and manipulate

data and perform a normal day, 1 system (benchmark) simulation. Benchmark

simulations are used as reference for scenario simulations like stress tests. Results

of scenarios are compared to the results of benchmark simulations. Once set up, the

benchmark simulation can be used as a base for stress test or other analysis.

The following Import tasks are available:

- Clear project’s old input and output data

- import data

- Exclude transactions

- Account pool data

- Run cross-checks

- Run simulation

The tasks are explained in details here under.

There are 3 common parameters for the tasks. The system, the data set name and

the account pooling data set name suffix.

The system selection is actually a combination of a system ID and a system data

set.The system is used by the task Import data to indicate the system under which

data is imported. The run simulation will use the system dataset information to

create the simulation setup.

The dataset name, which default value is Raw, is used to name all the imported

datasets. Also the accountpooler if used will name the pooled data sets as a

combination of the data set name and account pooler suffix (Ap). This means, if

account pooling is used, the final datasets used by the simulation will be named by

default RawAp. If the account pooling task is not selected, and there are datasets

that have a name that match the combination of the data set name and account

pooling suffix, the user will be asked for which data sets the user wants to run the

benchmark.

Clear project input and output data

This step is optional. If the project contains old input data and results of obsolete

simulations, the databases can be cleared. This step removes the contents of all input

and output databases including simulation definitions and stress tester analysis

BoF-PSS3 User Manual 39

setups and results. This task does not delete system setups nor templates. The

clearing task is fast. Especially it is significantly faster with big datasets comparing

to an overwrite operation in the Import data task when reusing an existing dataset

name.

It is highly recommended to run this task if there are no reasons opposing it.

Import data task

The Import data task imports all the input files, either from a tar file that respects

GZ.tar format or separate csv-files in an indicated directory. First the user needs

to double click the parameter field of the import data task. A new window with all

the necessary parameter fields will open.

Then the user needs to select either a tar file or indicate the directory from which

to import the extracted and unzipped csv files.

The exclude days file allows the user to select a file containing days to be excluded

from the import process. The user can edit and create new definition files. The

excluded days files are stored in a default folder defined in a property file. The

property file is called loadFile.porperties.

BoF-PSS3 User Manual 40

It is also necessary to select the correct import templates for the import process. The

templates are the same that can be created and edited with the old interface: Import

input file. Default templates are defined in the loadFile.properties file. The csv’s to

be imported either directly or form the tar-files need to follow the formats indicated

by the templates. The names of the CSV files need to contain the words

corresponding to the dataset type indicators: tran, part, iccl, dbl, blim, evnt, rsrv, or

gacc.

When loading data and there already are data sets with the same name, the system

prompts the user whether to overwrite the existing data or not. If there are no other

input datasets in the database, the system will use the same truncate operations as

the “clear project and output data” to remove the old datasets, which is very fast. If

there are other datasets in the database with other dataset ids, a slower overwrite

operation will take place. If the database is big this might be a very slow (very very

slow) operation.

Exclude transactions

The remove transactions task consists simply of the execution of an SQL- sentence.

The user needs to select an SQL-file containing an SQL sentence that alters the data

somehow. An example file is provided. The file can contain also update queries to

change data.

The default file should not be changed and saved with the same name. The file can

be edited by users and saved with another name to the same folder.

To select the SQL-sentence to be executed by the task, the user needs to double

click the parameter field of the task and select the appropriate file. The edit button

opens the text file containing the sql-sentence and allows to create a new file with

user made modifications.

This task applies the sql-sentence of the file, to the tran dataset imported before and

indicated by the global parameters: system (as selected in the drop down on top of

the GUI) and data set name (in the text box at the top as well).

The SQL queries are performed as a SQL prepared statements. This means that the

“t_datsetid = ?” condition as such, in the current version, can be present in the

sentence only once.

Account pool data (Merge accounts)

This task simply runs the account pooler. It uses the GACC-file present in the input

data. Resulting datasets will be renamed by adding the account pooling data set

suffix to the dataset name from the top of the GUI. To function this task requires

the group of accounts file (GACC) to be present amongs the input files.

BoF-PSS3 User Manual 41

Perform cross-checks

This task performs the same cross-checks that can be run from the simulation

configuration view.

It is not compulsory to run this task, but if there are doubts on the integrity of the

data, it is good to run it. Once the data integrity can be trusted this step can be

skipped to speed up the process.

The cross-check report contains results that are categorized as errors and warnings.

Errors are to be taken seriously. Warnings are such that the simulator should be able

to perform a simulation. Warnings can be errors but aren’t necessarily so.

Run benchmark simulation

This task will create and run the benchmark simulation for the datasets named

according to the name fields (dataset name and account pooling suffix) on top of

the GUI. The system setup used to run the benchmark is the one selected on the top

row of the GUI. The benchmark simulation is named “Bench”. If the

accountpooling task has not been selected but there are datasets with a name

corresponfding to the pooled datasets according to the nameming parameters

dataset name and accountpooling suffix, RawAp in the default case, the user is

asked for which dataversion the benchmark is to be run.

4.9.2 CCP tasks

As at 11.1.2024, the CCP tasks have not been updated for a while and their

activation would require some testing and possibly some code updates.

The version 7.0.3 contains one task set: CCP tasks. The task set has been developed

to allow manipulating trade data of a certain form, to allow CSD settlement

simulations of CCP’s trades. In theory the tool could potentially be used to simulate

commodities markets and maybe derivatives to some extent. These would have to

be evaluated separately.

The task automation view checks whether there are eligible tran datasets in the tran

table that fulfil the requirements of the CCP-tools. In practice this means that there

needs to be a tran dataset with the following fields populated:

t_assename: ISIN code if available, could be something else too.

t_usercod1 : contains currency code

t_usercod2 : contains CSD id
t_usercod4: contains the money value

BoF-PSS3 User Manual 42

One CCP template for importing trade data, used in an internal project, is provided

with the general version. Other templates could be used too depending on the files

to be imported. This template should be considered as an example, but could be

used in other projects too.

The provided tasks are:

Add CCP transactions

This task requires a transaction data set, containing trades, with or without cash

legs, to be present in the current project. This task will perform novation of the

trades by setting the CCP as a counterparty to each trade. The created datasetid is

named “CCP”.

Net CCP data

The task performs a basic CCP netting. The netting for securities is performed by

CSD, participant, instrument and currency (CCY). Cash legs are netted according

to CSD, participant and currency (CCY). A new transaction dataset is created for

all CSDs. The datasets are named according to field t_usercod2 (a maximum of 8

characters still applies!!!). The selection “Generate one CSD” will treat the CSDs

as one. The transaction data set will be named: “one”.

Create participant data

Generates participant and account data directly from the selected transaction

dataset. One participant dataset is created for each CSD separately. The part dataset

is named according to the CSD name.

Create CSD system setup

The task replicates the available system setup to create the CSD specific

benchmarks for each CSD indentifyed from the transaction data field t_usercod2.

The task will define the CSD specific benchmark simulations.

Note! As there is currently no Benchmark selection, there can be only one system

setup defined. The existing system setup will be used in benchmarks.

Create CSD DBAL data

This task will create UB and LB dbal data sets for all CSDs, by running the CSD

specific benchmark with the liquidity available without limits setting.

Create and run all CSDs

This task will create the analysis setups for all CSDs and initiate the execution of

the automated stress tests. See 4.8. The task assumes the presence of configuration

file located in the projects input directory: participantsToBeFailed.csv

The file must contain participant id’s. The first row of the file is a label row, and

participant ids are to be defined starting form the second row, one id per row. As

BoF-PSS3 User Manual 43

the failure scenarios for CCPs are participant and not account level this is justified.

The task will run the stress test with the “by participant selection“ and will provide

the stress tester module with the account id’s belonging to the participant. The task

uses the default.sql filter.

Anyway if the assumptions related to this task are not appropriate, it is always

possible to run the scenarios with the stress tester separately.

Create and run cover 2 on all CSD’s

Same as above but will use a csv-file named cover2participantsTobeFailed.csv

stored in the same input folder.

In addition to traditional transaction data, the following data must be stored

according to the following table:

Information Field in TRAN table

identifier of the asset like ISIN t_assename

CCY (currency) t_usercod1

CSD t_usercod2

Value of the trade in traded CCY t_usercod4

5 Operating the simulator via HTTP API

The Simulator application provides a HTTP (Hypertext Transfer Protocol) API

interface to operate the simulator. The Simulator UI running in a web browser, uses

these HTTP API methods to operate the simulator e.g. to create and maintain the

user projects and all the data needed to create and run simulations.

The HTTP API can be used in the same way as a CLI allowing users to access all

the methods available to the simulator UI. This allows users to integrate the

simulator with other tools and programs very efficiently. For example, users can

develop even their own GUIs based on these methods.

Users that want to use the Simulator http-API, need to be familiar with the HTTP

protocol and the JSON object format that is used to transfer data between clients

and Simulator API. The simulator respects REST and MVC design and

architectural principles.

To access a HTTP API, utility tools like CURL, provide a way to make HTTP

method calls over the network. Many or most analysis software and programming

environments provide tools to support http connectivity nowadays.

BoF-PSS3 User Manual 44

Annex Error! Reference source not found. provides the description of some

central API methods and a CURL example on how to use the API.

5.1 Used technology

In order to be able to use the http API directly, users would need to be or get familiar

with the HTTP protocol, JSON and possibly html techniques e.g. in other terms

client side web programming techniques.

5.1.1 HTTP protocol

In short the HTTP protocol lays down rules on how a client and a server

communicate between each other. Amongst others, the protocol defines request

method types used for communications between clients and servers. The types used

by the simulator are mainly: POST, PUT, GET and DELETE.

The simulator API respects the HTTP protocol and provides a standardized and

Restfull way to communicate with the simulator over TCP/IP network using HTTP

protocol.

In practice the use of HTTP protocol means, that method calls are made with URL

calls like http://localhost:8080/ that opens the simulator GUI in your browser.

For more information see https://developer.mozilla.org/en-US/docs/Web/HTTP

5.1.2 JSON notation

JSON notation is a text based format to describe data structures in a simple name

value pair manner (see https://www.json.org/json-en.html).

Below is an example of a single data JSON structure:

 {

 "name": "Maria",

 "gender": "F"

 }

 Below is an example of data structure of a JSON array (note the square

braquets ‘[‘ ‘]’):

 [

 {"name": "JSON", "flexibility": "high"},

 {"name": "XML", "flexibility": "low"}

]

http://localhost:8080/

BoF-PSS3 User Manual 45

5.2 Simulator API methods

The Simulator API uses mainly the following HTTP methods types:

GET - is used to query information and it returns typically a JSON object

related to given query path

 POST - is used to create a data entity

 PUT - is used to update a data entity

 DELETE - is used to remove data

E.g. HTTP method call DELETE /projects/myprojectname removes a project from

the Simulator database.

A complete up to date list of API methods can be displayed with Swagger and the

springdoc-openapi-ui library. When your simulator application is running, you can

obtain the fullu method listing by opening the page http://localhost:8080/swagger-

ui.html in your web browser. The list is in alphabetical order.

Some of the methods are described in more detail in next chapter. Below some

important HTTP API methods are described. The URL used to reach the method is

derived by adding http://Domain in front of the “/…..” URL path.

In order to interprete the method description under please take note that each

method call is an URL call that might have a JSON file passed as form data. Also

the method type (DELETE, POST, PUT,…) is passed on the background by the

framework. All parameters such as JSON files are not shown on the URL syntax

but are passed on, on the background. The CURL example demonstrates this in

practice.

For example the GET method /templates in the annex Error! Reference source

not found.would look like:

http://localhost:8080/templates. Inserting a URL to browser’s address bar will use

the GET method in browser URLs. This means that other methods than GET cannot

be made purely as address bar URL calls. They would need to be made through

HTML forms, javascript or some framework through which you can set the request

method to something else than GET.

http://domain/
http://localhost:8080/templates

BoF-PSS3 User Manual 46

6 Algorithms and user modules

6.1 Algorithms

“Algorithms” is a common term applied to the simulator’s special settlement

functions such as splitting and netting. Common algorithms are provided as part of

the software, and users can also develop their own algorithm modules. The interface

for BoF-PSS3 algorithms and user-defined modules is the same.

The available algorithms are divided into the following main groups:

– Submission algorithms (SUB) fetch the next transaction to be submitted for

processing.

– The system event handler algorithms (I) can be used to bypass the default event

handling logics related to events (end of day, introduction of new transaction,

limit changes, Transaction expiry, …) occurring during a simulation.

– Entry algorithms (ENT) make the initial processing of each transaction.

– Settlement algorithms (SET) call specified subalgorithms to settle queued

transactions. The SET algorithms them selves do not contain any logic to

release payments.

– End-of-day algorithms (END) process the final steps during a day or settlement

cycle.

– Time estimation algorithms (TEA) are used to estimate the real time used for

specific process. For example, a TEA algorithm can be used to induce a more

realistic delay due to the processing of a settlement algorithm. TEA is also

needed to simulate parallel processing of algorithms. To be able to use a TEA-

algorithm, the parent algorithm must support TEA estimation.

– Settlement Confirmation Messenger (SCM) algorithms are used to deliver

feedback messages from booking events of eventhandlers. These can be used

to activate agents. By modifying them it is theoretically possible to add other

functionality to them too. The point is that they are activated when transactions

are settled.

The submission algorithm is only available at the simulation level. For every

simulation, a submission algorithm must be selected. This is done later when

defining a simulation. Its task is to determine which transaction is the next to be

processed from all pending transactions in all systems. All other algorithms are

specified at system level. The submission algorithm can be thought of as the process

in which the bank decides, which is the next transaction to submit for processing to

any of the systems in the simulation. This is the algorithm to modify if new

behavioural patterns for banks are introduced.

BoF-PSS3 User Manual 47

The other main algorithms are assigned on system level. For example, an RTGS

and net-settlement system can use different entry-algorithms in the same

simulation. For every system, the entry (ENT) and end-of-day (END) algorithms

must be specified. The system event handler and settlement algorithm are optional.

The following sub-algorithms can be used with ENT entry algorithms:

• Splitting algorithms (SPL) split a large transaction into sub-transactions

according to specific rules.

• Injection algorithms (INJ) transfer liquidity between ancillary and main

systems.

The following sub-algorithms can be used with SET settlement algorithms:

• Queue release algorithms (QUE) check and fetch individual transactions for

possible settlement from the waiting queue in the order defined in the algorithm.

They are useful for settling previously queued transactions once an account or

participant has received more liquidity.

• Splitting algorithms (SPL) split transactions into smaller sub-transactions.

• Injection algorithms (INJ) transfer liquidity between ancillary and main

systems.

• Bilateral off-setting (BOS) checks and fetches transactions that can be

bilaterally off-set from the waiting queues.

• Partial netting algorithms (PNS) seek to settle a group of the queued

 transactions.

• Multilateral netting algorithms (MNS) attempt to settle all queued transactions

in one netting event.

For special cases following separate algorithm categories are available:

• Queue release algorithm for secondary queue (QU2) is used in special case of

receipt reactive gross settlement.

• In simulations with bilateral limits own algorithms are used. See section 6.3 for

more details. For example, the bilaterally queued payments are released by

QUB-algorithms.

• Partial net settlement or bilateral offsetting of bilaterally queued payments is

handled by BBS-algorithms in simulations with bilateral limits.

For each payment and settlement system, there can only be one specific sub-

algorithm defined of each category in the current ENT and SET algorithms. This

means that the main algorithms will use the same splitting and injection algorithms,

BoF-PSS3 User Manual 48

if these are defined. The order in which the sub-algorithms are set in the simulator

control data specifications is important because sub-algorithms are called from

the main algorithms in the order they were set.

The specific algorithms are attached to the specified payment and settlement

systems on the System control data specification/modification screen. The

required parameter values are given at the same time as a parameter string. The

basic controls are made for the parameters, but it is essential that users are cautious

when introducing parameters. Any user-defined modules must be introduced to the

system by stating the initial specifications on the User module definition screen.

Thereafter, it is possible invoke them on the System control data

specification/modification screen in the same way as originally provided modules

and algorithms.

The time estimation algorithms (TEA) are tied to other algorithms and thus defined

slightly differently (see chapter Error! Reference source not found. step Error!

Reference source not found.). They provide function to calculate an estimate to

the time that would have been used in the real world by a specific algorithm.

The algorithms provided with the simulator are described in the table below.

Whether an algorithm supports DVP or PVP, bilateral or multilateral credit or debit

caps, the information will be provided for each algorithm separately.

Type Name Parameters Description

SUB SUFIFOPR None
Fetches the next transaction or system event

(among all systems) according to simulation

time, priority and transaction id.

ENT Entry

is entry settlement

enabled(true or false;

default = true)

is FIFO enabled (true or

false; default = true)

priority threshold for

forced entry settlement (0-

127

priority threshold to use

secondary queue

is linked payments

settlement enabled

(True or False. Default:

False)

Priority(0-9)

Open (hhmmss)

Performs the basic entry processes on a

specified transaction. As default respects FIFO

unless the subalgorithms it calls do not or the is

FIFO enabled parameter is set to false.

Entry settlement can be switched off by setting

the “is entry settlement enabled” parameter to

false. This is required for DNS setups for

example. If the sending participant has no

transaction in queue, the algorithm checks the

possibilities for booking according to available

liquidity (balance + available intraday credit). If

booking is not successful,it will run the

possibly defined sub algorithms which types

are: INJ, SPL, QUE, BOS, BBS, PNS, MNS.

The injection(INJ) and splitting(SPL)

algorithms are given priority over the others.

The rest are executed in the order they have

been defined in the system setup. If the

subalgorithms fail too, the payment is put to

queue.

Supports DVP/PVP settlement with n >=2

linked transactions or trades. The parameter “is

BoF-PSS3 User Manual 49

Type Name Parameters Description

Close (hhmmss)

Allow queueing of linked

payments (True or False.

Default = false

linked payments settlement

method (gross or nett.

Default: GROSS)

linked payments settlement enabled”

indicates whether the Entry algorithm is

allowed to sette linked payments. Linked

payments are payments that have the same

value in the transactions’ data field:

T_LINKCODE.

If the parameter linked payments settlement

method is set to NETT, The linked transactions

are settled on a net bases. Statistics are affected

like all the linked payments would be settled at

the same time like in netting. The selection

GROSS means the linked payments are settled

with the same settlement time but one by one in

the order they were submitted.

If allow queueing of linked payments is set to

true, linked payments are put to the same

primary queue with other non-linked payments.

If FIFO is enabled, also the linked payments

will block the queue. Linked payments need to

be present in the queue to allow other

algorithms to settle the linked transactions.

priority threshold for forced entry

settlement

All transactions with a priority equal or higher

to the priority threshold for forced entry

settlement -parameter are settled immediately

regardless of sufficiency of liquidity. When the

liquidity constraint is violated a violation entry

is written to the AVST-table.

Priority threshold to use secondary queue

Transactions with smaller priority than the

priority threshold to use secondary queue

-parameter are placed in secondary queue

(QU2). Opening hours for QU2 are defined

with parameters Open and Close.

Entry does not consider reservations .

END EndOfDay

repatriate liquidity at EOD

interval (1-60)

time1 (hhmmss)

Time Schedules (hhmmss)

Basic end of day algorithm of RTGS process.

It is normally called at the end of the simulation

day.

Executes the settlement algorithm and specified

subalgorithms for one final time and performs

end of day procedures for transactions

remaining in queues.

The settlement algorithm is called for each

remaining participant separately passing the

participant as parameter.

It is possible to set times, when the algorithm is

executed with the time parameters. The

maximum number of separate settlement runs is

40.

repatriate liquidity at EOD

BoF-PSS3 User Manual 50

Type Name Parameters Description

If this is set to true, any possibly injected

liquidity from an other system (with an

algorithm of type INJ) is repatriated when this

algorithm is run. The repatriation transfers’

transaction IDs’ start with S.

SET settlement
Queue name (PRIMARY,

SECONDARY,

TERTIARY)

Calls specified subalgorithms to settle queued

payments. It is invoked each time a new

transaction is put into queues or liquidity has

been transferred to an account with queued

transactions. Calls algorithms of types: QUE,

SPL, INJ, PNS, MNS

QUE QueueRelease

sortBy

bypass allowed (TRUE or

FALSE)

Releases individual transactions from waiting

queues upon arrival of additional liquidity in

priority and FIFO order by default.The exact

behavior depends on the calling algorithm.

QueueRelease performs FIFO on the set of

transactions it receives as parameter. The

default event handler calls it account by

account, which means that it acts as an account

wise FIFO algorithm.

Supports DVP/PVP settlement with n >=2

linked transactions or trades.

Supports limits (BLIM).

sortBy

The sortBy parameter affects the order of the

queued transactions. It directly affects the order

in which transactions are settled ortaken out of

a solution. This parameter can be used to

deviate from FIFO.

bypass allowed

If bypass allowed is set to true, the algorithm

will not respect FIFO.

QU2

ReceiptReacti

veQueueRelea

se

eod (“gross” or “return”)

newprior (0-9, optional)

Releases transactions from secondary queue in

priority FIFO order in receipt reactive gross

settlement simulations.

EOD parameter defines the processing logic of

secondary queue payments at the end of each

period: gross means transactions are moved

into primary RTGS queue, return means

transactions are discarded (i.e. returned to

original sender).

Supports DVP/PVP settlement with n >=2

linked transactions or trades.

In the former case transactions are given a new

uniform priority if NewPriority has a value.

Otherwise they retain their original priority.

 (See ch. 6.4.1 for more details)

SPL

 Transaction-

SplittingTo-

Tranches

Max. transaction value,

positive amount with two

decimals

Splits transactions into sub-transactions

according to specified maximum transaction

value. For example, if a max value of 500 is

specified, a transaction of 1,350 is split into

BoF-PSS3 User Manual 51

Type Name Parameters Description

sub-transactions of 500, 500 and 350, with 350

the last to be processed.

SPL

Transaction-

Splitting-

BasedOn-

Available-

Liquidity

None

Splits transactions using available liquidity. For

example, when 450 is available on the account,

a transaction of 1,350 is split into 450 and 900

of which the 450 is directly processed and 900

remains in the waiting queue.

INJ Injection

Value: Positive value with

two decimals

Percentage: format positive

100.00

Mainly, the INVALUE1 algorithm is called by

entry and settlement algorithms such as Entry

and Settlement.

The algorithm as such does not settle anything.

It injects liquidity to a participant/account when

required in given amounts defined with the

parameter value of the algorithm if called with

a transaction as parameter like in entry. The

source of liquidity and permission to perform

injections are defined by using the “Liquidity

injections from system” and “Liquidity

injections from participant” fields in PART

data. The injection is performed by generating a

payment. The payments ID starts with I. The

value is set to the amount indicated by the

parameter.

When the algorihm is called with a participant

as parameter like when it is called by

SEBASIC1, if liquidity is sufficient, the

injected liquidity is released and returned back

to the source participant/account by generating

payments. The values are set to be equal with

the parameter value defined in system

definition for the algorithm. The liquidity

repatriation transaction ID starts with J. If

needed the algorithm can generate several

transactions.

Typically liquidity injections can be used

between a main and ancillary payment system.

Percentage

Injects an amount that corresponds to a given

percentage of the credit limit available in the

ancillary system.

If both parameters are not set, the injection

algorithm tries to transfer the exact needed

amount

BOS
Bilateral-

OffSetting
sortBy

Performs bilateral off-setting of waiting queues

in FIFO and priority order (default behavior)

and using available liquidity. The algorithm is

performed after each transaction queue entry

and liquidity change, so caution is needed with

large transaction volumes.

Because of the bilateral processing, the priority

FIFO rule can become bypassed on system

level in bilateral off-setting.

BoF-PSS3 User Manual 52

Type Name Parameters Description

BOS algorithms skip transactions with

linkcodes.

sortBy

The sortBy parameter affects the order of the

queued transactions. It directly affects the order

in which transactions are settled or taken out of

a solution. This parameter can be used to

deviate from FIFO.

BBS
Bilateral

Partial Netting

sortBy

interval (1-60)

interval start time

(hhmmss)

Time Schedules (hhmmss)

Performs partial bilateral net offsetting of

bilaterally queued transactions in FIFO or

selected sortBy order and priority order by

including transactions that can be settled within

the available bilateral limit. The algorithm

removes transactions one-by-one in according

to the sortBy order priority and time order

(starts by removing the most recent submitted

transactions with the lowest priority) for each

participant pair.

The solution must fulfil the bilateral limit

criteria and the overall balance limitations. The

algorithm is performed after each transaction

queue entry, liquidity transfer and overall credit

and bilateral limit change, so caution is needed

with large transaction volumes.

Because of the bilateral processing, the priority

FIFO rule can become bypassed on system

level.

Supports Credit cap limits as well.

sortBy

The sortBy parameter affects the order of the

queued transactions. It directly affects the order

in which transactions are settled or taken out of

a solution. This parameter can be used to

deviate from FIFO.

If none of the parameters interval not time

schedules are given, the algorithm is run when

there is a change in liquidity conditions. In

practice this is when a new transaction is

queued, or liquidity increased on some account.

Interval (in minutes)

Interval defines how often the algorithm is run.

A value of 60 means the algorithm is run every

minute.

interval start time

interval start time defines the time when the

algorithm is run the first time.

Time Schedules

BoF-PSS3 User Manual 53

Type Name Parameters Description

Time Schedules allow the user to define a fixed

time schedule for th running of the algorithms.

This corresponds to a deferred system setup

(DNS).

PNS PartialNetting

sortBy

interval (1-60)

interval start time

(hhmmss)

Time Schedules (hhmmss)

Performs partial net settlement of queued

transactions in FIFO and priority order by

including transactions that can be settled with

available liquidity (the algorithm removes

transactions one-by-one for participants unable

to settle, to see if a partial settlement is

possible).

Supports DVP/PVP settlement with n >=2

linked transactions or trades. The algorithm is

performed after each transaction queue entry,

so caution is needed with large transaction

volumes.

Supports DVP/PVP settlement with n >=2

linked transactions or trades.

sortBy

The sortBy parameter affects the order of the

queued transactions. It directly affects the order

in which transactions are settled or taken out of

a solution. This parameter can be used to

deviate from FIFO.

If none of the parameters interval not time

schedules are given, the algorithm is run when

there is a change in liquidity conditions. In

practice this is when a new transaction is

queued, or liquidity increased on some account.

Interval (in minutes)

Interval defines how often the algorithm is run.

A value of 60 means the algorithm is run every

minute.

interval start time

interval start time defines the time when the

algorithm is run the first time.

Time Schedules

Time Schedules allow the user to define a fixed

time schedule for th running of the algorithms.

This corresponds to a deferred system setup

(DNS).

MNS
MultilateralNe

tting

interval (1-60)

interval start time

(hhmmss)

Time Schedules (hhmmss)

Performs total net settlement of all queued

transactions when sufficient liquidity is

available . This is equivalent to all or nothing

settlement.

If none of the parameters interval not time

schedules are given, the algorithm is run when

BoF-PSS3 User Manual 54

Type Name Parameters Description

there is a change in liquidity conditions. In

practice this is when a new transaction is

queued, or liquidity increased on some account.

Interval (in minutes)

Interval defines how often the algorithm is run.

A value of 60 means the algorithm is run every

minute.

interval start time

interval start time defines the time when the

algorithm is run the first time.

Time Schedules

Time Schedules allow the user to define a fixed

time schedule for th running of the algorithms.

This corresponds to a deferred system setup

(DNS).

BoF-PSS3 User Manual 55

6.2 Example algorithm selection for a pure RTGS or

instant payment system

Real-time Gross Settlement (RTGS) systems process transactions one-by-one

directly when they are introduced. Each transaction is booked, queued or discarded

as defined by the algorithms, set for the system. The release of queued transactions

is determined using various settlement algorithms.

To define a setup that replicatels a pure RTGS or a retail instant payment system,

one should choose only the Entry and the EndOfDay algorithms. The idea is that

payments are settle at entry by the Entry algorithm or not settled at all.

Only those algorithms that are strictly necessary to describe the desired processing

logic should be included in a system definition. Before performing large scale

simulations it is wise to validate the created model by testing the process with

simple examples with only few transactions so that the correct outcome for the input

can be verified from the output.

Note that there is no checking logic in the simulator to assess whether the selected

algorithm combination is rational. The user is responsible for selecting appropriate

algorithms among those applicable for RTGS simulations.

BoF-PSS3 User Manual 56

6.2.1 Example of a DNS or batch systemstems

A pure batch based system does not settle transactions when they are introduced.

All payments are queued first. A batch based system can be defined by adding any

of the PNS, MNS or BBS algorithms e.g. PartialNetting, MultilateralNetting.

Bilateral Partial Netting. The algorithm must support the Time Schedules

parameter.

Under is a picture of a DNS setup with the PartialNetting algorithm.

A batch or DNS based system does not allow settlement of transactions at Entry.

To achieve this and to force all payments to go to queue, the “is entry settlement

enabled” parameter must be set to false. See below:

BoF-PSS3 User Manual 57

To set the times when the batch processing or netting is performed, a time schedule

must be defined for the running of the PartialNetting algorithm. This is done by

editing the parameters of the algorithm. Under is an example of a batch schedule

defining runs for 9, 11 and 13 o’clock.

BoF-PSS3 User Manual 58

6.3 Calculation of bilateral limits

Bilateral limits can be used to describe debit caps, credit caps and similar participant

level bilateral or multilateral restrictions for payment clearing and settlement. Not

all algorithm support bilateral and multilateral limits. Support for bilateral limits

can be checked from the algorithm descriptions. The functioning of these limits is

described below first in bilateral level. Definition of multilateral level is explained

separately at the end.

If a bilateral limit (debit cap) is set from participant A to participant B, the

cumulative net value of payments settled between these participants – called

bilateral balance – must remain within the given limit. The debit cap defines the

smallest allowed value for this bilateral balance. A ‘sending surplus’ (i.e. when A

has sent a greater value of payments to B than it has received) is equivalent to a

negative value of the bilateral balance. Thus a negative limit value defines a

situation, where a higher value of payments is allowed to be sent to a given

participant than is received. The opposite case, a positive bilateral limit, means that

participant A requires that a certain value of payments has arrived from participant

B before it settles any outgoing payments to B.The constraint can be formulated the

following way for any given moment T:

𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑇) = 𝑆𝐵𝐴(𝑇) − 𝑆𝐴𝐵(𝑇) ≥ 𝑑𝑒𝑏𝑖𝑡 𝑐𝑎𝑝(𝑇)

where 𝑆𝑋𝑌(𝑡) denotes the cumulative value of settled payments from participant X

toward participant Y starting from beginning of day until the time t.

A bilateral credit cap defines similarly the upper limit for the bilateral balance

between A and B. Thus if A sets a credit cap against B, the incoming payments

from B to A are blocked if they lead to an increase of A’s bilateral balance over the

given credit cap. The constraint takes the following form:

𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑇) = 𝑆𝐵𝐴(𝑇) − 𝑆𝐴𝐵(𝑇) ≤ 𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑝(𝑇)

The calculation of bilateral balance starts from zero from the beginning of each

simulated day, or from the moment when first bilateral limit is defined to the given

pair of participants. Thus bilateral positions are followed only for those participant

pairs where some constraints are also in place. No balances are transferred to next

day in multiday simulations.

BoF-PSS3 User Manual 59

All bilateral limitsare set within the BLIM input table. The limits do not need to be

symmetric, i.e., limit from A to B does not need to be same as from B to A. Bilateral

limits are only in force for those participant pairs for which they are explicitly

specified. Debit caps are defined by setting a value to the L_NEWVALUE field and

credit caps are defined by setting a value in the L_DBCVALUE field of the BLIM

data table. either one or both values can be set with one row of input data file. In

such simulator projects, which are created with older version than 3.1.0, such debit

and credit cap values, which have same participants and same time label, are

necessary to be imported in one and same row of data file. For more details see

Descriptions of Databases and files.

Specified bilateral limits are valid until the simulation ends or the limit is changed.

Individual bilateral limits can be altered during the day and also completely

removed by placing a special value (0.99) in the input.

If a new value of bilateral limit is defined, which causes the already existing

bilateral balance to be infeasible, the limit change will still take place. The new

limit will block all payments, which would cause the situation to become still worse.

Thus violated debit cap does not prevent inflow of payments even if bilateral

position would remain below the defined limit still after the payment is received.

Similarly violated credit cap position does not prevent outgoing payments.

In addition to bilateral limits, also multilateral intraday limits can be defined in

BLIM table by stating the receiving participant as *MULTILIMIT. This means that

net value of payments sent and received between specified participant/account and

all others has to remain within the given multilimit. Values for multilimit are given

similarly as other bilateral limits i.e. negative value indicates that sending surplus

is allowed. Another way to describe the difference is to note that ICCL data can be

used to define actual liquidity for participants, while BLIM data only defines

limitations for the flow of existing liquidity. Thus such simulation would not be

able to settle any payments regardless of the BLIM values, where only bilateral

limits would be defined but no liquidity would be given with DBAL or ICCL data

or by granting of unlimited credit in the system setup.

The bilateral limits can be applied to one part of the transaction flow. This is carried

out by giving a high priority for those transactions, which need to be settled

regardless of bilateral limits. All transactions that pass the bilateral limit control

have also to pass the general liquidity availability control i.e. general credit limits

may not be violated. High priority transactions, and those which have no bilateral

limits affecting them, are processed normally by the simulator.

BoF-PSS3 User Manual 60

6.4 Algorithms for special cases

This chapter contains descriptions of different sets of algorithms that have been

developed for special cases. Often the settlement convention in question requires a

special set of algorithms to be selected, and these algorithms will probably not

function as intended in other combinations. A given set of algorithms need to be

used as described and if used in other combination great caution is needed.

Following special algorithm sets are described here:

- receipt-reactive RTGS in chapter 6.4.1

- DVP linking of multiple transactions i.e. Group code algorithms in chapter

Error! Reference source not found.

6.4.1 Receipt-reactive RTGS

The general idea of the receipt-reactive RTGS convention is that the participants

can divert some part of the outgoing payment flow to a secondary queue. Using a

predetermined time period (e.g. one minute, one hour) to cumulate the amount of

incoming funds, this secondary queue releases payments whose amounts aggregate

up to, but do not exceed, this total amount of incoming funds. Figure 1 contains a

visual presentation of the dynamics in the receipt reactive model for two time

periods.

This settlement convention is a type of liquidity management convention that

functions independently from a participant’s total liquidity balance. The secondary

receipt-reactive queue complements the higher priority RTGS payment flow so that

a participant’s total liquidity balance never goes down under the starting balance

because of the receipt-reactive queue’s handling of its lower priority payments.

The receipt reactive model requires a set of three algorithms: Entry algorithm,

settlement algorithm and queue release algorithm for secondary queues

ReceiptReactiveQueueRelease. A time period parameter is introduced in the first

of the user-defined fields in the participant table (PART). This predetermines the

amount of time during which incoming funds will be cumulated for the purpose of

allowing payment release from the receipt-reactive queue. Note that there need to

be a time period value for each participant using this feature. If this value is zero

or there is no period value given, transactions for such participant stay in the

secondary queue until it is closed.

The processing steps in the receipt reactive model can be described as follows

- in the entry phase the transactions can be divided into three streams:

BoF-PSS3 User Manual 61

- immediately forced settlement of payments with highly urgent priority

(i.e. settled even if these violate all limits),

- normal transactions for RTGS processing including the normal primary

queue and

- low priority payments for the secondary queue during the open hours of

the secondary queue

- in the settlement phase all normal RTGS algorithms can be called and in

addition a QU2 algorithm for releasing transactions from the secondary

queue

- in the queue release phase of the secondary queue the transactions which fit

the positive net balance of that given period will be settled in priority and

FIFO order,. The period in minutes can be defined separately for each

participant. At the end of the period the remaining transactions in the

secondary queue of that period can be moved up to the RTGS queue with

their original priority or by giving them a new uniform priority or

alternatively they can be discarded.

The Entry algorithm takes four parameters:

- priority threshold to use secondary queue (0-9), which defines the value of

priority required for entering the normal RTGS process. Transactions with

a lower priority than the limit value are placed into the secondary queue.

- Priority (0-9) defines the minimum value of priority for highly urgent

payments. Transactions with equal or higher priority are settled immediately

even if they would violate any limit.

- Open (hhmmss) defines when the secondary queue is opened. All

transactions entered before this point in time are treated as normal RTGS

transactions.

- Close (hhmmss) defines when the secondary queue is closed. All

transactions entered after this point in time are treated as normal RTGS

transactions.

The QU2 queue releasing algorithm, QURRFIPR, releases transactions from the

secondary queue based on the period information provided in the P_USERCOD1

field of the PART table and it employs the following parameters:

- EOD (“gross” or “return”), which defines if unsettled secondary queue

transactions are moved to the RTGS queue – the “gross” case – or if

unsettled transactions are discarded i.e. returned to sender – the “return”

case.

- NewPriority (0:9) is optional. It defines the value of priority given to the

transactions moved via “gross” to the normal RTGS queue. If the parameter

has not any value, transactions are moved with their original priorities.

BoF-PSS3 User Manual 62

The period parameter in the PART-table has an important function as it defines how

the open hours of the secondary queue can be divided into sub-periods. The format

for this parameter is hh:mm, for example 01:30. If incorrect format is used, period

of 60 minutes is assumed and an error message is shown in the console. Within each

sub-period the net received balance starts from zero and is calculated such that

outgoing payments released by the secondary receipt-reactive queue are netted

against all incoming payments. This net received balance must always be greater

than or equal to zero. Payments sent via the normal RTGS process by certain

participant do not affect the processing of payments in the secondary queue of this

particular participant: only amount of funds received and payments sent from the

secondary queue are relevant. For example if the period is defined to be 30 minutes,

a participant can settle as many secondary queue transactions in FIFO order up to

the aggregate amount of surplus received during the given 30 minute interval. This

is not an end-of-period settlement, but payments can be released from the receipt-

reactive queue all time during the period so long as the net received balance is non-

negative. After the end of the period in our example 30 minutes, the net received

balance is set to zero and the process begins again.

When the secondary queue closes by the end of the period, the EOD process will

determine how unsettled transactions are treated. When value of EOD parameter is

“gross”, the transactions from secondary queue are moved to primary queue with

the NewPriority value and parameter value “return” will discard the transactions.

For example if OPEN is defined as 10:15:00, CLOSE as 15:30:00 and the period as

30 minutes, the receipt-reactive calculation periods will be 10:15-10:44:59,

10:45:00-11:14:59,…,15:15:00-15:30:00.

BoF-PSS3 User Manual 63

Figure 1 Dynamics of participant balance under receipt-reactive settlement

6.5 System event handler algorithms (SEH)

This is a special type of algorithms that are used to adjust the basic rules of a

simulated system. Rules here mean the way a system reacts to specific events

occurring during a simulation. Each payment system can have its own set of rules

according to which it reacts to different events occurring in a settlement process.

The events recognized by the simulator’s default event handler are the following:

- Introduction of a new transaction

- Bilateral limit change

- Intraday Credit limit change

- Receipt reactive period start

- Receipt reactive period end

- Reaching the from time of a payment (PROCTYPE)

- Expiry of till time (PROCTYP2)

-End of day

The event handler contains also some common routines like the booking routine.

Thus it contains the logics that follow “booking events”.

Time

Balance

bank i’s

balance

Receipt of

Payment

Release of queued

payment messages

RTGS payments

made by bank i

Receipt of

payment

Release of queued

payment messages

Open ClosePeriod 1 Period 2
Time

Balance

bank i’s

balance

Receipt of

Payment

Release of queued

payment messages

RTGS payments

made by bank i

Receipt of

payment

Release of queued

payment messages

Open ClosePeriod 1 Period 2

BoF-PSS3 User Manual 64

The I algorithm is optional and if one is defined it will override the default

behaviour.

Algorithms may also introduce new types of events, which will require new

processing logics which can be introduced using I algorithms.

6.6 Time estimation algorithms (TEA)

Time estimation algorithms are used to estimate the time, a specific process or

algorithm would have used in the real world. To do so, the time estimation

algorithms can use variables such as the amount of transactions, amount of

iterations, used CPU time and lot of other possible variables related to a specific

process for which time estimation is required.

The variables and parameters according to which a TEA –algorithm can calculate

a time estimate will only depend on the properties and the implementation of the

algorithm. Also the calling parent algorithm must be able to provide the required

dynamic parameters to the TEA-algorithm. The parameters used to estimate time

usage are the following:

• Dynamic parameters are the parameters the parent algorithm will provide to

the TEA-algorithm. Dynamic parameter values are defined during

simulation runs.

• Fixed parameters are defined in the system definition before the simulation,

and they are coefficients of the estimation function.

To be able to attach a time estimation algorithm to a parent algorithm, all the

dynamic parameters of the TEA-algorithm must be supported by the parent

algorithm. The parent algorithm can support more dynamic parameters than the

TEA-algorithm.

The following time estimation algorithmis are provided:

Type Name Parameters Description

TEA TEALGO1

Dynamic parameters:

x = transaction

count in the parent

algorithm

y = account

(participant) count in

Time estimation function:

b1 (a0 + a1 x + a2 y + a3 z + a4 x2 +

a5 y2 + a6 z2 + a7 x y + a8 y z + a9 x z)

BoF-PSS3 User Manual 65

Type Name Parameters Description

the parent algorithm

(e.g. in netting

solution)

z = actually used CPU

time in milliseconds

(varies, set relevant

coefficients as 0 for

environment

independent results)

Fixed parameters:

a9, a8, a7, a6, a5, a4,

a3, a2, a1, a0, b1

New TEA algorithms can be introduced as user modules similarly as any other

algorithms.

6.7 Agent based modelling (ABM) algorithms

Note!

The GUI of the Beta version of PSS3 does not support importing or definening

ABM simulations well. Users would need to define setups directly into the DB.

Even then the functioning is only partly tested with promising results though.

The ABM algorithms contain proactive decision making rules for actors or agents

included in a simulation. Their main function is to incorporate behavioural rules for

entities involved in the simulations.

We understand ABM as a computer modelling or simulation technique in which we

replicate algorithmically the behaviour of some actors and allow them to interact in

computer simulations as independent agents. ABM is essentially a computer

simulation modelling technique which affects the architecture and structuring of the

simulation software and code allowing AI logics to interact in the simulation world.

ABM’s can be seen as micromodels in which macro level inference is made out of

the outcome of micro agent’s interactions. The fact that ABMs are implemented at

microlevel, ABMs are also likely to bring in more realism.

For more on Agent based modelling in general, please refer to other sources, there

are many of them. As a hint be carefull with the sources related to economics and

favour articles of som other fields. It seems that in some economic papers ABM is

slightly misunderstood to simply mean the incorporation of behavioural rules into

https://en.wikipedia.org/wiki/Agent-based_model#targetText=An%20agent%2Dbased%20model%20(ABM,the%20system%20as%20a%20whole.

BoF-PSS3 User Manual 66

traditional economic analytical models. The application of ABM into economics is

still at its dawn.

6.7.1 Basic functioning

With the ABM configuration file, accounts are associated with a specific bank logic

(or agent implementation). These agent logics, in programming terms, extend a

class called Bank which contains some basic implementations of some basic

features. The available basic implementations are called CautiousBank and

CustomerDiscriminatingBank in addition to the ExampleBank. Human readable code for

all of these can be found in the modules directory and it includes extensive

comments that explains the functioning and the structure. Studying the code is

highly recommended before using the ABM algorithms.

When an agent implementation is configured and connected to an account in a

simulation, this is done by giving the agent implementation full control of the

payments where this account is the sender. The payments are no longer submitted

to the simulations’ payment system directly but instead they are moved into a

separate transaction queue owned and handled by the ABM agent implementation.

The agent implementation can decide whether and when to send payments to the

payment system just like in the real world and also create new events or transactions

in the simulation based on the triggers in the data and status of the simulation. How

complex the AI inside the agent is depends on the algorithm implementation.

6.7.2 When and how are agents activated?

Agents are activated with agent wakeup events. These wake up events are stored in

the simulations basic event queue with all other events like introduction of (non

ABM) transactions, credit limit change, end of day etc. Wakeup events are used in

different situations as described below.

When the agents are activated, they can schedule and create wake up events for

themselves for any future time. If the agent is aware of the account of another agent,

it is able to schedule a wake up event also to another agent. The bank interface

includes methods for placing the created wakeup events to the systems event queue.

BoF-PSS3 User Manual 67

6.7.2.1 Simulation initialisation

When the transactions of an account with agent code are separated into the agents

own queue, a wakeup event is generated for each transaction to the simulation’s

general event queue. These wakeups include a reference to the related transaction

and have the same time label as the given transaction.

In the initialization in the beginning of the simulation, the possibility to create new

events can be used to establish fixed times known in advance when the agent needs

to be active.

6.7.2.2 Processing of a wake up event

A wake up event triggers a call of the agent instance, which is related to that given

event and allows it to perform actions or decisions based on the situation in the

simulation. The processing of the wake up event can be separated based on system

event types. Default options available for the ABM related event types include

AGENT_WAKEUP, AGENT_ALERT_END_OF_DAY,

AGENT_END_OF_DAY and AGENT_TRANSCATION_HAS_SETTLED.

Users can define also own event types if needed. These should not overlap with the

values already defined in the SystemEvent class.

If the wake up event is related to a transaction, this is the moment when the

transaction was originally send to the settlement system in production. The agent

can decide what action it performs on the given transaction. Note however, that

ABM code can decide to submit transactions which are mandated to it also during

any other wake up call. Thus transactions can be submitted later or earlier than what

was their original submission time in the input data. For transaction submission see

ch 6.7.2.3.

Agents can also schedule them selves new wakeup events. The agent can create a

wake up event for itself with method addToQueue e.g.:

SystemEvent event = createWakeupEvent(long currentSimulationDate, long time);
addToQueue(event);

6.7.2.3 Sending a payment for settlement

When an agent is activated it can decide to send payments for settlement. For this

purpose 3 methods are available:

sendPaymentForSettlement(transaction)

BoF-PSS3 User Manual 68

This method removes the transaction from the agents own queue and puts it on the

top of the simulations submission queue from where the transaction will be sent to

the payment system. The system sets the submission time of the transaction to be

equal to the current simulation time. If there is a linked wakeup event for that

transaction, it is removed from the simulations event queue.

sendPaymentForSettlement(transaction, boolean)

Other wise same as above with the exception that by setting the Boolean parameter

to false, the method will leave a possible linked weakup event in the simulation’s

event queue.

sendPaymentsForSettlement(SystemEvent, String)

This method is used when the agent wants to send all the rest of it’s payments from

its local transaction queue for settlement. A typical time to invoke this method

would be when the agent receives the SystemEvent.AGENT_ALERT_END_OF_DAY or

SystemEvent.AGENT_END_OF_DAY system event. The SystemEvent parameter is only

used for logging purposes.The String parameter defines the submission origin of

the payment that is stored in TEST statistics.

6.7.2.4 Transaction booking

When transactions are booked and a SCM (Settlement Confirmation Messenger)

algorithm is defined in the system setup, agent wakeup calls will be added to the

simulation’s event queue according to the algorithmic rules of the selected SCM

algorithm.

The basic implementation, called SECOMSGR, will add agent wake up events to

the simulations’s event queue for both the credit and debit accounts of each settled

transaction in case both credit and debit accounts have a agent configured. The wake

up calls are scheduled for the settlement time of the settled transaction.

The bank agent will receive the settlement wake up events in it’s process method’s

switch case structure hooked for system event type

SystemEvent.AGENT_TRANSACTION_HAS_SETTLED.

See the example ABM code in the annex.

6.7.2.5 End of day calls

Separate wake up event is sent to the agents when the simulated day ends. In

addition the bank agent can invoke a system event to it self as an alert when the

BoF-PSS3 User Manual 69

business day is about to end. The timing of these is controlled by system definition

and the agent parameter values.

It is noted that as a default, the simulated days are treated completely separately in

the ABM thus an agent cannot send a system event to some other business day.

If the agent needs to pass on any information from one day to another, then the user

must implement this transfer e.g. via file and make sure that the simulation is

executed in a sequential mode for the simulated days.

6.7.3 Account management AI algorithms

Below is listed the parameters of CautiousBank and CustomerDiscriminatingBank

agents:

Name Parameters Description

CautiousBank

alertsSecondsBeforeEndOfDayEvent

: in seconds

onPercentage:

decimal

offPercentage:

decimal

delayTypes: list of transaction types

separated with a blank

logEvents:

true or false

Agent switches from

normal state to cautious

if the balance falls below

“onPercentage”

parameter value. There is

possibility to define

hysteresis, where

returning to normal

requires higher balance

(offPercentage) than the

triggering of cautious

mode.

When the agent is

cautious, transaction

classes listed in the

“delayTypes” parameter

are postponed and not

submitted to the system

until the agent returns to

normal state. Postponed

transactions are stored in

a separate internal queue,

which has priority FIFO

order.

When the end of day

approaches

(alertSeconds…) and

when it arrives all

payments from the

internal queue are

submitted.

BoF-PSS3 User Manual 70

Name Parameters Description

CustomerDiscrimin

atingBank

latestTimeToPostponePayments:

in microseconds

alertsSecondsBeforeEndOfDayEvent:

in seconds

delayMaxNormal:

in microseconds

delayMinNormal:

in microseconds

liqLowNormal:

decimal number

liqHighNormal:

decimal number

priorityThresholdUrgent:

urgency values like 1 to 9 depending on

the data used

delayMaxUrgent:

in microseconds

delayMinUrgent:

in microseconds

liqLowUrgent:

in microseconds

liqHighUrgent:

decimal number

priorityThresholdHighlyUrgent:

decimal number

delayMaxHighlyUrgent:

in microseconds

delayMinHighlyUrgent:

in microseconds

liqLowHighlyUrgent:

decimal number

liqHighHighlyUrgent:

decimal number

defaultDelay:

in microseconds

createWakeUpEventsOnMaxDelay:

true, false

logEvents:

true, false;

The agent represents

direct participant which

may postpone the pass

through of payments

coming from its indirect

counterparties.

These payments are

identified based on

Usercode_1 field. It

should contain a value

where the first 8

characters differ from the

direct participants ID for

a payment to become

delayed. This serves as a

proxy for implying the

behaviour only on a

counterparties which are

not in the same banking

group.

Minimum and maximum

delay can be defined

separately for payments

above different priority

thresholds. Also the

liquidity levels, which

trigger delaying are

defined separately for

different priority groups.

The delay is varied

between the extreme

values in inverse linear

manner based on the

liquidity position of the

account.

MSC:

SettlementConfirm

ationMessenger

Is activated when a settlement

system books a transaction.

Agent wake up calls are

added to the simulation’s

event queue for the debit and

credit accounts of all

transactions settled through

the booking process.

The algorithm can be

modified to trigger other sorts

of reactions.

The name of the algorithms in the ABM simulation configuration file relect the

actual Java implementation class names. The above parameter names are defined

BoF-PSS3 User Manual 71

and used inside the ABM algorithms. Users can modify the set of parameters

available in a given ABM algorithm by introducing new parameters or discarding

the ones which are unnecessary for their implementation.

The configuration file used to set up ABM simulations follow the syntax presented

in the ANNEX 2. The property file allows the user to define which ABM algorithms

are in use by which participant and with which parameters.

With the property file tag agents= it is possible to declare which ABM algorithms

are in use. The syntax is the following for declaring the algorithms i.e. your ABM

agent modules.

In below example seting we’ll setup the CautiousBank and

CustomerDiscriminatingBank algorithms:

agents=CautiousBank;CustomerDiscriminatingBank

The semicolon is used to separate the algorithms.

To declare common global parameters for participants using the same ABM logics

the following syntax is used:

[agent class name]Settings= \

[parameter 1]=[parameter value]; \
[parameter 2]=[parameter value]; \
…
[parameter 3]=[parameter value];

Here the first row indicates for wich ABM algorithm the common parameters are

defined.

Please notice that the characters \ at end of a line means that the line is continuing

to the next line.

Example of an algorithm specific setting:

CautiousBankSettings= \

alertsSecondsBeforeEndOfDayEvent=1800; \

onPercentage=0.2; \

offPercentage=0.4; \

delayTypes=1.1 1.2; \

logEvents=true;

To associate participants to use a specific ABM logic, the following syntax is used:

ABMclassfilenamexParticipants= \

[system id]-[participant id]-[account id]; \

[system id]-[participant id]-[account id]

The system id is defined in your simulator database part table.

BoF-PSS3 User Manual 72

You can use the below query to help finding out the your system-participat-account

candidates you can use as values in above setting.

SELECT DISTINCT

 CONCAT(t1.system_id,

 CONCAT('-' ,

 CONCAT(t1.from_particid,

 CONCAT('-' , t1.from_accounid))))

FROM tran_view_all t1;

Below is an example of a algorithm specific participants setting:

CautiousBankParticipants= \

1-NDEAFIHH-NDEAFIHH00000000000000001; \

1-DABAFIHH-DABAFIHH00000000000000001;

Participant specific agent paramaters are defined by first declaring the algorithm

and account identifiers and then after the paramaters on their own rows in the

following way:

ABMclassfilenamexSystemID-participant-id-account_id= \

parametername1= wanted value; \

…

6.7.4 ABM Object model

In below diagram the ExampleBank class is an implementation of a bank agent which

you can use as a refenrence as you start to create your own ABM bank agent

implementation.

ABM bank agent implementations are created as java classes that extend the Bank

class which in turn implements the BankAgent interface.

BoF-PSS3 User Manual 73

Please notice that all the other classes are existing simulator classes . Atleast in

simple ABM implementations all the logic can be written to the new Bank child

class. The methods listed for the Bank class are intended to be used when the derived

bank agent class needs to communicate with the simulator’s settlement process.

The sendPayment[s]ForSettlement methods are used as the agent decides to release

one or more transactions from its own queue of transactions.

The addToQueue(SystemEvent) method enables the agent to send a system event to

simulator’s event queue to be invoked at given time of business day.

You can create wake up system events with the createWakeupEvent and

createEndOfDayAlertEvent methods.

For more details see the ExampleBank implementation in annex.

6.8 User module interface

Disclamer!

The PSS3 Beta version GUI does not support importing of user modules. It is

possible to define user modules by entering appropriate information into the

database directly.

Adding user modules gives you the possibility to create your own settlement

algorithms and processing conventions. See User module development guide for

BoF-PSS3 User Manual 74

details. The easiest way to develop user modules is by copying relevant parts from

an existing algorithm and inserting the desired modifications.

6.8.1 Adding a user module

Before you can add a user module to the simulator, you first have to compile it from

the Java code file (.java) with a Java compiler to a class file (.class). You can

accomplish this with Sun’s javac. The simulator’s main JAR-file BoF-PSS2.jar

must be in included class path while compiling.

On the User module definition screen:

1. Type in the name of the user module (max. 8 characters).

2. Click the Browse button and select the Java class file of the module.

3. Select a user module type from the drop-down list.

4. Select the system types this algorithm is available for (RTGS, CNS, DNS).

5. If the module can accept parameters in the system data definition stage, you

have to define the parameter names and types. Type in the name of the in the

edit box, and select a checking rule from the drop-down list. Add the parameter

and the checking rule for the user module by pressing the Add parameter

button. Repeat the procedure for each parameter required.

 If you want to delete a parameter from the user module, select it from the

table and click the Delete parameter button.

6. Click the Save definition button. The algorithm should now be selectable in the

system data definition screen.

7 Data content and databases

7.1 File directory structure

The simulator has a file directory structure that is partly built by the setup program

and partly by the application based on users’ project specifications.

The setup program creates the following directories:

– MODULES (contains built-in modules’ / algorithms’ code files),

– PROGRAM (contains sub-directory JDK for Java Run Environment, necessary

script files and the simulator simulator-api.war file),

– USERMODULES (for user defined modules), and

BoF-PSS3 User Manual 75

– EXAMPLES (The file ex#_description.txt contains information about the

specific simulation example).

The application creates the directory pss2_systemdb (for the system database)

when the first project is defined. It also creates a directory in the BoF-PSS directory

for each project using its name preceded by “P_“ and the following sub-directories:

– ERRORLIST (for error lists)

– INPUT (for input files)

– OUTPUT (for output files)

– OUTPUT_REPORTS (for output reports)

– NETWORKS (for generated networks)

– NETWORK_REPORTS (for network analysis results)

– TEMP for temporary storage (all files in TEMP can be destroyed when the

simulator is not in use)

If you are going to make a large number of simulations analysing different aspects,

it can be good to organise them in separate projects

Here is an example of a directory structure:
C:\BoF-PSS\EXAMPLES
C:\BoF-PSS\EXAMPLES\DECIMAL_POINT
C:\BoF-PSS\PROGRAM
C:\BoF-PSS\PROGRAM\filters
C:\BoF-PSS\PROGRAM\JDK
C:\BoF-PSS\PROGRAM\log
C:\BoF-PSS\P_proj1\ERRORLIST
C:\BoF-PSS\P_proj1\INPUT
C:\BoF-PSS\P_proj1\NETWORKS
C:\BoF-PSS\P_proj1\NETWORK_REPORTS
C:\BoF-PSS\P_proj1\OUTPUT
C:\BoF-PSS\P_proj1\OUTPUT_REPORTS

7.2 Database files and locations

There are 2 types of databases: one system database and project specific databases.

The simulator has a common system database, which is created during the first

session with the program. With some database versions the database files have to

be saved into the database’s data folder. For MariaDB versions the simulator

doesn’t allow the user to define freely the saving location. Otherwise, the program

creates the directory pss2_systemdb in the installation directory. Project databases

are created automatically for each project defined by the user.

C:\BoF-PSS is the default directory for the simulator, see Figure 2.

BoF-PSS3 User Manual 76

Figure 2.

The simulator uses the MyISAM storage engine. With this setup, each database has

three separate files for each database table. They are:

– data dictionary information (.FRM files)

– index information (.MYI files), and

– data files (.MYD files).

MariaDB 10 stores all databases into the same data folder which is [database

installation folder]\data folder of the database engine.

The name of the project directory by default is identical with the project name with

P_ prefix.

7.3 Data sets

One input database can store many data sets for each type of input data. The

different data sets are stored in the same physical database table and are

distinguished by their data set ID. The user defines the data set ID separately for

each data table; it has no internal database relation with any other data set ID of

other database tables.

In the simulation execution phase, the user defines which specific data sets are to

be used in a specific simulation as described in the Figure 3. These are cross-

checked to see that the information is coherent, e.g. all accounts or participants can

be found for the transactions, and all systems are specified the account or participant

to which the transaction data refer.

To manage a large number of parallel data sets, a consistent naming convention is

a good idea.

BoF-PSS3 User Manual 77

Figure 3.

7.4 About MariaDB

MariaDB is a popular and efficient open source database product with good

documentation and a good reputation. Information about MariaDB can be found on

website https://mariadb.org. An online reference manual is available and it can also

be downloaded from the site. Advanced simulator users can make their own

database retrieval procedures directly to the databases as SQL queries. Also Java

and C++ connectors are available, as well as a general ODBC connector that can be

used with e.g. MS Access or Visual Basic.

There are free and easy to use tools available with graphical user interface for

browsing and monitoring the database structure and viewing data contents of the

tables with simple queries. These tools can also be used to make small manual

editions or deletions in the database that can be helpful in advanced use of the

simulator. Examples of such operations include deletions of unnecessary templates,

user modules or projects. Because user friendly tools are available for this, no

special user interfaces have been included in the simulator.

Below two practical tools for direct use of database are presented: HeidiSQL

database browser (7.4.1) and MyODBC (7.4.2). Under separate topic (7.4.3) there

are instructions how these tools can be utilized.

7.4.1 HeidiSQL database browser

HeidiSQL database browser is a free visual tool, which can be used to browse the

structure of a database and its data contents, and build and execute SQL queries.

https://mariadb.org/

BoF-PSS3 User Manual 78

Queries can also be generated graphically and contents of the databases can be

modified manually if necessary.

Video tutorials are recommended as a quick start reference. For example the Edit

queries –tutorial shows how to make manual changes in table contents, which can

be necessary as simulator database maintenance work. Instructions for these are

given in chapter 7.4.3.

The first time HeidiSQL is used you need to identify the database you are

connecting to:

 In the start-up window of database Browser, use

o “localhost” as server host value

o 3306 as port value

o “root” as user name

o Or other settings according your own hardware setup (contact

your local IT personnel if proposed settings don’t work)

Database browser can be used to build and execute SQL queries e.g. to export data

from simulator databases into files. Below some example queries are given.

Exporting database tables are executed by the SELECT INTO OUTFILE

command.

For example, to export a database table to a CSV file:

 SELECT * INTO OUTFILE ‘c/temp/partfile.csv’ FIELDS TERMINATED

BY ‘;’ FROM PART WHERE P_DATSETID=’ds1’;

Similarly, a query can be built in database Browser and the result set can be

exported with menu functions after right clicking the result set.

7.4.2 ODBC interface

ODBC is a standard interface, which enables connections to a database from an

analysis software working on Microsoft Windows platform and using large data

sets. Examples of applications that can be connected are Access, Excel and SAS.

After installing an ODBC driver for MariaDB, new data sources are defined from

Windows control panel / Administrative tools / Data sources. Own data source

name needs to be defined for each database, which is to be accessed from the third

party software.

BoF-PSS3 User Manual 79

https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-

parameters,

7.4.3 Direct modifications of simulator database

All features that a simulator user might want to have are not included in the

simulators graphical user interface. Some of these tasks can be performed by

directly accessing the database. These are mainly deletions of instances that can be

created in the simulator but not removed if they turn out to be useless such as user

modules or import templates. Below are listed some possible maintenance tasks and

how to perform them with database browser tool.

Caution is always needed when direct modifications are made in the database.

Backup copies and use of graphical tool, such as database browser, which shows

visually the changes and allows undoing are recommended.

Task How to do in Query Browser Notes

Delete unused

import or output

templates

- Open system database and

TEMP table

- Click “edit” from bottom

toolbar

- Right click the row with the

template to be deleted. First

column contains the template

names.

- Select “delete row” from the

menu

- Click “Apply changes” from

bottom toolbar

Example of Query

browser view is shown

below.

Table contains also the

built in ALL- and

EMPTY-templates

Delete user

modules

- Open system db and ALDE

table

- Select and delete the line with

name of the unused module in

the first column as was

explained above.

User modules are in the

end of the table. Don’t

delete the references to

built in algorithms.

Delete an

unnecessary

project

- Open System database and

PROJ table.

- Select and delete the line with

name of the unnecessary project

Do not delete project that

was active when simulator

was last time running.

If this is done,

SD_PROJEID field in

https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-parameters
https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-parameters

BoF-PSS3 User Manual 80

in the first column as was

explained above.

-The project folder has to be

deleted manually.

DEFA-table of system

database has to be also

manually altered before

simulator can start again.

8 Description of database tables

The simulator uses to types of databases. A simulator installation has one system

database and one separate project database for each project. All the database tables

are listed under with descriptions of all of their fields. The first column indicates

the variable name of the field. The second column indicates the type of field. The

third column indicates whether the field is a foreign (F) key, a primary (P) key or

just a key (K). The fourth column gives the detailed name of the field. The fifth

column describes the field. The last column indicates if the data is optional (O) or

mandatory (M).

As the database has been heavily rationalised for the version 800, there are a lot of

changes compared to old database tables. To help old and new users, views have

been created to combine information that used to be in one table before. An example

is the test_view_all that combines information form TRAN,

tran_generated_by_simulation and the result table TEST. Prio to version 800, the

test table used to have all the same information as the TRAN table as duplicate.

Now same information is not any more copied to output tables, but they need to be

combined in the SQL-queries. The new view tables named like xxx_view_all do

that.

Another example is the account and participant data. Basic participant and account

information is not anymore duplicated to all tables but is stores only to the PART

table. Other tables refer to account information only with technical id’s anymore.

8.1 System database

8.1.1 Defaults [DEFA]

Contains default information for projects.

Field name Data type Key Description
SD_DEFAUID CHAR(1) P Value = 1, just to introduce the mandatory key. M

SD_PROJEID CHAR(8) Current project ID. M

SD_SEPARAT CHAR(1) Separator used between data fields in CSV files. M

SD_DECIMAL CHAR(1) Decimal point format. M

BoF-PSS3 User Manual 81

SD_TIMEFOR CHAR(15) Time format. M

SD_DATEFOR CHAR(10) Date format. M

SD_TRAVALU CHAR(5) +/-HH:MM value to change input time

8.1.2 Project [PROJ]

Contains data of all projects.

Field name Data type Key Description

id INT P Primary id M

SP_PROJEID CHAR(30) P Identifier for the project. M

SP_DATABAS

E

VARCHAR(255) Directory of the project’s database. M

SP_ICSVDIR VARCHAR(255) Directory for input file. M

SP_OCSVDIR VARCHAR(255) Directory for output file. M

SP_ERRORDIR VARCHAR(255) Directory for error list. M

SP_OREPDIR VARCHAR(255) Directory for output reports. M

SP_NETDIR VARCHAR(255 Default location for created networks M

SP_NETREPOR

TS

VARCHAR(255 Default location for generated network reports M

created TIMESTAMP

modified TIMESTAMP

8.1.3 Algorithm definition [ALDE]

Contains information of user modules and algorithms.

Field name Data type Key Description

SA_ALGORID CHAR(8) P Unique identifier of the algorithm. M

SA_MODFILE VARCHAR(255) Name of module file. M

SA_MODTYPE CHAR(3) Type of module. M

SA_PARAMET TEXT Enumerated list of parameters and checking rules used by

algorithm.

O

SA_SYSCODE TINYINT(4) Describes in which system the algorithm is available.

Values are additive 8=RTGS, 4= CNS and 2=DNS e.g.

12 indicates availability in RTGS and CNS systems.

M

8.1.4 Template [TEMP]

Contains template data of input files.

Field name Data type Key Description
ST_TEMPLID CHAR(8) P Unique identifier of the template. M

ST_TABTYPE CHAR(4) P Refers to specific data set table. M

ST_SKPROWB SMALLINT

(3)

 Number of rows to skip in the beginning. O

ST_SKPROWE SMALLINT

(3)

 Number of rows to skip in the end. O

ST_TEMPLAT TEXT Enumerated list of column numbers, which describes

the column structure of the CSV file.

M

BoF-PSS3 User Manual 82

Value in form:

DB-Column1 match column in CSV file, DB-Column2

match column in CSV file ,…

8.1.5 Database version [db_version]

The table contains information on the simulator version by whitch it has been

created.

Field name Data type Key Description
db_name VARCHAR(64) Unique identifier of the project. M

version VARCHAR(4) Unique identifier of acceptable system. M

detected DATETIME Date and time, when the version of the databse has

been identified

8.1.6 Acceptable system Ids [ASID]

Note! Not in use.
Field name Data type Key Description
SY_PROJEID CHAR(8) P Unique identifier of the project. M

SY_SYSIDTB CHAR(8) P Unique identifier of acceptable system. M

8.2 Project’s input data tables

To minimize the size of the database, the storing of duplicate information is

avoided. The information used in results already present in the input data is no

longer copied to the output tables.

In practice participant’s account information is written only once in to the

participant table. Also transactions basic information is only written once in the tran

table. Only new information created during simulations are written during

simulations.

When data is imported, it is anchored to a selected participant dataset. This dataset

acts as a reference dataset. During the import technical id’s are generated to make

the linking of data tables more efficient. More precisely, the technical account

reference is stored to the part_id field of the PART table. All the other input and

output data use this id to reference the account information stored only in to the

PART table. The part_id is not unique and must be referenced together with the

corresponding part dataset id stored either with the part_id in the input tables like

TRAN, ICCL and DBAL or in the SIRI table containing the simulation definitions

for the simulation results. Take note that the the technical autoincrement id of the

PART table is not used for the referencing.

BoF-PSS3 User Manual 83

The dataset table contains also the information on which datasets use the same or

compatible technical account referencing. Compatibility is indicated by the field

account_id_reference_group.

8.2.1 System [system]

Contains information on systems belonging to the project.

Field name Data type Key Description
id INT

Autoincrement

P Technical id of a system M

name TINYINT(3) Unique name of a system M

modified Timestamp Timing of last modification M

8.2.2 Dataset [dataset]

This table contains basic information of all imported and created datasets. This table

also defines which input dataset use the same technical account references and are

compatible from this perspective.

Field name Data type Key Description
id INT

Autoincrement

P Technical id of a dataset. In version 921 not yet used for

referencing

M

system_id TINYINT(3) Reference to id in SYSTEM table M

name VARCHAR(50) K The user defined data set name. In the version 921, this

field is still used for referencing

M

entity VARCHAR(50) Type of the dataset O

account_id_refer

ence_group

TINYINT(4) An Id of a PART table dataset. This field tells which

participant data set the data refers to. This means that the

account id’s used in the dataset are the same as in the here

defined participant dataset. When datasets have the same

account_id_reference_group value, they are compatible

between each other and use the same account id

references. Omitted when the data does not refer to

participant info

O

description VARCHAR(120) Description of dataset. O

created Timestamp Time of creation M

modified Timestamp Timing of last modification M

8.2.3 System setupdataset [SYCD]

Contains system specificationsfor a specific system, for example system ID, name,

type, and open hours. There can be many system datasets for one system.

Field name Data type K Description
id INT

Autoincrement

P Technical id of a system. M

BoF-PSS3 User Manual 84

system_id TINYINT(3) Reference to id in SYSTEM table M

S_DATSETID CHAR(8) K Unique identifier of the data set to distinguish the data set

from other parallel data sets used in simulations.

M

S_FULLNAME VARCHAR(20) Full name of system. O

S_SHORTACR CHAR(5) Short acronym for system. O

S_DESCRIPT VARCHAR(120) Description of system. O

S_SYSTTYPE CHAR(4) Possible system types are RTGS, CNS and DNS. CNS

and DNS systems typically settle their end-of day net-

positions. RTGS systems and sometimes CNS systems

may have intraday liquidity injections from an RTGS

system. The DNS system settles transactions at specified

settlement occasions on a batch net basis, while CNS

systems settle continuously at the transaction level.

This selection only affects the list of algorithms made

available in the GUI for algorithm selection. This does

not affect the simulations it selves…

Possible values:

RTGS

DNS

CNS

M

S_NOCRELIM TINYINT(4) Gives the opportunity to specify that all participants or

accounts in a system have infinite credit limits. Mainly

used for DNS systems, but may also be used for RTGS

and CNS systems to determine maximum liquidity

requirements.

Possible values:

1: Credits according to limit table

2: No Credits available

3: Credits available without limits

O

S_TRANSBAL TINYINT(1) Transfer of end-of-day balance to the next day. Mainly

used in RTGS systems.

Possible values:

0: Balaces are not transferred

1: Balances are transferred

O

S_TRANSTRA TINYINT(4) At the end of the day, there may be unprocessed

transactions in the RTGS and CNS queues. These can be

eliminated or transferred to the next day. In the DNS

system, the choice is to eliminate or transfer unprocessed

transactions to the next settlement occasion.

Possible values:

0: unsettled payments are not transferred

1: unsettled payments are transferred

O

S_OPENTIME INT Defines the time from which transactions will be

submitted to the system in the beginning of the day.

Transactions that have an earlier submission time will

wait until the open time point is reached.

M

S_CLOSETIM INT Transactions with submission times after the closing time

of the system will be submitted at the beginning of the

following day.

M

S_BILIMUSE TINYINT(4) Values:

0 denotes that bilateral llimits are not in use

 1 denotes that bilateral limits are in use

modified TIMESTAMP Last modified time stamp M

BoF-PSS3 User Manual 85

8.2.4 Participant data table [PART]

Contains participant data for a given system. Participants can be distinguished at

two levels. The participant ID can be 11 characters long and can contain, e.g. a

SWIFT BIC address. The account ID can be 34 characters long and can contain an

IBAN. Both fields can also be used for other identifiers, e.g. in securities settlement

systems, the account ID could be the ISIN code. The participant and account IDs

are mandatory.

Field name Data type Key Description

id INT auto

increment

P Primary id identifying uniquely p_datsetid, system_id,

p_particid, p_accounid.

Technical account reference used from other tables to refer

to part table’s accounts. This id is generated during import

automatically. The import facilities can create a part dataset

from other input datasets if an existing part dataset is not

available.

M

part_id INT(10) K Not in use.

Technical account reference used from other tables to refer

to part table’s accounts. 2 part datasets can have the same

references. This id is generated during import

automatically. It is possible to use an existing indexing with

the selection box in the import GUI. The import facilities

can create a part dataset from other input datasets if an

existing part dataset is not available.

system_id TINYINT(3) K Reference to id in SYSTEM table

P_DATSETID CHAR(8) K Unique data set identifier distinguishes this data set from

other parallel data sets used in simulations. This is a

reference to the name field in the dataset table

M

P_PARTICID CHAR(11) Textual identifier for the participant used in the initial

input data.

M

P_ACCOUNID VARCHAR(34) Textual identifier of account in which credits and debits are

made. The value is imported from input data files.

M

P_ACCOTYPE VARCHAR(1) Used to distinguish different types of accounts. O

P_FULLNAME VARCHAR(35) Full name of participant. O

P_SHORTACR CHAR(5) Acronym for full name of participant. The acronym is used

in the run-time view of the simulator, if available.

O

P_ACCONAME CHAR(10) Name of account, e.g. “Euro RTGS account.” O

P_SETINSYS CHAR(8) For DNS or CNS systems, the ID of the system where

proceedings are booked. May also be used in RTGS

systems for transferring end-of-day positions from sub-

systems or accounts to main systems or accounts.

O

P_SETONPAR CHAR(11) For DNS or CNS systems, the ID of the participant to

whom the end-of-day proceedings are booked. May also be

used in RTGS systems for transferring end-of-day positions

from sub-systems or accounts to main systems or accounts.

O

P_SETONACC CHAR(34) For DNS or CNS systems, the ID of the account in which

the end-of-day proceedings are booked. May also be used

in RTGS systems for transferring end-of-day positions from

sub-systems or accounts to main systems or accounts.

O

P_LIQFRSYS CHAR(8) For CNS systems, the ID of the system to and from which

liquidity injections are booked. May also be used in RTGS

systems for transferring liquidity to and from sub-systems

or accounts from and to main systems or accounts.

O

P_LIQFRPAR CHAR(11) For CNS systems, the ID of the participant to and from

which liquidity injections are booked. May also be used in

RTGS systems for transferring liquidity to and from sub-

systems or accounts from and to main systems or accounts.

O

BoF-PSS3 User Manual 86

P_LIQFRACC CHAR(34) For CNS systems, the ID of the account to and from which

liquidity injections are booked. May also be used in RTGS

systems for transferring liquidity to and from sub-systems

or accounts from and to main systems or accounts.

O

P_LIQINJVA DECIMAL

(20,2)

 When specified, the injection value overrides any system-

level value.

O

P_USERCOD1..

.5

VARCHAR(16) Five optional fields where user-defined information can be

stored for use by user-defined algorithms during

simulations or in analysis of simulation output.

O

modified TIMESTAMP Last modified time stamp

8.2.5 Daily balances table [DBAL]

Contains daily opening balances for the participants in the PART table.

Field name Data type Key Description

id INT Auto

increment

P Primary id M

B_DATSETID CHAR(8) K Unique identifier of data set to distinguish this data set from

other parallel data sets used in simulations.

M

SYSTEMID TINYTINT K Reference to id in SYSTEM table M

part _dataset_id CHAR(8) K Reference to the datset id of the correspondgin part dataset

PART_ID INT K Reference to PART table field part_id. To be used

togehther with the part_dataset_id

M

B_DATEEFFE INT K Date opening balance is effective. M

B_NEWVALUE DECIMAL

(20,2)

 Value of opening balance. M

B_USERCOD1

…5

VARCHAR(16) Five optional fields where user-defined information can be

stored for use by user-defined algorithms during

simulations or in analysis of simulation output.

O

modified TIMESTAMP Last modified time stamp

8.2.6 Intraday changes in credit limit [ICCL]

ICCL Intraday credit limits data

Contains information of original values and changes in intraday credit limits for

participants specified in the PART table.

Field name Data type Key Description
id INT(10) P Primary id M

I_DATSETID CHAR(8) K Unique identifier of data set to distinguish this data set from

other parallel data sets used in simulations.

M

system_id TINYINT(3) K Identifier of system. M

part_dataset_id CHAR(8) K Reference to the datset id of the correspondgin part dataset

part_id INT F Reference to PART table field part_id. To be used

togehther with the part_dataset_id

M

I_DATEEFFE INT (11) Date from which new credit limit is effective. O

I_TIMEEFFE BIGINT (20,2) Time from which new credit limit is effective. O

I_NEWVALUE DECIMAL

(20,2)

 Value of new credit limit. M

I_USERCOD1

…5

VARCHAR(16) Five optional fields where user-defined information can be

stored for use by user-defined algorithms during

simulations or in analysis of simulation output.

O

BoF-PSS3 User Manual 87

business_day CHAR(8) Business day to which the limit value belongs to. This

value is used to determine the ICCL events to be included

to the corresponding simulation day having the same

business day.

M

Transaction_link

_id

VARCHAR(30) Id of the transaction linked to this credit limit order.

order_type VARCHAR(10) O

entry_date INTEGER Date when the order becomes visible to the system

entry_time BIGINT(12) Time when the order becomes visible to the system

revocation_date INTEGER Day when the iccl order is revoked

revocation_time BIGINT(12) Time when the iccl order is revoked

id BIGINT(20) Unique identifier of the iccl order. It acts as a link to the

output table.

modified TIMESTAMP Last modified time stamp

8.2.7 Bilateral limit table [BLIM]

Contains information of the original value and changes of bilateral limit values for

given pairs of accounts specified in PART table. BLIM table can also be used to

define multilateral limits i.e. limits for transactions between one participant and all

the others in simulated system.

Field name Data type Key Description

id ITN(10) P Primary id

L_DATSETID CHAR(8) K Unique identifier of data set to distinguish this data set

from other parallel data sets used in simulations.

M

L_system_id CHAR(8) K Reference to id in SYSTEM table. Identifier of the

system this dataset belongs to.

from_part_datas

et_id

CHAR(8) K Reference to the datset id of the correspondgin part

dataset

from_part_id INT(11) F Reference to PART table field part_id. To be used

togehther with the part_dataset_id. Identifier for the

account. This field is mandatory because it is a primary

key, but it has a default value of space character when the

Account ID level is not in use.

M

to_part_dataset_

id

CHAR(8) Reference to the datset id of the correspondgin part

dataset

to_part_id INT(11) F Reference to PART table field part_id. To be used

togehther with the part_dataset_id. Identifier for the

receiving account. To define a multilimit this field is

given value 0.

M

L_DATEEFFE INT(11) Date from which the new credit limit is effective. M

L_TIMEEFFE BIGINT(12) Time from which the new credit limit is effective. M

L_NEWVALU

E

DECIMAL

(20,2)

 Value of the new lower limit for the bilateral balance (or

multilateral balance if counterparty is *MULTILIMIT).

The debit cap will constrain outgoing payments, if

resulting bilateral position would go below the limit.

The value can be positive or negative. A negative value is

the most common case. It indicates that net outflow of

liquidity is allowed while positive value indicates a

request for a reception surplus.

A value of .99 indicates that no limit is in force. It can be

used to remove limits that have been assigned earlier

during the day.

Defining the debit cap will start the recording of bilateral

position if no limits defined in BLIM data were in place

previously for the given pair of participants.

M

BoF-PSS3 User Manual 88

L_DBCVALUE DECIMAL

(20,2)

 Credit cap. Value of the new upper limit for the bilateral

balance (or multilateral balance if counterparty is

*MULTILIMIT). The credit cap will constrain incoming

payments if the resulting bilateral balance would go

above the limit.

The value can be positive or negative. A positive value is

the most common case. It indicates that inflow of

liquidity is allowed while negative value would be a

request for a sending surplus.

A value of .99 indicates that no limit is in force. It can be

used to remove limits that have been assigned earlier

during the day.

Defining the credit cap will start the recording of bilateral

position if no limits defined in BLIM data were in place

previously for the given pair of participants.

In projects, which are created with version 3.1.0 or later

credit cap value can be imported either separately on an

own row of BLIM data or together in a row which also

has value for the debit cap with same time label. In older

database versions, values which have same time label

need to be always imported in one row.

O

L-

USERCOD1…5

VARCHAR(1

6)

 Five optional fields where user-defined information can

be stored for user-defined algorithms.

O

type SET

"DELETE_ALL" leads to the deletion of all limits for the account

in question.
“MULTILIM” indicates the limit is a multilimit value.

"DELETE_LIMIT" refers to the removal of a single limit.

modified TIMESTAMP Last modified time stamp

8.2.8 Reservations table [RSRV]

Reservations are only supported by specific non-public algorithms

Field name Data type Key Description
id INT P Primary id M
R_DATSETID CHAR(8) K Unique identifier of data set to distinguish this

data set from other parallel data sets used in

simulations.

M

system_id TINYINT(3) K Identifier of system. M

part_dataset_id CHAR(8) K Reference to the datset id of the correspondgin

part dataset

part_id CHAR(11) F Reference to PART table field part_id. To be

used togehther with the part_dataset_id.

M

R_DATEEFFE INT(11) Date from which new reservation is effective. M

R_TIMEEFFE BIGINT(12) Time from which new reservation is effective. M

R_NEWVALUE DECIMAL

(20,2)

 Value of the new reservation M

R_RESRVTYP CHAR(1) Type of the new reservation (H= highly urgent,

U=urgent). If both reservation types are changed

at the same time two update records are needed.

Only positive values or zero are accepted.

M

R_USERCOD1…

5

VARCHAR(16) Five optional fields where user-defined

information can be stored for user-defined

algorithms.

O

modified TIMESTAMP Last modified time stamp

BoF-PSS3 User Manual 89

8.2.9 Transaction data table [TRAN]

Contains transactiondata sets. Accounts stored in the PART table are referenced

with technical id’s since version 800. the dataset table contains information on

compatibility between datasets in relation to the technical account ids. Transactions

generated by the simulator are stored in the tran_generated_by_simulation table. To

help usage a view called tran_view_all combines the input transaction information

from the different tables.

Field name Data type Key Description

id INT(10) P Primary id

T_DATSETID CHAR(8) K Unique identifier of data set to distinguish this data set from

other parallel data sets used in simulations.

M

system_id TINYINT F Identifier of the system this dataset belongs to. M

T_TRANSAID CHAR(20) K Unique identifier of transaction. From imported data. M

T_INTRDATE INT(11) K Day of transaction. M

T_INTRTIME BIGINT(12) K Time of transaction. M

T_TRANVALU DECIMAL

(20,2)

 Value of transaction. M

from_part_datas

et_id

CHAR(8) K Reference to the datset id of the correspondgin part dataset

from_part_id INT(11) F Account id from which payment is debited. Reference to

PART table field part_id. To be used togehther with the

part_dataset_id

M

from_part_datas

et_id

CHAR(8) K Reference to the datset id of the correspondgin part dataset

to_part_id INT(11) F Account to which payment is credited. Reference to PART

table field part_id. To be used togehther with the

part_dataset_id

M

T_TRANCLAS VARCHAR(8) Transaction class is used to categorize payments eg.

interbank payments, customer payments,… . This

categorization can be used for variable purposes in specific

algorithms and some parts of the processes. The main

available algorithms do not use this information.

O

T_TRANCLA2 VARCHAR(8) Transaction class 2 is used to categorize the transactions

same way as T_TRANCLAS. For example it can be used to

direct payments to different queues or to be settled by

different algorithms. The main available algorithms do not

use this information.

T_LINKCODE VARCHAR(30) A code used recognize all transaction belonging to a group.

Linkcode can be used to link the different legs of e.g . DVP

or PVP transactions.

O

T_LINKSYST CHAR(8) ID of system in which the other leg of the transaction is

settled.

O

T_LINKTRNN INT(11) Count of the transaction linked by the same

T_LINKCODE. Not used.

O

T_USERDEID VARCHAR

(50)

 User-defined transaction ID that allows transaction to be

compared in internal system runs.

O

T_DESCRIPT VARCHAR(255

)

 Text description of transaction. O

T_ASSENAME VARCHAR(20) Name of transaction asset. O

T_USERCOD1

…5

VARCHAR(16) Five optional fields where user-defined information can be

stored for use by user-defined algorithms during

simulations or in analysis of simulation output.

O

T_PRIORITY TINYINT(4) Value indicating importance of payment from 0-9, with 9

the highest priority. Used to order transactions in payment

queues.

O

BoF-PSS3 User Manual 90

T_PROCTYPE TINYINT(4) Gives the opportunity to introduce various delayed

processing options for transactions at a reference time.

Possible values:

0 – Not defined. Is set to 0 automatically during import if

null or empty.

1 – This transaction is settled exactly at the time described

in T-PROCTIME and T-PROCDATE attributes. (Not in

use)

2 – This transaction is not settled before the time described

in T-PROCTIME and T-PROCDATE attributes.

O

T_PROCDATE INT(11) Day processing takes place as defined in T_PROCTYPE.

Is set to -1(not defined) during the import process if the

T_PROCTYPE is set to 0.

O

T_PROCTIME BIGINT (12) Time processing takes place as defined in T_PROCTYPE.

Is set to -1(not defined) during the import process if the

T_PROCTYPE is set to 0.

O

T_PROCTYP2 TINYINT(4) Gives the opportunity to introduce second set of control

variables to affect the settlement of the transaction. Feature

is not yet in use in general version 3.0.0.

Default value:

0 – Not defined. Is set to 0 automatically during import if

null or empty.

O

T_PROCDAT2 INT(11) Day processing takes place as defined in T-PROCTYPE.

Is set to -1(not defined) during the import process if the

T_PROCTYP2 is set to 0.

O

T_PROCTIM2 BIGINT (12) Time processing takes place as defined in T-PROCTYPE.

Is set to -1(not defined) during the import process if the

T_PROCTYP2 is set to 0.

O

T_ASBIC CHAR(11) Bic code of the ancillary system

business_day CHAR(8) Business day of the transaction. The field content is used to

deduct the business days of a simulation if the selection:

Business day deducted from transaction data is in force.

M

Iccl_link_id VARCHAR(30) Link to the Transaction_link_id of the iccl table. O

modified TIMESTAMP Last modified time stamp

8.2.10 Transactions generated by simulations

[tran_generated_by_simulation]

The content of this table is very similar to the tran table. The content is only

generated by simulations. The table contains all the automatically generated

transactions.

Field name Data type Key Description
id INT(10) P Primary id
… … Same fields as in Tran table… M

t_submorig CHAR (8) Submission origin of the transaction. This means the name

of the algorithm that created the transaction.

M

t_subevent SMALLINT (8) Number of sub-event M

modified TIMESTAMP Last modified time stamp

BoF-PSS3 User Manual 91

8.2.11 Simulation events [business_day_event]

The table is used to store the date and time of business day events. This table has

been available since version 4.0.0. The table is used to define individual sart and

end of day events for each business day. The table can be used to store other similar

timetable material but support for these will be dependent on the algorithms used.

Field name Data type Key Description
id INT(10) P Primary id
data_set_id CHAR(8) k Unique identifier of data set to distinguish this data set from

other parallel data sets used in simulations.

M

system_id TINYINT(3) k Identifier of system. M

business_day CHAR(8) P Business day to which the event belongs to. This value is

used to determine the events to be included to the

corresponding simulation day having the same business

day.

M

event_id SMALLINT(6) P Identifier for the event. The identifier is added during the

import process according to the mapping defined in the

PSS.properties files located within the BOF-PSS2.jar

package. The supported default values for the general part

are the following:

- 0 = start_day=0

- 4 = end_day

Note that the input file must have the readable string value.

The corresponding integer code will be stored to the

database.

name VARCHAR(20) name of the event M

date INT (11) Date when the event takes place M

time BIGINT (20,2) Time when the event takes place M

modified TIMESTAMP Last modified time stamp

8.2.12 System algorithms [SALG]

This table contains the algorithm selected for the different system setups. Also

parameter values of algorithms are stored in this table.

Field name Data type Key Description

A_DATSETID CHAR(8) K, F Same data set ID as in the SYCD table. M

system_id TINYINT K, F Identifier of system. M

A_ALGORIID CHAR(8) K, F Unique identifier of algorithm. M

A_SYALGOID INT K Unique identifier of system algorithm in a system

definition. Defines the order in which algorithms are

displayed on the system definition view’s algorithm table.

M

A_ALGOTYPE CHAR(3) Type of algorithm. M

A_PARVALUE TEXT Enumerated list of parameters values used by algorithm.

Parameters in form:

parameter1?value][parameter2?value2][…[parameterlast?v

alue

O

A_TEALGOID CHAR(8) ID of the time estimation algorithm (TEA) algorithm O

A_TEALGPAR TEXT parameters defined in the system definition for the selected

T–A -algorithm

O

A_PARALPRO TINYINT(4) Optional code for indicating whether the algorithm is

processed in parallel.

O

BoF-PSS3 User Manual 92

Possible values:

0 or empty: not processed in parallel

1: is processed in parallel
A_ALGDEFID INT(11) auto

increment

P, F Unique identifier for algorithm definition M

modified TIMESTAMP Last modified time stamp

8.2.13 Analysis [analysis]

The analysis table is used by the automated stress testing tool to store general

information regarding an analysis. Stores information is name of an analysis and

the benchmark simulation the analysis uses as source data.

Field name Data type Key Description
id INT(10) P Primary id M

sim_id INT(11)) Simulation ID of the simulation setup selected as

benchmark or bases for the analysis. Reference to id in SIRI

table

M

simulation_run_i

d

VARCHAR(50) Name of the benchmark simulation defined by sim_id O

name VARCHAR(50) Name of the analysis M

type SMALLINT(6) Not in use yet

status VARCHAR(20) Not in use yet

description VARCHAR

(250)

 Description of the analysis

iccl_screen SMALLINT(6) Not in use yet

dbal_screen SMALLINT(6) Not in use yet

modified TIMESTAMP Date and time when has been changed the last time

8.2.14 Analysis accounts [analysis_account]

This table serves the automated stress tester and contains the selected accounts for

each analysis.The table is populated when the analysis is saved.

Field name Data type Key Description
analysis_id BIGINT(20) K Unique identifier for an analysis. Key to analysis table M

participant_id VARCHAR(11)

account_id VARCHAR(34) K Account ids present in the benchmark simulation’s

participant data. Key to participant table’s id

M

8.2.15 Failing accounts [failing_account]

Contains all the account id’s that are affected in each scenario run under the

automated stress tester. All the accounts in the table will be affected according to

the account selections made in the stress tester. See the query base used for the

scenario generation for more details. The table is updated when an analysis is saved.

BoF-PSS3 User Manual 93

Field name Data type Key Description
scenario_id BIGINT(20) P Unique identifier for an analysis. Key to scenario table M

account_id VARCHAR(34) P Account ids present in the benchmark simulation’s

participant data. Reference to PART table field

P_ACCOUNID. Used in the query filters of the stress

tester.

M

8.2.16 Scenario data[scenario]

The table is updated when an analysis is saved under the automated stress tester.

Contains scenario specific data generated according to the selected accounts and

treatment rule (all selected/by participant/by account).

Field name Data type Key Description
id BIGINT(20) P Unique identifier for an analysis scenario. M

analysis_id BIGINT(20)) F Analysis ID of the analysis to which the scenario belongs. M

simulation_run_

id

VARCHAR(30) F Simulation id of the scenario M

first_round_effe

ct_number

BIGINT(20)) NOT in USE

first_round_effe

ct_value

Decimal(20,2) NOT in USE

iccl_cutter BIGINT(20) Not in use yet

dbal_cutter BIGINT(20) Not in use yet

modified TIMESTAMP Date and time when has been changed the last time

8.3 Project’s output tables

After each simulation, the result data is stored in dedicated tables.

Output tables contain simulation results and additional technical information such

as simulation logs and batch run information. A unique simulation run identifier

identifies the information belonging to the same simulation run. All tables are

optional, i.e. the user must define the necessary output to be recorded for each

simulation run. Sometimes only a small output sample is is sufficient.

8.3.1 System level statistics [SYLS]

Field name Data type Key Description

id INT(10) P Primary id

sim_id INT(11) F ID of associated simulation

system_id TINYINT(3) F ID of system.

business_day CHAR(8) Date of the Business day(format YYYYMMDD).

Y_SYSTNAME CHAR(20) Name of system.

Y_VALUDATA DECIMAL

(22,2)

 Total value of transactions in day’s transaction data.

BoF-PSS3 User Manual 94

Y_VALUCARR DECIMAL

(22,2)

 Total value of transactions carried over from previous day(s).

Y_VALUSUBM DECIMAL

(22,2)

 Total value of transactions submitted to system by submission

algorithm.

Y_VALUSETT DECIMAL

(22,2)

 Total value of transactions settled by settlement algorithms.

Y_VALUUNST DECIMAL

(22,2)

 Total value of transactions remaining unsettled during the day [Y-

VALUDATA] + {VALUCARR] – [Y-VALUESETT].

Y_NUMBDATA INT(11) Total number of transactions in day’s transaction data.

Y_NUMBCARR INT(11) Total number of transactions carried over from previous day(s).

Y_NUMBSUBM INT(11) Total number of payments submitted to the system by submission

algorithm.

Y_NUMBSETT INT(11) Total number of transactions settled by settlement algorithms.

Y_NUMBUNST INT(11)

 Total number of transactions remaining unsettled during the day [Y-

NUMBDATA] + {NUMBCARR] – [Y-NUMBSETT].

Y_BODBALAN DECIMAL

(22,2)

 The sum of the day’s initial balances of the participants/accounts.

Y_EODBALAN DECIMAL

(22,2)

 The sum of the day’s ending balances of the participants/accounts.

Y_AVGCRLIM DECIMAL

(22,2)

 The time weighted average of the available credit limits of the

participants/accounts at system level.

Y_LIQAVAIL DECIMAL

(22,2)

 The sum of the beginning of day balances and the time weighted

average intraday credit available to the participants/accounts during

the day, i.e. Y_BODBALAN + Y_AVGCRLIM.

Y_ABSCLUSA DECIMAL

(22,2)

 The sum of average overdrafts (negative balances) for the

participants/accounts during the day.

Y_RELCLUSA DECIMAL

(22,2)

 The average overdraft divided by the average credit limit for the

participants/accounts during the day.

Y_TOTLIQAV DECIMAL

(22,2)

 Total liquidity available across all participants during the day.

Y_LOWBOUND DECIMAL

(22,2)

 The sum of net liquidity requirement for the participants/accounts in

the system (see Annex 1).

Y_MAXQUEVA DECIMAL

(22,2)

 Maximum (peak) queue value during the day.

Y_AVEQUEVA DECIMAL

(22,2)

 Average queue value during the day (the average time weighted

value of queue balance).

Y_AVEQUELE BIGINT(20) Average queue duration for queued payments i.e. the sum of

queuing time of queued payments divided by the total number of

queued payments. Directly settled payments are not taken into

account. With the system setup “Delete unsettled transactions

(exclude from statistics), Unsettled transactions are not included in

the average.

 (format hhhhmmss000, where 000 denotes milliseconds).

Y_QUENUMBE INT(11) Number of queued transactions per day.

Y_QUETOTVA DECIMAL

(22,2)

 Total value of queued transactions per day.

Y_QUESTTIM BIGINT(20) Total time during the day that outgoing transactions were queued

and the process was blocked due to insufficient liquidity for the

participants i.e. the sum of the individual participant level queue

stop times (format hhhhmmss000 where 000 denotes milliseconds).

If many participants have long queues this value can be longer that

the open hours.

Y_AVERTISE BIGINT(20) Simple average of queuing times of all payments. Note that also

payments that are always settled directly by definition and that

cannot be queued will also affect the average. With the system setup

“Delete unsettled transactions (exclude from statistics), Unsettled

transactions are not included in the average.

 (The database storing and export format is hhhhmmss000, the value

is calculated with hhhmmss precision)

Y_LIQUSAGC DECIMAL

(22,2)

 Liquidity usage indicator based on consumed liquidity i.e.

consumed overdrafts and reserve deposits compared with submitted

volume. Calculation explained in document Annex 1.

BoF-PSS3 User Manual 95

Y_LIQUSAGR DECIMAL

(22,2)

 Liquidity usage indicator based on available liquidity (rigid credit

limits) i.e. total credit limits compared with submitted volumes.

Calculation explained in Annex 1.

Y_SETDELAY DECIMAL

(22,2)

 Indicator of settlement delay i.e. actual delay compared to theoretic

maximum delay at end of day. Calculation explained in Annex 1.

Y_SETTINGS TEXT Reserved for future needs.

Y_MAXCRUSG DECIMAL

(22,2)

 Peak value of credit used during the simulation.

modified TIMESTAMP Date and time when has been changed the last time

8.3.2 Account statistics [ACST]

Field name Data type Key Description

id P Primary id

sim_id INT(11) F ID of simulation

part_id INT(11) K ID of account. Reference to part table’s field “part_id”. Also

the SIRI table’s part datset id is used in combination to link the

account and participant information form the PART table.

business_day CHAR(8) Date of the business day (format YYYYMMDD)

A_LIQINJVA DECIMAL

(22,2)

 When specified, the injection value overrides any system-level

value

A_VALUDATA DECIMAL

(22,2)

A_VALUCARR DECIMAL

(22,2)

A_VALUSUBM DECIMAL

(22,2)

A_VALUSETT DECIMAL

(22,2)

A_VALUUNST DECIMAL

(22,2)

A_VALURECE DECIMAL

(22,2)

A_NUMBDATA INT(11)

A_NUMBCARR INT(11)

A_NUMBSUBM INT(11)

A_NUMBSETT INT(11)

A_NUMBUNST INT(11)

A_NUMBRECE INT(11)

A_BODBALAN DECIMAL

(22,2)

 The day’s initial balance.

A_EODBALAN DECIMAL

(22,2)

 The day’s ending balance.

A_AVEBALAN DECIMAL

(22,2)

 Average balance during the day.

A_MINBALAN DECIMAL

(22,2)

 Minimum balance during the day.

A_MAXBALAN DECIMAL

(22,2)

 Maximum balance during the day.

A_AVGCRLIM DECIMAL

(22,2)

 Weighted (time) average credit limits. In case of extending

credits without restrictions, the automatically granted limit is

assumed to be in force until the end-of-day or until more credit

is extended.

A_AVELIQAV DECIMAL

(22,2)

 Average liquidity available during the day, i.e. average balance

plus relevant credit limit.

A_CREDUSAG DECIMAL

(22,2)

 Average overdraft during the day, i.e. average of the negative

balances of the day.

BoF-PSS3 User Manual 96

A_CREDUSAP DECIMAL

(22,2)

 Average overdraft percentage during the day, i.e. average of the

negative balances of the day compared to relevant total credit

limit.

A_LOWBOUND DECIMAL

(22,2)

 See Annex 1.

A_UPPBOUND DECIMAL

(22,2)

 Upper bound of liquidity is defined as the amount of liquidity

need for immediate settlement of all transactions (i.e. no

queues). This is not calculated in the simulation, because it

requires a special simulation run in which there are no limits on

intraday credit. This field is reserved if the user wants to

include this information in the table.

A_MAXQUEVA DECIMAL

(22,2)

 Maximum queue value during the day.

A_AVEQUEVA DECIMAL

(22,2)

 Average queue value during the day (average time weighted

value of queue balance).

A_AVEQUELE BIGINT(20) Average queue duration for queued payments i.e. the sum of

queuing time of queued payments divided by the total number

of queued payments. Directly settled payments are not taken

into account. With the system setup “Delete unsettled

transactions (exclude from statistics), Unsettled transactions are

not included in the average. (format hhhhmmss000000, where

000000 denotes microseconds).

A_QUENUMBE INT(11) Number of queued transactions per day.

A_QUETOTVA DECIMAL

(22,2)

 Total value of queued transactions per day.

A_QUESTTIM BIGINT(20) Total time during the day that outgoing transactions were

queued and the process was blocked due to insufficient

liquidity for this account (format hhhhmmss000, where 000

denotes milliseconds).

A_AVERTISE BIGINT(20) Simple average of queuing times of all payments. Note that also

such payments that are settled directly by definition and that

cannot be queued will also affect the average. With the system

setup “Delete unsettled transactions (exclude from statistics),

Unsettled transactions are not included in the average.

(format hhhhmmss000000, where 000000 denotes

microseconds. The calculation precision is in seconds)

A_LIQUSAGC DECIMAL

(22,2)

 Liquidity usage indicator based on consumed liquidity i.e.

consumed overdrafts and reserve deposits compared with

submitted volume. Calculation explained in document Annex 1.

A_LIQUSAGR DECIMAL

(22,2)

 Liquidity usage indicator based on available liquidity (rigid

credit limits) i.e. total credit limits compared with submitted

volumes. Calculation explained in Annex 1.

A_SETDELAY DECIMAL

(22,2)

 Indicator of settlement delay i.e. actual delay compared to

theoretic maximum delay at end of day. Calculation explained

in Annex 1.

eod_credit_limit DECIMAL

(22,2)

 End-of-day credit limit. Last credit limit in force during the

day.

For setups without creditlimits and the selection credits

available without limits, the credit limit will be set to the value

allowing immediate settlement of all transactions at

intdroduction. Thus it will be equal to the minimum negative

position during the day eg same as upper bound of liquidity.

modified TIMESTAMP Date and time when has been changed the last time

8.3.3 Bilateral statistics table [BIST]

Field name Data type Key Description

id INT(10) P Primary id

sim_id INT(11) F ID of simulation run

from_part_id INT(11)) F ID of account

BoF-PSS3 User Manual 97

business_day CHAR(8) Date of business day (format YYYYMMDD)

to_part_id INT(11) F ID of receiving account

D_EODBALAN DECIMAL

(22,2)

 The day’s ending bilateral balance (a sending surplus is a

negative balance)

modified TIMESTAMP Date and time when has been changed the last time

8.3.4 Transaction event statistics [TEST]

This table contains additional simulation specific information related to

transactions. The basic non-variable information can be retrieved from the tran and

tran_generated_by_simulation tables. To help usage, the view called test_view_all

combines the transaction information from the table test to the views

TRAN_view_all and TRAN_GENERATED_BY_SIMULATION_view_all. The

us eof the view makes it easier to access the data.

If performance becomes an issue it might be needed to acces the data directly from

the tables with tailored queries without redundant information.

Field name Data type Key Description

tran_id

INT(11) P

Reference to id in TRAN OR in

TRAN_GENERATED_BY_SIMULATION table. This field is

not necessarily unique.

sim_id INT(11) F ID of simulation

E_SUBMDATE INT(11) Date transaction was submitted for settlement.

E_SUBMTIME INT(12) Time transaction was submitted for settlement.

E_SETTDATE INT(11) Date transaction was settled.

E_SETTTIME INT(12) Time transaction was settled.

E_SUBMORIG CHAR(8) ID of algorithm generating an internal transaction, or 0 if from

the transaction data.

E_SETTALGO CHAR(8) The ID of algorithm that settled the transaction.

E_SENDACBA DECIMAL

(22,2)

 Sending account balance after settlement.

E_RECEACBA DECIMAL

(22,2)

 Receiving account balance after settlement.

E_SETTSTAT TINYINT(4) Value indicating if transaction was settled:

-5 = Removed

-4 = Rejected for inconsistency reasons

-3 = unsettled because introduction after end of day

-2 = unsettled directly at entry

-1= unsettled because of defined latest debit time,

0=unsettled

1=settled directly

2=settled via queue

3=forced end of day settlement).

4=payment replaced due to process reasons and recorded for

reference.

5= technical payment excluded from statistics

6= settled partially

code for liquidity repatriation?

E_BILABALA DECIMAL

(22,2)

 Bilateral balance seen from the sending account after the

transaction has been settled

E_ENTRDATE INT(11) Date when transaction is finally entered into clearing process in

the simulated system. The time label can be different from

BoF-PSS3 User Manual 98

submission time due to delays caused by simulated parallel

processing or TEA time estimation. All statistics are based on

submission time, not on entry time.

E_ENTRTIME BIGINT(12) Time when transaction is finally entered into clearing process

in the simulated system. The time label can be different from

submission time due to delays caused by simulated parallel

processing or TEA time estimation. All statistics are based on

submission time, not on entry time.

generated TINYINT(4) If value is 1 the transaction’s basic information can be found in

tran_generated_by_simulation table.

8.3.5 Intraday credit limit order execution statistics

[iccl_order_execution_statistics]

Field name Data type Key Description

id BIGINT(20) P Id of the icl order acting as a link to the input database

Iccl_id BIGINT(20) Link to the original icl order in the iccl table of the input db

simulation_id VARCHAR(20) Link to the simulation

dataset_id VARCHAR(20) Dataset id to which the order belongs

system_id CHAR(8) ID of associated system

business_day CHAR(8) Business day the order belongs to

execution_status INTEGER -3 = removed at cut off bank

0 = rejected,

1 = executed directly,

2 = executed after being queued,

400 In queue. Indicates that the order is queued. At the end of

day the status should be set to -3 or similar.

650 = pending credit line decrease replaced by new order,

651 = pending delta order replaced by fixed order

entry_date INTEGER

entry_time BIGINT(12)

Resolution_date INTEGER Date when order was either removed from queue or executed

Resolution_time BIGINT(12) Time when order was either removed from queue or executed

modified TIMESTAMP Date and time when has been changed the last time

8.3.6 Netting event statistics [NEST]

Field name Data type Key Description

id INT(10) P Primary id

sim_id INT(11) F Reference to id in SIRI table

system_id TINYINT(3) K ID of associated system

N_ALGORIID CHAR(8) K ID of netting algorithm

N_NETTDATE INTEGER Date netting (e.g. gridlock resolution) was executed

N_NETTTIME BIGINT(12) Time netting (e.g. gridlock resolution) was executed

N_NETTINID CHAR(8) ID of associated net settlement

N_TRANSVAL DECIMAL

(22,2)

 Value of additional transactions generated by the netting

algorithm

N_TRANSVOL INT Number of additional transactions generated by the netting

algorithm

N_SETTLVAL DECIMAL

(22,2)

 Value of original transactions settled by the netting algorithm

N_SETTLVOL DECIMAL Number of original transactions settled by the netting algorithm

BoF-PSS3 User Manual 99

(22,2)

N_TOTALVAL DECIMAL

(22,2)

 Value of all transactions subject to netting

N_TOTALVOL DECIMAL

(22,2)

 Volume of all transactions subject to netting

modified TIMESTAMP Date and time when has been changed the last time

8.3.7 Account violation statistics [AVST]

Field name Data type Key Description

id INT(10) P Primary id

sim_id INT(11) F Reference to id in SIRI table

part_id INT(11) F ID of account in which violation occurred. Reference to part_id

field in the PART table. Also the SIRI table’s part datset id is

used in combination to link the account and participant

information form the PART table.

V_EVENDATE INT(11) Date violation occurred

V_EVENTIME BIGINT(12) Time violation occurred

V_VIOLCAUS VARCHAR (12) Reason for violation. Typically, forced end-of-day settlement or

credit limit reduction. Value ICCL when depends on new lower

credit limit, ANCSETTL when depends on ancillary system

settlements and the value equal a transaction ID when the

violation is caused by a forced end-of-day settlement.

V_VIOLVALU DECIMAL

(22,2)

 Value of violation

business_day CHAR(8) Date of the business day

modified TIMESTAMP Date and time when has been changed the last time

8.3.8 Queue reason information [QURE]

Contains the reasons why a payment has been put to queue. The table also contains

an entry for the removal time of the transaction. This means every transaction can

have 2 rows in this table.

Field name Data type Key Description

id INT(10) P Primary id
sim_id INT(11) F Reference to id in SIRI table

system_id TINYIN F Reference to id in SYSTEM table

K_TRANSAID CHAR(20) P Identifier of transaction

R_DATEMODI INT(11) P Date when change in queuing reason

R_TIMEMODI BIGINT(12) P Time when change in queuing reason

R_QURECODE TINYINT(4) The queue reason code can take following values:

0 = queued due to process reasons. e.g. deferred system or

payment is always settled via queue

1 = not enough liquidity on the account,

2 = bilateral limit exhausted and

3 = multilateral limit exhausted, when transactions are

placed in queue.

4 = bilateral credit cap is limiting

5= multilateral credit cap is limiting

9 = Transaction is cleared or removed from queue

10 = bilateral credit cap exhausted

11 = multilateral credit cap exhausted

BoF-PSS3 User Manual 100

12 = FIFO, blocking payment in queue

100 = Removed Because Settled

101 = Removed because of end of day

103 = Removed because of forced end of day settlement

111 = Removed because of end of day trade phase 1

112 = Removed because of end of day trade phase 2

113 = Removed because of end of AS6 cycle

114 = Removed because of Latest Debit Time

115 = Removed because replaced by new ICCL order

modified TIMESTAMP Date and time when has been changed the last time

8.3.9 Analysis indicators [analysis_indicator]

The table is only populated by the stress tester. It is recalculated each time the “Run

report” button is pressed.
Field name Data type Key Description

id BIGINT(20) P Technical id

simrunid VARCHAR(30) F key to the simulation run id

systemid CHAR(8) * Id of the system

failing_accounid VARCHAR(34) * Affected account id or participant of the scenario

business_day CHAR(8) * Business day

is_bench TINYINT(1) * Identifier for whether the row belongs to the benchmark of the

analysis

bench_eod_balanc

e

DECIMAL(22,2) end of day balance of the benchmark simulation

bench_unst_value DECIMAL(22,2) Value of unsettled transactions in the benchmark.

sent_unst_value DECIMAL(22,2) Value of unsettled transactions

sent_unst_count BIGINT(20) Count of unsettled transactions

sent_unst_value_d

irect

DECIMAL(22,2) Value of transactions removed from the input data for the

scenario

sent_unst_count_d

irect

BIGINT(20) Count of transactions removed from the input data for the

scenario

received_payment

s

DECIMAL(22,2) Sum of the value of received transactions

received_unst_val

ue

DECIMAL(22,2) Value of transactions not received in scenario simulation

received_unst_cou

nt

BIGINT(20) Count of transactions not received in scenario simulation

received_unst_val

ue_direct

DECIMAL(22,2) Value of transactions not received due to input data

manipulations. Transactions removed due to scenario

received_unst_cou

nt_direct

BIGINT(20) Count of transactions not received due to input data

manipulations. Transactions removed due to scenario

lower_bound DECIMAL(22,2) Lower bound of liquidity. Net liquidity need to allow full

settlement.

max_upper_bound DECIMAL(22,2) Maximum value of the upper bound of initial liquidity to allow

direct settlement at entry of all transactions. Same as gross

outflow.

bench_setdelay DECIMAL(22,2) Settlement delay observed in the benchmark

weighted_avg_rec

eiving_time

BIGINT(20) Value weighted average receiving time in the scenario

weighted_avg_rec

eiving_time_bench

BIGINT(20) Value weighted average receiving time in the benchmark

weighted_avg_sen

ding_time

BIGINT(20) Value weighted average sending time in the scenario

weighted_avg_sen

ding_time_bench

BIGINT(20) Value weighted average sending time in the benchmark

BoF-PSS3 User Manual 101

8.4 Technical tables

There are some technical tables that relat to the definition of simulations and

logging of events.

8.4.1 Batch run information [BARI]

This table is used to store information on which simulations are run in a batch.

This information is used by the simulation execution user interface.

Field name Data type Key Description

R_SIMBATID CHAR(8) P Name of simulation batch.

R_NROFRUNS SMALLINT

(6)

 Number of simulation runs in batch.

R_PROCTIME BIGINT(12) Total processing time for simulation batch.

R_SIMRUNID TEXT The IDs of simulation included in batch.

8.4.2 Simulation run information [SIRI]

This table contains 2 types of information related to a simulation. When defining a

simulation, the definition and configuration information of a simulation is stored

into this table. When running a simulation also the information of selected output

tables and some basic information related to the running os a simulation such as

time and duration are stored here. Note when a simulation is rerun, the old

information is overwiten.

Field name Data type Key Description

id INT(10) P Primary id

parent_id INT(11) Reference to id in SIRI table

M_SIMRUNID CHAR(8) Textual simulation id

M_SIMUNAME VARCHAR(20) Name of the simulation

M_SIMDESCR VARCHAR(120) Description of the simulation

M_PROCDATE INT(11) Processing date for simulation run (format YYYYMMDD).

M_PROCTIME BIGINT(12) Processing time for simulation run (format hhmmss000 where

000 stands for milliseconds).

M_DURATION INT(11) Duration of simulation run (format hhmmsss000 where 000

stands for milliseconds, where the milliseconds can also have

specific values).

M_SYSTEMID TEXT System IDs belonging to the simulation.

Values in form: system1,system2,…

M_OUTPTABL TEXT Output data selected for the simulation.

Values in form: SYLS,ACST,…

M_SYCDDSID TEXT Data set IDs of systems belonging to the simulation.

Values in form: dataset1,dataset2,…

M_PARTDSID TEXT Data set IDs of participants belonging to the simulation.

Values in form: dataset1,dataset2,…

BoF-PSS3 User Manual 102

M_DBALDSID TEXT Data set IDs of balances belonging to the simulation.

Values in form: dataset1,dataset2,…

M_ICCLDSID TEXT Data set IDs of credit limits belonging to the simulation.

Values in form: dataset1,dataset2,…

M_TRANDSID TEXT Data set IDs of transactions belonging to the simulation.

Values in form: dataset1,dataset2,…

M_BUSDESID TEXT Data set Ids indicating the events data set to be used in the

simulation.

M_NUMBSYST SMALLINT(6) Number of systems belonging to the simulation.

M_NUMBPART MEDIUMINT(9) Number of participants belonging to the simulation.

M_NUMBTRAN INT(11) Number of transactions belonging to the simulation.

M_SUBALGID CHAR(8) Identifier of submission algorithm.

M_ALGOTYPE CHAR(8) Type of algorithm, value ‘SUB’.

M_SUBPARAM TEXT Enumerated list of parameters.

M_BLIMDSID TEXT Data set IDs of bilateral limits belonging to the simulation.

Values in form: dataset1,dataset2,…

M_RSRVDSID TEXT Data set Ids of reservation data used in the simulation.

Values in form: dataset1,dataset2,…

modified TIMESTAMP Date and time when has been changed the last time

8.4.3 Applicationruns [Applicationruns] (Not in use)

8.4.4 Process log [Processlog]

This table is used to log information on algorithm runs during simulations. All

algorithms do not support this. also this feature needs to be enabled from property

files and is mainly used for testing purposes.

Field name Data type Key Description

ID INT(10) P M

SetupID CHAR(1) M

SetupName CHAR(1) M

RunInfo TEXT M

StartTime TEXT M

EndTime TEXT M

USERCOD 1...5

BoF-PSS3 User Manual 103

9 Miscellaneous

9.1 Date format

The supported date format is: yyyymmdd

9.2 Time format

The supported time format is: hhmmss.ssssss

9.3 File template

A file template describes which columns in the CSV file correspond to particular

fields in the database table. For example, if you want to import a CSV file with

participant data to the PART table and the CSV file’s first column contains

participant ID and the second column the name of the participant, you define in the

import template "1" in the first row (P_PARTICID) and "2" in the third row

(P_FULLNAME). The other rows stay empty, if these are the only fields to import.

Templates are saved in the TEMP (template) table in the SYSTEM database. The

input data tables PART (participant), DBAL (daily balances), ICCL (intraday credit

limits) and TRAN (transaction) have all their own templates.

Field name Data type Key Description

ID INT(10) P Technical ID for entry used as unique key

ApplicationRunID VARCHAR(8) F Link to Application run ID

ProcessRunID BIGINT(12) All log rows associated to one algorithm run are

stored with the same ProcessRunID

ProcessName VARCHAR (30) Name of Algorithm or process

Event VARCHAR (30) Start of algorithm

Start of algorithm postponed

End of algorithm execution

Description VARCHAR (255) Field for additional information. Content can be

dynamically formed by the algorithm running to

mediate information to the user. This can be

used for debugging and validating the

functioning of some features..

Date INT(11) Current date when the row is logged

Time BIGINT(12) Time when the row is logged

SimDate INT(11) Day in simulation

SimTime BIGINT(12) Time in simulation

Info VARCHAR(512)

USERCOD 1...5 VARCHAR (16)

BoF-PSS3 User Manual 104

Ready-made templates are provided in the simulator for all output database tables

for exporting all data fields. The names of these templates are the table name

followed by –ALL e.g. TEST-ALL.

Templates are updated when you change the information in them. If you want to

remove templates, you have to modify the database directly. For instructions see

7.4.3.

9.4 About using Microsoft Excel with the simulator

Microsoft Excel is a handy tool for editing simulator data, analysing simulation

output and creating reports and graphs.

The following facts are worth noting if you plan to use Excel with the BoF-PSS2

simulator:

– Old Excel versions have a limit of 65,536 rows per worksheet. Excel 2007 can

handle 1,048,576 rows.

– Excel may produce additional rows and columns when saving a table as CSV

file (all rows and columns that have been active in the table during Excel

calculations will be saved in the CSV file, even though they are empty at the

time of saving).

– Large values may be distorted (less accuracy).

– Check that delimiters (decimal and data separators) and presentation formats

(date and time) are identical with simulator specifications.

– The actual content of CSV files stored by Excel can be checked with Notepad

or some other text editor.

The output reports and output CSV-files have not been edited. The idea is that

everyone can edit them according to own desires using Excel or other reporting

tools. When some reports are used frequently it is a good idea to read the output

CSV-files into a predefined Excel table.

9.5 Error list

When errors are found, an error list is generated. The name of the file is

errorlist_date_time and the file type is plain text / comma separated values (.csv).

The list contains:

Row Description

BoF-PSS3 User Manual 105

1 The heading “Errors.”

2 Informs where errors have arisen. Values “simulation execution”, “import input data” or

“cross-check input data.”

3 Empty row.

4 In this underlined row is stated

- in case of import input date the faulty data type (corresponds to input data

tables), the data set ID and the system ID

- in case of cross-check input data simulation ID, system ID, data set ID and data

type

- in case of simulation execution simulation batch ID, simulation ID, system ID,

data set ID

5 Empty row.

6 Faulty row in input file or in database table.

7 Error code and description of the error.

8-… If the same data type, simulation ID, system ID and data set ID have more errors, they are

listed as rows 5, 6 and 7. If the data type, simulation ID, system ID or data set ID change,

rows 3 and 4 are written before rows 5, 6 and 7.

These rows are written until all errors have been listed.

9.6 CSV and Excel files

The program creates CSV files from reports and export data. Data are moved to

files from the saved database tables. Data in the CSV files are separated from each

other by a separator, which the user can select. The extension is .csv for the CSV

file. If the user has defined it, the first row in the file consists of field headings.

10 Technical documentation

The following documents on BoF-PSS3 are available via the internet-site

https://www.suomenpankki.fi/simulator:

– This user manual

– Simulator presentation and basic information

11 Troubleshooting guide

This chapter is designed to help users to find and eliminate problems when

employing the simulator.

https://www.suomenpankki.fi/simulator

BoF-PSS3 User Manual 106

It is a list of frequently encountered problems by the users. This list will be updated

based on user experiences. Please send you experiences to the email address:

bof-pss@bof.fi

The updated guide will be posted on the web-site

https://www.suomenpankki.fi/simulator and will be distributed with any new

version of the simulator. If you have used your version already for some time, it

might be good to check for the updated trouble shooting guide on the internet.

Simulator service does not start up

In case after starting the Simulator service it is not responding to the user initiated

service request from the browser, check the following.

Check the Simulator server is running

By default Simulator service listens on local machine TCP/IP port 8080, make sure

there is no other service or application already using the port 8080.

The symptom shows as the Simulator service does not start and an error message is

prompted in the Windows terminal.

In case the port 8080 is reserved by another application the simulator can be

configured to use some other port that is free to use.

Change the configuration by editing the startServer.cmd file located in \BoF-

PSS\PROGRAM folder and change the port number on a row containing setting like:
set pssParams=--server.port=8080

Check that the MariaDB windows service is running

By default MariaDB listens on local machine TCP/IP port 3306, make sure there is

no other service or application already using the port 3306.

In case the port 3306 is already occupied, another listen port must be configured by

re-installing the MariaDB package or by changing the port number in my.ini file’s

[mysqld] section. Where the my.ini file is located can be discovered from the

MariaDB Windows service properties. Start the Windows Services application by

pressing the Windows-key and type “serv” and click the Services app that appeared to

list of matching applications. In order to find the MariaDb service from the services

list, click on the Name field of the first service on the list and then type “M” character

to find the MariaDB service. Click the MariaDB service with the other mouse ear

https://www.suomenpankki.fi/simulator

BoF-PSS3 User Manual 107

and select Properties option. The path to the my.ini is stated in the default-file

setting property.

The user has no privileges to run the MariaDB service

Typically the MariaDB service is configures to start automatically as the end-user

logs in to Windows. In exceptional cases the MariaDB service has failed to start

automatically thus the user has no way to start the service manually due to lack of

privileges. Below the service is running but the user has no privileges to start or

stop the service.

On both cases contact your organisation’s IT support to resolve the problem

No data sets to configure in the simulation configuration screen

 You must Define system data in the Input Generation Subsystem before the

configuration screen can offer you data sets for the systems to simulate.

No settled transactions although simulations was run successfully

 The system could be lacking liquidity. Check that you have granted enough

liquidity via initial balances or intraday credit limits (tables of free usage).

 The liquidity could also be lacking due to date and/or time errors. Check via

View data sets that the date and time data for transactions, initial balances and

intraday credit limits are correct. Check also that the open hours of the system

is correctly specified (hhmm in 24 hour format) in the Define system data

screen. Be especially cautious if you have been using Excel for editing the data,

because Excel is often changing the date and time formats when writing to CSV

files. Check for instance with Notepad that the formats are in the correct format

in the input CSV files.

No transactions found and simulation terminated/done immediately

The simulator and MySQL perform well with most regional settings. However,

with some special regional settings control characters seem to be converted and

thereby corrupted. Please, try using some common regional setting alternative

BoF-PSS3 User Manual 108

(e.g. English UK or USA). Regional settings are changed in the control panel

section of Windows.

11.1 Database table repairs

If the Simulator and MySQL are closed by the user while the software is writing

into some database table, the database can become corrupted. Typically this can

happen if the simulator seems to be stuck and the user closes it with "end task" in

Windows task manager.

As a result of corrupted database table the simulator won't start and in the start up

window, e.g. following error message can be presented "Can't open file:

'tablename.MYI'. <errno:144>"

This can be fixed by repair table command using e.g. database browser or in

command-line console if the previous is not available. For more information see

https://mariadb.com/kb/en/repair-table/ For console view, run

[MariaDB installation folder]\bin\mysql.exe. This will open the database server

console view.

Assuming that input database table "TRAN" is corrupted in project "example1",

following commands are required.

use i_example1; (+ Enter)

repair table tran; (+ Enter)

For more details see the manual matching the installed database product.

12 Acknowledgements

We would like to acknowledge the contribution made by the following developers

and contributors who have assisted in creating the BoF-PSS2 Payment and

Settlement Simulator

Developers/Contributors at Bank of Finland

The BoF-PSS2 simulator is the second payment and settlement simulator built by

the Bank of Finland. The first one was originally developed for internal use only,

but it expanded well outside the Finnish borders. The new version has been built

based on experience gathered from the first, but designed for international and

independent usage and includes more features than its predecessor did. BoF-PSS2

https://mariadb.com/kb/en/repair-table/

BoF-PSS3 User Manual 109

also has a technical design that is more efficient for large simulations.

Acknowledgement is also given to the persons from the Bank of Finland who were

involved in the first version, because without the first version there would not have

been a second one.

Currently involved:

Kasperi Korpinen

Project manager/designer/specifyer/tester/support of the BoF-PSS2 simulator

from version 2.4.0 co-author of the reference manual and other user documents

Tatu Laine

Project manager/designer/specifyer/tester/support of the BoF-PSS2 simulator

from version 3.0.0 co-author of the reference manual and other user documents

Previously involved:

Virpi Andersson

 Tester of user interfaces and simulations of BoF-PSS2

Matti Hellqvist

Designer/developer/support of the BoF-PSS2 simulator from version 1.0.0 till

3.1.0

Co-author of the reference manual and other user documents

Co-athor of first ABM algorithms for the simulator, later incorporated to the

version 9.2.1 by the simulator development team.

Risto Koponen

 Project manager for the BoF-PSS1 simulation project

Hannu Lampela

 Technical advisor for BoF-PSS2

Harry Leinonen

 Adviser/designer of the BoF-PSS1 simulator

 Project manager for the BoF-PSS2 project

 Designer/developer of the BoF-PSS2 simulator

 Co-author of the reference manual and other user documents

Markus Penttilä

 Designer / developer of the BoF-PSS2 simulator for the version 2.4.0

 Co-author of the reference manual and other user documents

BoF-PSS3 User Manual 110

Kati Salminen

 Testing and distribution of BoF-PSS2

Kimmo Soramäki

 Designer/developer/programmer of the BoF-PSS1 simulator

Kirsti Tanila

 Tester and user of BoF-PSS1 simulator

Eero Tölö

Designer / developer of the BoF-PSS2 simulator for the version 3.2.0

Co-author of the reference manual and other user documents

Petri Uusitalo

 Distribution design and organisation

Contributors at Fujitsu Finland

Fujitsu was choosen as new development partner starting from Autumn 2012

replacing MSG Oy.

Harri Engblom

Lead developer / designer

Kalle Saarela

Developer / designer

Maarit Aalto

Documenting / Tester

Cotributors at MSG Software Oy

The development of the BoF-PSS2 simulator was contracted to MSG Software Oy

based on the specifications developed by the Bank of Finland until mid 2013.

The last version MSG contributed was 4.0.0.

Maritta Halonen

 User interface design

 Co-author of reference manual and data dictionary

 Testing

BoF-PSS3 User Manual 111

Markku Kilvio

 Project manager, developer

Timo Koistinen

 Developer data import, export and statistical analysis/reports

Riku Peltokorpi

 Developer user interfaces and system data imports

Kai Rauha

 Developer output reports

Ville Ruoppi

 Lead developer, simulator engine and algorithms

 System design

 Technical and algorithm documents

Leena Tyni

 Project manager

 System/user interface design

 Testing

 Co-author of user documents

Developers/Contributors at the European Central Bank (ECB)

Special acknowledgement is given to the ECB for assigning resources for the

development of BoF-PSS2.

Argyris Kahros

Co-author of first ABM liquidity management algorithms (Version 9.2.1)

Kimmo Soramäki (early versions)

 Specifications and design

 Testing of BoF-PSS2 simulator with the BoF-PSS1 simulator

 Co-author of user documents

 Alpha and beta testing

Sponsorship contributors

BoF-PSS3 User Manual 112

Special acknowledgement is given to Bank of Canada, the Bank of England and the

Federal Reserve Bank of New York for their sponsorship in developing version

2.0.0 of the BoF-PSS2 simulator, which include such- new features as bilateral

limits, improved efficiency, enhanced database options and time transposition

possibility.

For version 2.1.0 of the simulator, special acknowledgement is given to Federal

Reserve Bank of New York. New features introduced in this version include the

RRGS algorithms.

For version 3.1.0 of the simulator, special acknowledgement is given to EBA

Clearing S.A.S. New features developed in co-operation with them include credit

cap functionalities of BoF-PSS2.

The sponsorship and cooperation of these contributors has made it possible to

distribute these features to the whole user community.

We are indebted to the following persons in the above mentioned organisations

Bank of Canada: Neville Arjani, Devin Ball, Lorraine Charbonneau, Allan

Crawford, Alejandro Garcia, Dinah Maclean, Darcey McVanel and Jeffrey Smith.

The Bank of England: Stephen Millard and George Speight

The Federal Reserve Bank (NY): Morten Bech, Kurt Johnson, James J. McAndrews

Alpha/Beta testing and development contributors

The early BoF-PSS2 simulator version was distributed to other central banks as an

alpha and beta version. Important contributions in the form of new ideas, testing,

bug-finding etc have been received from following persons involved in alpha and

beta testing. Contribution to further development and bug fixes of the production

version is also acknowledged.

Bank of England: Paul Bedford, Stephen Millard and Jing Yang

Bank of Slovenia: Simon Anko

Bank of Thailand: Tanai Khiaonarong

Central Bank of Iceland: Rafn Arnason

BoF-PSS3 User Manual 113

Central Bank of the Republic of Turkey: Pinar Akan

European Central Bank: Peter Galos

Nationalbanken, Danmark: Kasper Sylvest Olsen

Singapore Monetary Authority: Wai Leong Lee

Sveriges Riksbank: Johan Pettersson

Bank of Canada: Darcey McVanel, Alejandro Garcia, Neville Arjani, Devin Ball,

Jeffrey Smith

De Nederlandsche Bank: Elisabeth Ledrut, Ronald Heijmans

BoF-PSS3 User Manual 114

ANNEXES

I. Calculation of specific indicators

Trough this annex text following notations are used.

Nn Number of participants (or accounts) in the system.

 ni ,...,1 Index number pointing to one particular participant.

Nd  Total number of payments send in the system over the

course of business day.

id Number of payments sent by bank i.

ki, Pair of index numbers pointing to one particular

payment k of participant i. Here  idk ,...,1

Lower bound liquidity demand Y_LOWBOUND and A_LOWBOUND

On the low extreme all banks might have just enough liquidity to settle all the day's

payments before the end of the day by using multilateral net settlement to solve

gridlock situations. We shall refer to this amount of liquidity as the lower bound of

liquidity LB. The lower bound of liquidity [A_LOWBOUND] for the ith

participant/account LBi can be written as

() 












−= 

= =

=

=

n

j

d

k

irkj

d

k

kii

j

kj

i

aaLB
1 1

,

1

, ,
,0max , where

 +kja , = the value of payment k of participant j.

  njjr kj ,...,1,1,...,1, +− = the receiver of payment.

The first sum is the value of payments send and the second sum is the value of the

payments received over the course of the business day by bank i.

If the value of payments received during the day is larger than the value of payments

sent, a participant/account only needs to use the liquidity it receives in the form of

incoming payments for settling its own payments and thus the lower bound equals

zero. If the value of payments sent exceeds the value of payments received, the

difference has to be available at least at the end of the day.

Lower bound of liquidity in the system level [Y_LOWBOUND] is simply the sum

of lower bounds of individual participants/accounts.

Settlement delay Y_SETDELAY and A_SETDELAY

The delay indicator is a relative indicator ranging from 0 to 1. If not transactions

are queued the value is 0 if all transactions are queued the maximum time ie to the

BoF-PSS3 User Manual 115

end of the day the value is 1. The value is calculated as the time weight queuing

value for each queued transaction (transaction value times the time in queue)

divided by the time weighted value if all payments were delayed to the end of the

day (the transaction value times the time from submission to the end of the day).

The values are calculated for each participant/account.





==

===
d

k

kiki

n

i

kiki

d

k

n

i

as

aq

delaySettlement

1

,,

1

,,

11

*

*

 where

q = queing time for each payment

s = maximum settlement delay ie time difference between submission and end-of-

day.

The values of unsettled transactions are included in both factors.

Consumed liquidity Y_LIQUSAGC and A_LIQUSAGC

The consumed liquidity indicator measures to which extent overdrafts (ie negative

balances) and reserve deposits have been used for settling payments ie the

difference between the beginning of day and minimum balance during the day

divided by volume of submitted transactions. It measures the consumed liquidity

compared with the throughput volume or inversely to which extent the liquidity of

received payments have not been able to cover the liquidity needs of outgoing

payments.

Consumed liquidity





= =

==
T

t

t

i

O

i

T

t

d

t

V

L

0 0

0 where

Ld = the difference between daily opening and minimum balance

Vo = the average transaction volume

Rigid liquidity indicator Y_LIQUSAGR and A_LIQUSAGR

The rigid liquidity indicator gives the relation between the total available credit

limit compared to the transaction volume to be settled ie the sum of transactions to

be sent. It measures the credits allocated compared to the throughput volume.

Rigid liquidity indicator





= =

==
T

t

O

t

t

i

a

t

T

t

V

L

0 0

0 where

La = the average credit limit available during the day

BoF-PSS3 User Manual 116

II. List of cross-check messages

Exhaustive list of messages associated with cross-checks.Sometimes the same

message can be used in several checks performed to different dataset types.

ID Description

#001 Participant/Account not definedin PART-table

#002 System name used in TRAN data can not be found

#003 Participant/account in PART data is defined to settle in system which can not be found

#004
 Participant/account in PART data is defined to settle on participant/account that can
not be found

#005 Incomplete PART definition: 'Settle on participant' is missing

#006
 Participant/account in PART data is defined to inject liquidity from system which can
not be found

#007
 Participant/account in PART data is defined to inject liquidity from participant/account
which can not be found

#008 Incomplete PART definition: 'Liquidity from participant' is missing

#009 Either bilateral limit, credit cap or both must be defined in BLIM data

#042 Same transaction id is used multiple times

#100 Time value in ICCL data outside the open hours of the system

#101 Date value is outside business days
#102 Date is before 1.1.1900

#103 Date value in TRAN data is negative
#104 Time value in TRAN data is negative
#105 Too many different introduction days found from TRAN data

#106 End of Day event in EVNT data does not occur after Start of Day event

#107 EVNT data is missing start of day event for business day

#108 EVNT data is missing end of day event for business day

#117 EVNT data is missing event for business day

#119 Error in resolving dates and times for business day

#111 No business day event found in EVNT data for business day of transaction

#116 No transactions found for business day defined in EVNT data

#118 Transactions introduced after the business day

#120 Special transaction class 2 code defined, but ASBIC is missing

#121 Special transaction class 2 code defined, but LINKCODE is missing

#122
 Transaction is linked, but ASBIC is not equal to other transactions with the same
linkcode

#123 Date time value is before the start of the business day

#124 Date time value is after the open hours of the business day

#125 No linked Transaction found for ICCL order

#126 No linked ICCL order found for Transaction

#201 Linked system defined for transaction with link code can not be found

#400 Transaction earliest debit time in Procdate and Proctime is before introduction time

#401 Transaction latest debit time in Procdat2 and Proctim2 is before introduction time

#402
 Transaction latest debit time in Procdat2 and Proctim2 is before earliest debit time in
Procdate and Proctime

#403 Both accounts of transaction are MCA accounts

#404 Neither account of transaction is MCA account

BoF-PSS3 User Manual 117

#127 Duplicate link IDs found

#600 Missing or invalid value in associated_system_name

#601 Missing or invalid value in associated_participant_id

#602 Missing or invalid value in associated_account_id

#603 Missing associated account reference
#604 Account is associated to itself

#605 No association rules for business day
#606 Business day is out of simulation business days

#607 Date is before 1.1.1900

#608 Missing threshold value for association type Floor

#609 Missing target value for association type Floor

#610 Floor target value must be greater or equal than threshold value

#611 Missing threshold value for association type Ceiling

#612 Missing target value for association type Ceiling

#613 Ceiling target value must be less or equal than threshold value

#614 Threshold value for association type Alto is not required

#615 Target value for association type Alto is not required

#616 Association of type Alto cannot not be set for RTGS

BoF-PSS3 User Manual 118

III. ABM property file example

Simulator agent configuration property file

NOTE!
With any property setting you can split it to multiple rows
by appending a blank following a backslash [\] to the end of each row
excluding the last row of the setting

Common properties to all agents
List of transaction class types that are processed from transaction queue
and not sent to bank agent queues
nonProcessableTranClassTypes=
nonProcessableTranClass2Types=
nonProcessableTranPriorities=

List of all agent implementations
NOTE!
The name must match with the Java class name
agents=CautiousBank;CustomerDiscriminatingBank

Common CautiousBank agent specific parameters.
This setting contains the full list of parameters that can be applied to the
agent
delimited by semicolon
NOTE!
The property name follows the agent's Java class name having string
[Settings] appended to the end
delayTypes:
may contain zero or multiple type values separated by blank and
it refers to value in TRAN table t_tranclas column
CautiousBankSettings= \
alertsSecondsBeforeEndOfDayEvent=1800; \
onPercentage=0.2; \
offPercentage=0.4; \
delayTypes=1.1 1.2; \
logEvents=true;

List below the participants having an agent as a list of participant keys.
Each participant key is in format
[system id]-[participant id]-[account id]
delimited by semicolon
NOTE!
The property name follows the agent's Java class name having string
[Participants] appended to the end
CautiousBankParticipants= \
1-FRSDFR2S001-FRFRSDFR2S00100000000000000001;
#1-SDMFFAPA055-FASDMFFAPA055;

Participant specific agent parameters.
If provided it overloads the common agent parameters
thus you can specify below just the ones that differ from common agent
parameters
NOTE!
The property name follows the agent's Java class name having string
[Settings][participant key] appended to the end
CautiousBankSettings1-FRSDFR2S001-FRFRSDFR2S00100000000000000001= \
onPercentage=0.1; \

BoF-PSS3 User Manual 119

offPercentage=0.5;

Common CustomerDiscriminatingBank agent specific parameters.
This setting contains the full list of parameters that can be applied to the
agent
NOTE!
The property name follows the agent's Java class name having string
[Settings] appended to the end
CustomerDiscriminatingBankSettings= \
latestTimeToPostponePayments=163000000000; \
alertsSecondsBeforeEndOfDayEvent=1800; \
delayMaxNormal=1000000000; \
delayMinNormal=1000000; \
liqLowNormal=100; \
liqHighNormal=1000; \
priorityThresholdUrgent=4; \
delayMaxUrgent=200000000; \
delayMinUrgent=0; \
liqLowUrgent=0; \
liqHighUrgent=500; \
priorityThresholdHighlyUrgent=7; \
delayMaxHighlyUrgent=0; \
delayMinHighlyUrgent=0; \
liqLowHighlyUrgent=0; \
liqHighHighlyUrgent=0; \
defaultDelay=1000000000; \
createWakeUpEventsOnMaxDelay=true; \
logEvents=false;

List below the participants having an agent as a list of participant keys.
[system id]-[participant id]-[account id] delimited by semicolon
NOTE!
The property name follows the agent's Java class name having string
[Participants] appended to the end
CustomerDiscriminatingBankParticipants=

Participant specific agent parameters.
The ones provided below overload the common agent parameters
thus you can specify below just the ones that differ from common agent
parameters
NOTE!
The property name follows the agent's Java class name having string
[Settings][participant key] appended to the end
CustomerDiscriminatingBankSettings= \
#[key1];[key2];...

You can use the below query to help setting up the list of agent participant
keys
SELECT
DISTINCT CONCAT(t1.system_id, CONCAT('-' , CONCAT(t1.from_particid, CONCAT('-'
, t1.from_accounid))))
FROM tran_view_all t1
WHERE t_datsetid = 'RawAP' AND t1.from_accounid IN
('FRFRSDFR2S00100000000000000001', 'FASDMFFAPA055')
;

BoF-PSS3 User Manual 120

IV. Example ABM bank agent implementation

Below is a simplified example bank agent implementation that highlights the

methods it must contain, how it gains it’s turn to execute its own logic and the

methods it can use to send it’s own transactions to the settlement process.

package modules;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;

import com.bof.pss2.common.AccountData;
import com.bof.pss2.common.SystemEvent;
import com.bof.pss2.common.Transaction;
import com.bof.pss2.common.TransactionQueue;
import com.bof.simulator.util.DateTime;

/**
 * This algorithm is allowed to be modified by holders of the BOF-PSS2 Simulator
 * license. For further details please refer to the BOF-PSS2 User license
 * conditions.
 *
 * This is a simplified example implementation of a bank agent to clarify the
 * basic behaviour and the methods to use in communicating with the simulation
 * process.
 *
 * In case you need a parameter(s) that controls you logic e.g.:
 * beActivaAfterTime that keeps the bank agent passive until the time set in
 * parameter is passed. What to do:
 *
 * <pre>
 * 1. define the parameter in configuaration file
 * <code>beActivaAfterTime=120000</code>
 * 2. define a member variable to this class
 * <code>private long beActivaAfterTime;</code>
 * 3. introduce the parameter with default value in class construtor
 * <code>addParameter("beActivaAfterTime", "120000");</code>
 * 4. in init() set the parameter value to the member variable
 * <code>beActivaAfterTime =

getParameterLongValue("beActivaAfterTime");</code>
 * NOTE! the default value is set
 * if the value is not defined or set in configuration file
 * </pre>
 */
public class ExampleBank extends Bank {
 // Introduce parameters that controls you logic e.g.:
 // beActivaAfterTime that keeps the bank agent passive until the time set in
 // parameter is passed.
 private long beActivaAfterTime;

 public ExampleBank() {
 // You may introduce you own parameter in the ABM configuration file
 // and setup the default values for those using appParameter() methods.

 // Set up parameters with default values
 addParameter("beActivaAfterTime", "120000");
 addParameter("alertsSecondsBeforeEndOfDayEvent",
 String.valueOf(alertsSecondsBeforeEndOfDayEventDefault), true);
 addParameter("logEvents", String.valueOf(isLogEvents()), true);
 }

BoF-PSS3 User Manual 121

 /**
 * In init you can initialize variable(s) required by your bank agent.
 */
 @Override
 public void init() {
 // logEvents parameter value defines wether or not to log the events
 // to log file.
 setLogEvents(getParameterBooleanValue("logEvents"));

 beActivaAfterTime = getParameterLongValue("beActivaAfterTime");

 String info = String.format("Part %s parameters: %s=%s, %s=%s, ",
 getAccount().getParticipantID(),
 "beActivaAfterTime", getParameterLongValue("beActivaAfterTime"),
 "logEvents", getParameterStringValue("logEvents"));
 logEvent("init", info);

 // Create an AGENT_ALERT_END_OF_DAY system event based on given
 // alertsSecondsBeforeEndOfDayEvent parameter
 Long value = getParameterLongValue("alertsSecondsBeforeEndOfDayEvent");
 getSimulationQueueAccessor().add(createEndOfDayAlertEvent(value), true);
 }

 /**
 * In process method's switch case structure you can write your logic how
 * this bank agent reacts on different wakeup calls. In each of them
 * you can study the bank agent's (account's) position at the moment
 * by inspecting
 *
 * <pre>
 * 1. the time of the simulation
 * <code>DateTime simulationDateTime = systemEvent.getDateTime();</code>
 * 2. the bank agent's account information
 * <code>AccountData myAccount = getAccount();</code>
 * 3. the list of non-sent transactions owned by bank agent
 * <code>TransactionQueue myTransactions = getTransactionQueue();</code>
 * </pre>
 *
 * and decide wether or not to send agent's transaction(s)
 * to the settlement process.
 */
 @Override
 public void process(SystemEvent systemEvent) {
 // System event typically has a transaction attached
 Transaction transaction = getTransaction(systemEvent);
 logEvent(systemEvent, transaction);

 if (systemEvent.getDateTime().getTime() < beActivaAfterTime) {
 // Be passive, do nothing yet
 return;
 }

 switch (systemEvent.getType()) {
 case SystemEvent.AGENT_WAKEUP:
 // The system sends a wake up call based on bank agents
 // transactions' when those are supposed to be processed thus
 // this agent has the opportunity to react or do nothing on
 // that moment.
 // Other wake up calls may occur in case created by this
 // or other agents but the name of the game is the same:
 // react or not.
 if (getTransactionQueue().isEmpty()) {
 // Nothing to process
 break;
 }

BoF-PSS3 User Manual 122

 if (transaction == null) {
 // NOTE!
 // No transaction attached, this might be user defined
 // wake up event.
 // For now just log a warning:
 logger.warn(String.format("Received agent wake up event at"
 + " %s-%s with no transaction attached.",
 systemEvent.getDate(), systemEvent.getTime()));
 } else {
 //
 if (isSettleable(systemEvent, transaction)) {
 // Log release
 logEvent(systemEvent, "Release",
 String.format("Release tranId %d for settlement",
 transaction.getId()));
 sendPaymentForSettlement(transaction);
 }
 }
 break;
 case SystemEvent.AGENT_TRANSACTION_HAS_SETTLED:
 // The settlement confirmation messenger algorithm
 // sends these system events after a transaction has been booked
 // for the account having the settled transaction attached
 // i.e. the attribute transaction is set.
 // At this point the account's position has changed and again
 // the agent may or may not react.
 break;
 case SystemEvent.AGENT_ALERT_END_OF_DAY:
 // This is an alert message on approaching end-of-day event
 // upon which the agent may or may not react.
 // This implementation decides to send all its non-sent transactions
 // to the settlement process.
 sendPaymentsForSettlement(systemEvent,
 String.valueOf(systemEvent.getType()));
 break;
 case SystemEvent.AGENT_END_OF_DAY:
 // On end-of-day event the agent may send its' transactions
 // to system which will depending on system setup
 // 1. add the transactions to statistics or
 // 2. move the transaction to next day for further processing.
 break;
 default:
 // The execution should never fall here.
 break;
 }
 }

 /**
 * Determine here whether the transaction is to be released or
 * suspended by the bank agent
 */
 @Override
 public boolean isSettleable(SystemEvent systemEvent,
 Transaction transaction) {
 // This is a simple example of logics to determine
 // wether or not to send a transaction to be settled.
 if (getAccount().getBalance() > transaction.getValue()) {
 return true;
 }
 return false;
 }
}

BoF-PSS3 User Manual 123

V. HTTP API examples

In below HTTP API examples the commands contain the following parts:

Part Value Mandatory

/

Optional

HTTP method GET, POST PUT DELETE M

Request path Example:

/projects/{name}/simulations

where path parameters are identified

with surrounding curly braces {}

M

Request body O

HTTP response 200 - OK

201 - Created

202 - Accepted

400 - Bad Request

M

Application response Typically a JSON object M

For a full and uptodate API description use the the swagger tool:

http://localhost:8080/swagger-ui/index.html?configUrl=/api-docs/swagger-config#/

1. Template methods

Templates are used in importing data from CSV files to Simulator database. The

possible template types for data input are: PART, TRAN, DBAL, ICCL, BLIM,

RSRV, EVNT. After running the Simulator the first time Simulator creates a set of

default Templates to the database table "pss2_systemdb.temp".

GET /templates

List all existing templates.

 Path parameters: NA

 Request body: NA

 HTTP response: 200

 Response: JSON object

 Example:
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "ACST-ALL",
 "type": "ACST",
 "skipFirstNRows": 0,
 "skipLastNRows": 0,
 "templateSetting": " , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

http://localhost:8080/swagger-ui/index.html?configUrl=/api-docs/swagger-config#/

BoF-PSS3 User Manual 124

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49",

 "templateFields": null
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "ACST-EMP",
 "type": "ACST",
 "skipFirstNRows": 0,
 "skipLastNRows": 0,
 "templateSetting": " ,

, ",
 "templateFields": null
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "AVST-ALL",
 "type": "AVST",
 "skipFirstNRows": 0,
 "skipLastNRows": 0,
 "templateSetting": " , 1, 2, 3, 4, 5, 6, 7, 8",
 "templateFields": null
 }, ...
]

GET …/templates/type/TRAN

List all existing templates of type TRAN.

 Parameters: NA

 Request body: NA

 HTTP response: 200

 Response: JSON object

 Example:
 [
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "ccpData",
 "type": "TRAN",
 "skipFirstNRows": 2,
 "skipLastNRows": 0,
 "templateSetting": " , , 1, 2, 3, 14, , 4, 5, , 6, 7, , , ,
, , , , 9, 10, 11, 8, 12, , , , , , , , , , 13, ",
 "templateFields": null
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "example",
 "type": "TRAN",
 "skipFirstNRows": 2,
 "skipLastNRows": 0,
 "templateSetting": " , , 1, 2, 3, 4, , 5, 6, , 7, 8, 9, , ,
, , , , , , , , , , , , , , , , , , 10, ",
 "templateFields": null
 }, ...

BoF-PSS3 User Manual 125

]

POST /templates

Adds a template to the system database. The example under is for adding a PART

template.

 Path parameters: NA

 Request body: JSON
 {
 "templateId": "src-1",
 "type": "PART",
 "skipFirstNRows": 2,
 "skipLastNRows": 0,
 "templateSetting": " , , 1, 2, , 3, , , , , , , , , , , , , , ",
 }

 HTTP response: 201

 Response: JSON object

 Example:
 {
 "id": 0,
 "created": null,
 "modified": null,
 "templateId": "src-1",
 "type": "PART",
 "skipFirstNRows": 2,
 "skipLastNRows": 0,
 "templateSetting": " , , 1, 2, , 3, , , , , , , , , , , , , , ",
 "templateFields": [
 {
 "name": "P_PARTICID",
 "description": "Participant ID",
 "inputFieldIndex": 1,
 "mandatory": true
 },
 {
 "name": "P_ACCOUNID",
 "description": "Account ID",
 "inputFieldIndex": 2,
 "mandatory": true
 },
 {
 "name": "P_ACCOTYPE",
 "description": "Account type",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_FULLNAME",
 "description": "Full name",
 "inputFieldIndex": 3,
 "mandatory": false
 },
 {
 "name": "P_SHORTACR",
 "description": "Short acronym",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {

BoF-PSS3 User Manual 126

 "name": "P_ACCONAME",
 "description": "Account name",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_SETINSYS",
 "description": "Settles in system",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_SETONPAR",
 "description": "Settles on participant",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_SETONACC",
 "description": "Settles on account",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_LIQFRSYS",
 "description": "Liquidity injection from system",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_LIQFRPAR",
 "description": "Liquidity injection from participant",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_LIQFRACC",
 "description": "Liquidity injection from account",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_LIQINJVA",
 "description": "Participant/account specific liquidity
injection value",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_USERCOD1",
 "description": "User defined code 1",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_USERCOD2",
 "description": "User defined code 2",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_USERCOD3",
 "description": "User defined code 3",
 "inputFieldIndex": 0,
 "mandatory": false

BoF-PSS3 User Manual 127

 },
 {
 "name": "P_USERCOD4",
 "description": "User defined code 4",
 "inputFieldIndex": 0,
 "mandatory": false
 },
 {
 "name": "P_USERCOD5",
 "description": "User defined code 5",
 "inputFieldIndex": 0,
 "mandatory": false
 }
]
 }

2. Project methods

After installation the Simulator database has no content and the first step is to create

a project. Basically a project is container that holds data for a specific study. A

project is a nice way to isolate different studies in that the data of a project is

independent from another.

POST /projects

Creates a new project to the Simulator. It adds a new project schema to the database.

In other terms it creates a new project specific database. The method returns the

created project data. Please notice that to create a project, it is enough to provide

only the project name attribute in the JSON object.

 Path parameters: NA

 Request body: JSON object

 Example:
 {
 "name": "myproj"
 }

HTTP response: 200

Response: JSON object

 Example:
 {
 "id": 0,
 "created": "2020-12-02T14:36:05",
 "modified": "2020-12-02T14:36:05",
 "name": "myproj",
 "databaseLocation": "C:/Program Files/MariaDB 10.2/data/myproj",
 "inputFolder": "C:/BoF-PSS/P_myproj/INPUT/",
 "outputFolder": "C:/BoF-PSS/P_myproj/OUTPUT/",
 "errorFolder": "C:/BoF-PSS/P_myproj/ERRORLIST/",
 "outputReportFolder": "C:/BoF-PSS2/P_myproj/OUTPUT_REPORTS/",
 "networkFolder": "C:/BoF-PSS/P_myproj/NETWORKS/",
 "networkReportFolder": "C:/BoF-PSS2/P_myproj/NETWORK_REPORTS/",
 "location": "C:/BoF-PSS/P_myproj",
 "size": null,
 "default": true

BoF-PSS3 User Manual 128

 }

GET /projects

 Returns a list of all projects found in the Simulator database in JSON format.

 Path parameters: NA

 Request body: NA

 HTTP response 200

 Response: JSON object

 Example:
 [
 {
 "id": 0,
 "created": "2020-12-02T14:36:05",
 "modified": "2020-12-02T14:36:05",
 "name": "myproj",
 "databaseLocation": "C:/Program Files/MariaDB 10.2/data/myproj",
 "inputFolder": "C:/BoF-PSS/P_myproj/INPUT/",
 "outputFolder": "C:/BoF-PSS/P_myproj/OUTPUT/",
 "errorFolder": "C:/BoF-PSS/P_myproj/ERRORLIST/",
 "outputReportFolder": "C:/BoF-PSS2/P_myproj/OUTPUT_REPORTS/",
 "networkFolder": "C:/BoF-PSS/P_myproj/NETWORKS/",
 "networkReportFolder": "C:/BoF-PSS2/P_myproj/NETWORK_REPORTS/",
 "location": "C:/BoF-PSS/P_myproj",
 "size": 255634,
 "default": true
 }
]

DELETE /projects/{name}

Removes the named project and all its contents from the database.

 Path parameters:

 name: Project name (like"myproject”)

 Request body: NA

 HTTP response: 200

 Response: text

 Example:

 "SUCCESS"

3. System methods

Systems belong to projects. These operations will require a project to exist.

POST /projects/{name}/systems

 Path parameters:

 name: Project name

 Example: "mysystem" or "sys1"

 Request body: JSON object

 Example:

BoF-PSS3 User Manual 129

 {
 "name": "sys1"
 }

HTTP response: 201

Response: JSON object

 Example:
 {"id":1,
 "created":null,
 "modified":"2020-12-03T10:39:16",
 "name":"sys1",
 "datasets":null}

4. System dataset methods

A system in a project must have at least one system data set.

POST /projects/{name}/systemdatasets

 This method creates a system dataset for the system.

 Path parameters:

 name: Project name

 Example: "myproj"

 Request body: JSON object

 Example:
 {
 "systemId": 1,
 "datasetId": "ds",
 "name": "sysDs",
 "description": "System data set",
 "creditAvailability": "ACCORDING_TABLE",
 "transferBalances": false,
 "bilateralLimitUse": false,
 "transferTransactions": "TRANSFER_TO_NEXTDAY",
 "openingTime": 70000,
 "closingTime": 180000,
 "systemAlgorithms": [
 {
 "algorithmName": "ENBASIC1",
 "type": "ENT",
 "parameters": "is entry settlement enabled?41][is FIFO
enabled?41"
 },
 {
 "algorithmName": "SEBASIC1",
 "type": "SET",
 "parameters": ""
 },
 {
 "algorithmName": "ENDRTGS1",
 "type": "END",
 "parameters": ""
 }
],
 "editable": true
 }

 HTTP response: 201

 Response: JSON object

BoF-PSS3 User Manual 130

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-03T11:41:48",
 "systemId": 1,
 "datasetId": "ds",
 "name": "sysDs",
 "systemName": "sys1",
 "description": "System data set",
 "type": "RTGS",
 "creditAvailability": "ACCORDING_TABLE",
 "transferBalances": false,
 "bilateralLimitUse": false,
 "transferTransactions": "TRANSFER_TO_NEXTDAY",
 "openingDate": 0,
 "openingTime": 70000,
 "closingDate": 0,
 "closingTime": 180000,
 "systemAlgorithms": [
 {
 "id": 9,
 "created": null,
 "modified": "2020-12-03T11:41:48",
 "systemId": 1,
 "datasetId": "ds",
 "algorithmName": "ENDRTGS1",
 "systemAlgorithmId": 0,
 "type": "END",
 "parameters": null,
 "teaAlgorithmId": null,
 "teaAlgorithmParameters": null,
 "parallelProcessingIndicator": 0,
 "algorithmParameters": null,
 "selected": true
 },
 {
 "id": 8,
 "created": null,
 "modified": "2020-12-03T11:41:48",
 "systemId": 1,
 "datasetId": "ds",
 "algorithmName": "SEBASIC1",
 "systemAlgorithmId": 0,
 "type": "SET",
 "parameters": null,
 "teaAlgorithmId": null,
 "teaAlgorithmParameters": null,
 "parallelProcessingIndicator": 0,
 "algorithmParameters": null,
 "selected": true
 },
 {
 "id": 7,
 "created": null,
 "modified": "2020-12-03T11:41:48",
 "systemId": 1,
 "datasetId": "ds",
 "algorithmName": "ENBASIC1",
 "systemAlgorithmId": 0,
 "type": "ENT",
 "parameters": "is entry settlement enabled?41][is FIFO
enabled?41",
 "teaAlgorithmId": null,

BoF-PSS3 User Manual 131

 "teaAlgorithmParameters": null,
 "parallelProcessingIndicator": 0,
 "algorithmParameters": null,
 "selected": true
 }
],
 "editable": true,
 "transferTransactionsTypes": [
 "TRANSFER_TO_NEXTDAY",
 "DELETE_INCLUDE_STATS",
 "DELETE_EXCLUDE_STATS",
 "FORCE_SETTLEMENT_ON_EOD"
],
 "creditAvailabilityTypes": [
 "ACCORDING_TABLE",
 "NO_AVAILABLE",
 "AVAILABLE_WITHOUT_LIMITS"
],
 "systemTypes": [
 "DNS",
 "CNS",
 "RTGS"
]
 }

5. File methods

Next the input data CSV files are uploaded to the project folder on application

server before importing the file content to database.

POST /projects/{name}/files/upload

This method creates a system dataset for the system.

 Path parameters:

 name: project name

 Example: "myproj"

 Request body: multipart/form-data

 HTTP response: 200

 Response: JSON object

 Example:
 {
 "fileName": "part.csv",
 "fileDownloadUri":
"http://localhost:8080/downloadFile/part.csv",
 "fileType": "application/octet-stream",
 "size": 212365,
 "message": null,
 "status": null
 }

NOTE!

In chapter Error! Reference source not found., among examples there is a

example how to upload files using CURL command.

BoF-PSS3 User Manual 132

6. Dataset methods

Next import the necessary input data sets to the corresponding database table.

Please notice that in this phase the file upload commads are expected beeing run

thus the files are waiting to be imported in project's folder on application server

side.

POST /projects/{name}/datasets/import/{isWaitToComplete}

 This method creates a system dataset for the system.

 This command can be run for each required input type:

 PART, TRAN, DBAL, ICCL, BLIM, RSRV, EVNT

 Parameters:

 name: Project name. Example: "myproj"

 isWaitToComplete: Use value true to wait and receive the result of the

method With value false, the methods returns without waiting the import method

to complete. Example: "true"

 Request body: JSON object

 Example:
 {
 "systemId": 1,
 "entityType": "PART",
 "templateName": "example",
 "filename": "part.csv",
 "datasetName": "ds",
 "mapToPartDataset": null
 }

 HTTP response:

 200 - isWaitToComplete parameter is set to true

 202 - isWaitToComplete parameter is set to false

 Response:

 text

 Example:

 true

7. Simulation methods

 After all needed data sets are in place in database a simulation can be created.

 POST /projects/{name}/simulations

 This method creates a simulation.

 Parameters:

 name: Project name

 Example: "myproj"

 Request body: JSON object

BoF-PSS3 User Manual 133

 Example:
 {
 "parentId": 0,
 "simRunId": "sim1",
 "name": "simulation one",
 "description": "Enter description...",
 "outputTables": "true,true,true,false,false,false,false,false",
 "systemIDs": "t2",
 "systemDatasetSelection": "ds",
 "partDatasetSelection": "ds",
 "tranDatasetSelection": "ds",
 "dbalDatasetSelection": "null",
 "icclDatasetSelection": "null",
 "blimDatasetSelection": "null",
 "rsrvDatasetSelection": "null",
 "evntDatasetSelection": "null",
 "agentConfigurationFilePath": "",
 "submissionAlgorithmId": "SUFIFOPR",
 "algorithmType": "SUB",
 "parametersValues": null,
 }

 HTTP response: 201

 Response: JSON object

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-03T15:53:13",
 "runningMode": "EXECUTE",
 "parentId": 0,
 "simRunId": "sim1",
 "name": "simulation one",
 "description": "Enter description...",
 "processDate": 0,
 "processTime": 0,
 "duration": 0,
 "outputTables": "true,true,false,false,false,false,false,false",
 "systemIDs": "sys1",
 "systemDatasetSelection": "ds",
 "partDatasetSelection": "ds",
 "tranDatasetSelection": "ds",
 "dbalDatasetSelection": "null",
 "icclDatasetSelection": "null",
 "blimDatasetSelection": "null",
 "rsrvDatasetSelection": "null",
 "evntDatasetSelection": "null",
 "agentConfigurationFilePath": null,
 "numberOfSystems": 0,
 "numberOfAccounts": 0,
 "numberOfTransactions": 0,
 "submissionAlgorithmId": "SUFIFOPR",
 "algorithmType": "SUB",
 "parametersValues": null,
 "run": null,
 "selectedOutTables": [
 "true",
 "true",
 "true",
 "false",
 "false",
 "false",
 "false",
 "false"

BoF-PSS3 User Manual 134

],
 "selectedSystemIds": [
 "sys1"
],
 "selectedSystemDatasets": [
 [
 "ds",
 "ds",
 "ds",
 "",
 "",
 "",
 "",
 ""
]
],
 "crossCheckDone": false
 }

GET /projects/{name}/simulations/run/{id}/{isWaitToComplete}

This method runs the simulation indicated by the id.

 Parameters:

 name: Project name

 Example: "myproj"

 id: simulation id

 Example: "1"

 isWaitToComplete: Use value true to wait and receive the result of the

 method With value false then methods return without waiting the method

 to complete. Example: "true"

 Request body: NA

 HTTP response:

 200 - isWaitToComplete parameter is set to true

 202 - isWaitToComplete parameter is set to false

 Response:

 JSON object

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-04T12:18:33",
 "runningMode": "EXECUTE",
 "parentId": 0,
 "simRunId": "sim1",
 "name": "simulation one",
 "description": "Enter description...",
 "processDate": 20201204,
 "processTime": 121833430000,
 "duration": 443,
 "outputTables": "true,true,true,false,false,false,false,true",
 "systemIDs": "sys1",
 "systemDatasetSelection": "ds",
 "partDatasetSelection": "ds",
 "tranDatasetSelection": "ds",
 "dbalDatasetSelection": "null",
 "icclDatasetSelection": "null",
 "blimDatasetSelection": "null",

BoF-PSS3 User Manual 135

 "rsrvDatasetSelection": "null",
 "evntDatasetSelection": "null",
 "agentConfigurationFilePath": null,
 "numberOfSystems": 0,
 "numberOfAccounts": 0,
 "numberOfTransactions": 0,
 "submissionAlgorithmId": "SUFIFOPR",
 "algorithmType": "SUB",
 "parametersValues": null,
 "run": "2020-12-04T12:18:33",
 "selectedOutTables": [
 "true",
 "true",
 "true",
 "false",
 "false",
 "false",
 "false",
 "true"
],
 "selectedSystemIds": [
 "sys1"
],
 "selectedSystemDatasets": [
 [
 "ds",
 "ds",
 "ds",
 "",
 "",
 "",
 "",
 ""
]
],
 "crossCheckDone": false
 }

GET /projects/{name}/simulations/data/syls/{simId}

The following method call lists the SYLS output data for the given simulation id.

The output data for ACST, TEST, QURE, AVST and BIST tables can be retrieved

in similar manner.

 Path parameters:

 name: Project name

 Example: "myproj"

 simId: simulation id

 Example: "1"

 Request body:

 HTTP response: 200

 Response: JSON object

 Example:
 [
 {
 "id": 0,
 "systemId": 1,
 "simulationId": 1,
 "modified": null,
 "key": null,

BoF-PSS3 User Manual 136

 "businessDay": "20030512",
 "systemName": "dsEx",
 "valueInData": 7.7626218987E9,
 "valueCarriedOver": 0.0,
 "valueSubmitted": 7.7626218987E9,
 "valueSettled": 4.6236442517E8,
 "valueUnsettled": 7.30025747353E9,
 "numberInData": 778,
 "numberCarriedOver": 0,
 "numberSubmitted": 778,
 "numberSettled": 122,
 "numberUnsettled": 656,
 "beginningOfDayBalance": 0.0,
 "endOfDayBalance": 0.0,
 "averageCreditLimit": 5.453449056E7,
 "liquidityAvailable": 5.453449056E7,
 "absoluteCreditLimitUsage": 1.702447774E7,
 "relativeCreditLimitUsage": 0.02,
 "totalLiquidityAvailable": 9.8162083003E8,
 "lowerBoundOfLiquidity": 4.110843018E8,
 "maxQueueValue": 7.30025747353E9,
 "avgQueueValue": 2.0759429298E8,
 "avgQueueLength": 0,
 "numberOfQueuedTransactions": 656,
 "totValOfQueuedTransactions": 7.30025747353E9,
 "queueStopTime": 0,
 "avgTimeOfSettlement": 0,
 "liqUsageIndicCollateral": 0.06,
 "liqUsageIndicRepo": 0.13,
 "settlementDelay": 0.0,
 "settings": "",
 "maxCreditUsage": 0.0
 }
]

8. Analysis methods

Analysis requires a simulation that will be used as a benchmark to be defined.

POST /projects/{name}/analysis

This method creates an analysis.

 Parameters:

 name: Project name

 Example: "myproj"

 Request body: JSON object

 Example:
 {
 "name": "a1",
 "simId": 1,
 "simRunId": "sim1",
 "description": "a1",
 "rule": "FAIL_BY_PARTICIPANT",
 "accounts": [
 {
 "participantId": "13",
 "accountId": "13"

BoF-PSS3 User Manual 137

 },
 {
 "participantId": "17",
 "accountId": "17"
 }
]
 }

 HTTP response: 201

 Response: JSON object

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-04T14:57:04",
 "name": "a1",
 "simId": 1,
 "simRunId": "sim1",
 "type": 0,
 "status": "INITIAL",
 "description": "a1",
 "rule": "FAIL_BY_PARTICIPANT",
 "fileFilterName": null,
 "icclScreen": 0,
 "dbalScreen": 0,
 "accounts": [
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "13",
 "accountId": "13"
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "17",
 "accountId": "17"
 }
]
 }

GET /projects/{name}/analysis/run/{id}/{isWaitToComplete}

This method runs the analysis of provided id.

 Parameters:

 name: Project name

 Example: "myproj"

 id: analysis id

 Example: "1"

 isWaitToComplete: Use value true to wait and receive the result of the

 method. With value false then methods return without waiting the method

 to complete. Example: "true".

 Request body: NA

 HTTP response:

BoF-PSS3 User Manual 138

 200 - isWaitToComplete parameter is set to true

 202 - isWaitToComplete parameter is set to false

 Response: JSON object

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-04T14:57:04",
 "name": "a1",
 "simId": 1,
 "simRunId": "sim1",
 "type": 0,
 "status": "RUN",
 "description": "a1",
 "rule": "FAIL_BY_PARTICIPANT",
 "fileFilterName": null,
 "icclScreen": 0,
 "dbalScreen": 0,
 "accounts": [
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "13",
 "accountId": "13"
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "17",
 "accountId": "17"
 }
]
 }

GET /projects/{name}/analysis/runReport/{id}/{isWaitToComplete}

This method runs the analysis report for the provided analysis id. The report is

stored as two files:

 a. in CSV format that contains the report data,

 b. in XLSM format that contains the Excel macro that on file open phase

 reads the CSV data and loads it to a pivot table and thus it's

 capable to show Excel diagrams.

 Parameters:

 name: Project name

 Example: "myproj"

 id: analysis id

 Example: "1"

 isWaitToComplete: Use value true to wait and receive the result of the

 method. With value false then methods return without waiting the method

 to complete. Example: "true"

 Request body:

BoF-PSS3 User Manual 139

 HTTP response:

 200 - isWaitToComplete parameter is set to true

 202 - isWaitToComplete parameter is set to false

 Response: JSON object

 Example:
 {
 "id": 1,
 "created": null,
 "modified": "2020-12-04T15:43:02",
 "name": "a1",
 "simId": 1,
 "simRunId": "sim1",
 "type": 0,
 "status": "REPORTED",
 "description": "a1",
 "rule": "FAIL_BY_PARTICIPANT",
 "fileFilterName": null,
 "icclScreen": 0,
 "dbalScreen": 0,
 "accounts": [
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "13",
 "accountId": "13"
 },
 {
 "id": 0,
 "created": null,
 "modified": null,
 "analysisId": 1,
 "participantId": "17",
 "accountId": "17"
 }
]
 }

 GET /projects/{name}/analysis/download/{id}/{type}

This method is used to download the analysis report files. Download the CSV file

first and then only the macro file. After both files have been downloaded you can

open the .xlsm file.

 Parameters:

 name: Project name

 Example: "myproj"

 id: analysis id

 Example: "1"

 type: Must be either csv or xlsm

 Example: "csv"

 Request body:

 HTTP response: NA

 Response: Textual CSV data or Excel xlsm format (XML)

 Example:

BoF-PSS3 User Manual 140

BenchScenario;SimId;SimRunId;SystemId;failingParty;ParticipantId;AccountId;Busin
essDay;BoDBalance;EoDBalance;MinBalance;EoDCreditLimit;CreditLimitMaxUsage;Settl
edCount;SettledValue;SentUnstCountDirect;SentUnstValueDirect;SentUnstSystemicEff
ectCount;SentUnstSystemicEffectValue;ReceivedPaymentsCount;ReceivedPaymentsValue
;ReceivedUnstCountDirect;ReceivedUnstValueDirect;ReceivedUnstSystemicEffectCount
;ReceivedUnstSystemicEffectValue;ReceivedPaymentsDiffValue;LB;LBDiff;UB;MaxUpper
Bound;MinLiquidityDeterioration;MaxLiquidityDeterioration;SettlementDelay;Settle
mentDelayDiff;WeightedAvgReceivingTime;WeightedAvgReceivingTimeDiff;WeightedAvgS
endingTime;WeightedAvgSendingTimeDiff

Bench;1;sim1;1;;1;1;20030512;0;370379.4;0;0;0;5;444037;;;47;75145110.7;5;814416.
4;;;29;64854605.8;0;0;0;62487362.4;75589147.7;;;0;0;00:05:13;00:00:00;00:02:28;0
0:00:00
 Bench;1;sim1;1;;10;10;20030512;0;264063.2;-
105983.4;201802;52.5;3;105983.4;;;13;15034115.6;3;370046.6;;;12;14971854.3;0;0;0
;12356069.4;15140098.9;;;0;0;00:10:09;00:00:00;00:02:57;00:00:00
 ...

9. CURL API example

Here is a CURL example with which everything is performed from project creation

to the running of an analysis. The commands of the example can be used with

Windows command prompt using the CURL utility.

Performed operations in the CURL example:

1. create a project

2. create a system to the project

3. create a system data set

4. upload part and tran CSV files

5. Import the files to the project as data sets

6. create a simulation based on above data

7. run the simulation

8. creates an analysis

9. run the analysis

The contents of the needed JSON files for each CURL command are displayed

after the CURL commands.

Please note that in order to perform the example:

a. The CURL executable is set to your Windows path.

b. The below example lines expect that the json files referred as @[file

name].[file extension] are found on current run folder.

c. Similarly the below part.csv and tran.cvs files are found on current run

folder.

The used CSV files are from the example 1 distributed and included within the

Simulator installation.

 :: --- Start of Windows CMD script >>> ---
 set pssDomain=localhost:8080
 set pssProj=myProj

BoF-PSS3 User Manual 141

 :: Delete project in case it exists
 curl -X DELETE -H "Content-Type: application/json"

http://%pssDomain%/projects/%pssProj%
 :: Create project
 curl -X POST -H "Content-Type: application/json" http://%pssDomain%/projects

-d @project.json
 :: Create system
 curl -X POST -H "Content-Type: application/json" http://%pssDomain%/projects

-d @system.json

 :: Create system data set
 curl -X POST -H "Content-Type: application/json"

http://%pssDomain%/projects/%pssProj%/systemdatasets -d @systemDataset.json
 :: Upload file
 curl -i -X POST -H "Content-Type: multipart/form-data"

http://%pssDomain%/projects/%pssProj%/files/upload -F "file=@part.csv"
 curl -i -X POST -H "Content-Type: multipart/form-data"

http://%pssDomain%/projects/%pssProj%/files/upload -F "file=@tran.csv"
 :: Import uploaded file's data to database with wait for completion set to

true
 curl -i -X POST -H "Content-Type: application/json"

http://%pssDomain%/projects/%pssProj%/datasets/import/true -d
@importPartData.json

 curl -i -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/datasets/import/true -d
@importTranData.json

 :: Create simulation
 curl -X POST -H "Content-Type: application/json"

http://%pssDomain%/projects/%pssProj%/simulations -d @simulation.json
 :: Run simulation
 curl http://%pssDomain%/projects/%pssProj%/simulations/run/1/true
 :: Get simulation SYLS output data
 curl http://%pssDomain%/projects/%pssProj%/simulations/data/syls/1

 :: Create analysis
 curl -i -X POST -H "Content-Type: application/json"

http://%pssDomain%/projects/%pssProj%/analysis -d @data/analysis.json
 :: Run analysis
 curl http://%pssDomain%/projects/%pssProj%/analysis/run/1/true
 :: Run analysis report
 curl http://%pssDomain%/projects/%pssProj%/analysis/runReport/1/true
 :: Download the report in CSV format
 curl http://%pssDomain%/projects/%pssProj%/analysis/download/1/csv >

analysis.csv
 curl http://%pssDomain%/projects/%pssProj%/analysis/download/1/xlsm >

analysis.xlsm
 :: --- <<< Windows CMD script end ---

CURL example JSON files

Here are the JSON file contents used in the example above.

project.json

 {
 "name": "myProj",
 }

BoF-PSS3 User Manual 142

system.json

 {
 "name": "sys1"
 }

systemDataset.json

 Below the system id must correspond to existing system.

 {
 "systemId": 1,
 "datasetId": "dsEx",
 "name": "dsEx",
 "description": "System data set",
 "creditAvailability": "ACCORDING_TABLE",
 "transferBalances": false,
 "bilateralLimitUse": false,
 "transferTransactions": "DELETE_INCLUDE_STATS",
 "openingTime": 70000,
 "closingTime": 190000,
 "systemAlgorithms": [
 {
 "algorithmName": "ENBASIC1",
 "type": "ENT",
 "parameters": "is entry settlement enabled?41][is FIFO enabled?41"
 },
 {
 "algorithmName": "SEBASIC1",
 "type": "SET",
 "parameters": ""
 },
 {
 "algorithmName": "ENDRTGS1",
 "type": "END",
 "parameters": ""
 }
],
 "editable": true
 }

importPartData.json

 Below the system id must correspond to existing system and

 the template name must correspond the input CSV file data structure

 of given file name.

 {
 "systemId": 1,
 "entityType": "PART",
 "templateName": "example",
 "filename": "part.csv",
 "datasetName": "dsEx",
 "mapToPartDataset": null
 }

BoF-PSS3 User Manual 143

importTranData.json

Below the system id must correspond to existing system and the template name

must correspond the input CSV file data structure of given file name. The

mapToPartDataset refers above part data set.

 {
 "systemId": 1,
 "entityType": "TRAN",
 "templateName": "example",
 "filename": "tran.csv",
 "datasetName": "dsEx",
 "mapToPartDataset": "dsEx"
 }

importIcclData.json

Below the system id must correspond to existing system and the template name

must correspond the input CSV file data structure of given file name. The

mapToPartDataset refers above part data set.

 {
 "systemId": 1,
 "entityType": "ICCL",
 "templateName": "example",
 "filename": "iccl.csv",
 "datasetName": "dsEx",
 "mapToPartDataset": "dsEx"
 }

simulation.json

Below the system ids and data set names must correspond to existing entities in

database. If a data set selection has no existing data set the data set selection is set

with value "null".

 {
 "parentId": 0,
 "simRunId": "sim1",
 "name": "simulation one",
 "description": "Enter description...",
 "outputTables": "true,true,true,false,false,false,false,false",
 "systemIDs": "sys1",
 "systemDatasetSelection": "dsEx",
 "partDatasetSelection": "dsEx",
 "tranDatasetSelection": "dsEx",
 "dbalDatasetSelection": "null",
 "icclDatasetSelection": "dsEx",
 "blimDatasetSelection": "null",
 "rsrvDatasetSelection": "null",
 "evntDatasetSelection": "null",
 "agentConfigurationFilePath": "",
 "submissionAlgorithmId": "SUFIFOPR",
 "algorithmType": "SUB",
 "parametersValues": null

BoF-PSS3 User Manual 144

 }

analysis.json

 Below the simulation ids must correspond to existing entities in database.

 If a data set selection has no existing data set

 the data set selection is set with value "null".

 {
 "name": "a1",
 "simId": 1,
 "simRunId": "sim1",
 "description": "a1",
 "rule": "FAIL_BY_PARTICIPANT",
 "accounts": [
 {
 "participantId": "13",
 "accountId": "13"
 },
 {
 "participantId": "17",
 "accountId": "17"
 }
]
 }

