USER MANUAL

BOF-PSS3
Version 1.06
12.11.2025
Bank of Finland
PAYMENT AND
SETTLEMENT SYSTEM

SIMULATOR

Date Description Author
1.8.2013 New queue reason code for FIFO Kasperi Korpinen
24.9.2013 Updating the output DB by deleting the deprecated one Kasperi Korpinen
Removal of chapter 5.7 Time transposition Kasperi Korpinen
Business day deduction dropdown Kasperi Korpinen
7.8.2014 Examples removal of decimal comma Kasperi Korpinen
Log file conventions
Fujitsu contributors
My.cnf content
Execution of cross-checks before running
7.12.2015 Stress Tester Kasperi Korpinen
Default directory for DB’s Kasperi Korpinen
Joined the db manual to the same Kasperi korpinen
4.1.2016 - notational 3.4.1 Kasperi Korpinen
21.9.2016 Version updating guidance Kasperi Korpinen
Task automation tools
16.11.2016 | Stress Tester Kasperi Korpinen
27.6.2017 DB Rationalisation Kasperi Korpinen
removed comparison views
updated stress tester
updated CCP task automation tools
24.8.2017 Update the reference part dataset selection to the import | Kasperi Korpinen
functionality description
21.9.2017 Changed tables etc. better Maarit Aalto
5.10.2017 Added chapter on Import tools Kasperi Korpinen
28.11.2017 | New reference field into the database Kasperi Korpinen
11.1.2018 Test table description update Kasperi Korpinen
Run Benchmark task description.
16.4.2018 Updated part data table Kasperi Korpinen
30.5.2018 ABM algorithms Kasperi Korpinen
24.8.2018 Updating the DB driver to a newer one Kasperi Korpinen
3.1.2019 Installing instructions (Maria connector) and system Kasperi Korpinen
requirements
10.4.2019 Added descriptions to ABM Kasperi Korpinen
8.10.2019 ABM Kasperi Korpinen
3.12.2020 Stress tester report systemic unst Kasperi Korpinen
3.12.2020 General description and architecture, Hardware Kasperi Korpinen
recommendations, stress tester screen shots and text.
4.12.2020 Remove mySQL installation instructions Kasperi Korpinen
10.12.2020 | Moved the HTTP API examples to annexes. Harri Engblom
Removed more MySQL references.
14.12.2020 | Updated ABM description Harri Engblom
15.12.2020 | Updated ABM description Kasperi Korpinen
14.1.2021 Quick installation guide Kasperi Korpinen
10.3.2021 priority field value, eod credit limit Kasperi Korinen
9.8.2021 removal of references to : Algorithm Descriptions and Kasperi Koprinen
User Module Development Guide
25.10.2021 | ENBASICI new parameters for linked payment Kasperi Korpinen
processing
4.3.2022 partial settlement status code Kasperi Korpinen
18.3.2022 execution_status code updates for ICL execution statistics Kasperi Korpinen
9.1.2023 BOS and BBS skip transactions with linkcodes Kasperi Korpinen
2.5.2023 Forced end of day statistic behavior Kasperi Korpinen
6.6.2023 part_id description update: Not in use Kasperi Korpinen
9.10.2023 Added trouble shooting on Simulator not starting up Harri Engblom
23.11.2023 | Consolidated algorithms Kaperi Korpinen
5.1.2024 Consolidated algorithms Kasperi Korpinen
11.1.2024 RTGS and DNS example Kasperi Korpinen

1.10.2024 BBS no support for DVP and PVP Kasperi korpinen

15.10.2024 | Queuerelease to support DVP regardless of queue passed as Kasperi Korpinen
parameter.

14.3.2025 Changed adding user algo instructions Harri Engblom

30.10.2025 | PC recommendations Kasperi Korpinen

18.11.2025 | Chapter on Security concerns Kasperi Korpinen

Table of Contents

Quick installation guidecccooiiiiiiiiiii e 1

1 INtrodUCTiON....cueeieeiieenneiiniiseecsnenseessseessecssnssseessnssssesssassssessssssssssssassssasssssesaane 2
1.1 General architectural OVEIVIEWcccecieriiiiiiiiiiieiieeeee e 2

L2 INPUL AALA....eiiiiieiieie ettt et et 2

1.2.1 Simulation XECUtIONcccueeiuiiiiieiieiiieiie et 3

1.3 Analysis functionalities and simulation resultsccccceceveeverieneenene 4

1.4 Supported system structures and simulation examplesc.cceueenneee. 4

2 Installation.........coceveeeveesuecnnens 6
2.1 Hardware and software requireéments............cccccuveerveeerreeenveeenveesenneeennes 6

2.2 Possible deployment SEtUPS.........cevveeriierieeiiieieeieeeee et 8

2.3 Installing a database SETVET...........cccevieeriieeeiieeeiee et e 8

2.3.1 Installing MariaDBccccoooviiiiiiiiieiieeieeeece e 9

2.4 Installing the SIMUIAtOT.......ccviieiiieeieeee e 12

2.5 Starting and closing the BoF-PSS3 simulator..........c.ccccoevieeiienieennnnne, 13

2.6 Run time start-up parameterscceeevvveeerrieeeieeenireeesreeesreeeseseessnneeens 14

2.7 Security ConsSiderations...........cccueerueerieerieeriieenieeneeerieeseeesseesreeseensneenns 14

3 Functioning of a SImulation dayceiieiveiiisncninncninncssnecssnencsssescsssenenes 14
4 Operating the BoF-PSS3 simulator 17
4.1 Short description of BoF-PSS3 simulator use.........ccccoeveevieeiieeneenienns 17

4.2 Working With ProOJECEScc.eeviirciiirieeiieriie ettt ens 18

4.2.1 Project duplicates and backupsccceveueenieniieiieniiiieen 19

4.3 Setting up a payment and settlement SYStem...........cccceeeevierieecreennennnans 19

4.4 TMPOTLING ALA ..eeeiieiiieiieeieeie ettt sttt 22

4.4.1 EITOTIS TN IMPOTT..ceriiiiieieeiieeieeiiieeieeieesneesseesneeseeseneeseessneenne 25

4.5 Defining a sIMUlationcocceoeeiieriininiinieeeiesecceeeee e 26

4.5.1 Cross-checking data SetS...........cceevveeervieerieeeiiee e 27

4.5.2 Creating multi system simulations..........ccccceceevervieneencnicneenne. 29

4.5.3 ABM Simulationsccceceerieriiiiniieniienieeeieeee e 29

4.6 Executing SIMUIAtIONSooveerieriiriiniiiieniierieeiesieeiceeee e 30

4.6.1 Errors in SIMUlationsccccueevvieriieiiienieeieeie e 30

4.7 ANalySING TESUILSeeeiiiiiiiieeiieeeie e e 30

4.8 Automated stress testing module..........cccooceeviriiniininiiniiineee 31

4.8.1 Creating a NeW analysisccccvveeerieeeriieeriee e e eeee e 31

4.8.2 Selecting the accounts to be affected in a scenario.................... 32

4.8.3 SQL-query filters for scenario creationcceecveeeeveerneeennne. 33

4.8.4 Running of the analysis........c.cceevieriiieiiiniiiiieeieeeee e 34

4.8.5 Working with the results...........ccocoeeeriiieniieiriie e 34

4.9 Task Automation Tool and Task Setscccceeeveeeviieeiieeecree e, 38

4.9.1 ITMPOTt taSKS...ccuveeeeiiieeciie et e 39

4.9.2 CCP taSKS ..eevieiieeieeieee ettt 42

5 Operating the simulator via HTTP API 44
5.1 Used teChNOlOZY ...cc.vveeuiieiieiiiieiiece et 45

S5.1.1 HTTP Protocoleeeeieeeiiieeieeeiieeeee ettt e 45

5.1.2 JSON NOtAtION ..ttt 45

5.2 SIMUlator APT methods coeeeeeeee oo 46

6 Algorithms and user modules 46

0.1 AIGOTIRIMSuiiiiiiiieie e 46

6.2 Example algorithm selection for a pure RTGS or instant payment system
56

6.2.1 Example of a DNS or batch systemstems............ccccceeeeveeennennns 57

6.3 Calculation of bilateral imitS............cccceeeeevveiieeiiiiee e 59

6.4 Algorithms for special Cases.........ccveeeviiieiiieeie e 61

6.4.1 Receipt-reactive RTGSccooviiiiiiiiiiieceeee e 61

6.5 System event handler algorithms (SEH)cccoeviiieiiiiniiieeeee, 64

6.6 Time estimation algorithms (TEA)cccccooviieiiieiiiiiieieceee e, 64

6.7 Agent based modelling (ABM) algorithms...........ccceeeeviveviieecieeeieee, 66

6.7.1 Basic fUNCtiONINGcccvveeiiierieeiieiie e 66

6.7.2 When and how are agents activated?ccccoeevveercrieeeieesinnennns 67

6.7.2.1 Simulation initialiSAtioNcccveeeeeiveeeeeiiieeeeeeieeeeeeeireeeeeans 67

6.7.2.2 Processing of a wake up event.........cccceeeevveeecvieenieeeeiee e, 67

6.7.2.3 Sending a payment for settlement..............cccoevevrriienieeneenen. 68

6.7.2.4 Transaction bOOKING..........ceevuirriiiiiiiiiiienieeieee e 69

6.7.2.5 End of day callS........ccoeoviiriiieniieiieiiececeeeeee e 69

6.7.3 Account management Al algorithmsccocceeviiiiiiniinnennnen. 69

6.7.4 ABM Object MOdel........cccoeeviieriiiiiiiiiieieeeieeieeee e 73

6.8 User module INtETTACEccueieviiieiiieciieceeeee e 74

6.8.1 Adding a user moduleccoovveeiiiiiiiiiieieeee e 74

7 Data content and databases 75

7.1 File directory StUCLUIEccvieriieeiieiieeieeiee ettt eve e 75

7.2 Database files and 10Cationscccevvvviiieiiiiiiiiiiieeeee e 76

T3 DAA SCLS .o e e e e e e e enaes 77

7.4 About MariaDBcooviiiiiiiiiiiieeeee e 77

7.4.1 HeidiSQL database BrOWSErcccueeeevieeeiiiieeiieeeiee e e 78

7.4.2 ODBC INteIfaceccooviuviieieiiiieceeceee e 79

7.4.3 Direct modifications of simulator databaseccceeeuvvveeeeen.. 79

8 Description of database tables 80

8.1 System databasecccueeeiiiieiiieeeiie e e 81

8.1.1 Defaults [DEFA].....c.coooiiieiieeeeeee et 81

Contains default information for projects.cccceeveeeviievrcieeenieeenen. 81

8.1.2 Project [PROJ] ..eoeiee e 81

8.1.3 Algorithm definition [ALDE].......cccceeiiiiiiiiiiieeeeee e 81

8.1.4 Template [TEMP]ccceoeiiiiriiiiiieee e 82

8.1.5 Database version [db_ VErsion].........cccccceeevveerciieeniieeeneeeeneeeene 82

8.1.6 Acceptable system Ids [ASID].....ccooieriiiiiiiiiiieieeceieeee 82

8.2 Project’s input data tables..........cceecieeriiieniieeiece e 83

8.2.1 SyStem [SYSIEM] ..cccuviiiiiiiiiiiiiiieeeiee e 83

8.2.2 Dataset [dataset]........ccueeeeeiiiiieeiiiie e 83

8.2.3 System setupdataset [SYCD].....cccooevieniiieiieniieiieeieeeeeeeee 84

8.2.4 Participant data table [PART].....ccccveeiiiieiiieieecee e 85

8.2.5 Daily balances table [DBAL].......cccccceeiiieiieniieiieeieeeeie e 86

8.2.6 Intraday changes in credit limit [ICCL]........ccccceevevveiriiieenienne, 87

8.2.7 Bilateral limit table [BLIM].........ccceeoiiiiiiiiiieceeecee e 87

8.2.8 Reservations table [RSRV] ... 89

8.2.9 Transaction data table [TRAN].........cccoeiiiiiiiiiieeeeceee e 89

8.2.10 Transactions generated by simulations

[tran_generated by simulation]ccccceeriiieiiienieiiienieeienie e 91
8.2.11 Simulation events [business day event]..........cccccevevveerurennee. 91
8.2.12 System algorithms [SALG]......ccccoevieriiiiieiieeiieeieeieeere e 92
8.2.13 Analysis [aNalySiS].....ccceereviieriieeiiieeiee et 92
8.2.14 Analysis accounts [analysis_account]..........cccecceeeveerieenvennnen. 93
8.2.15 Failing accounts [failing account]..........cccceeevvvevcrveirieeenreennne. 93
8.2.16 Scenario data[SCenario].........ccceeeeveeecieieeiiieeciee e 93
8.3 Project’s output tablesccveeeuiieeiieeciiecee e 94
8.3.1 System level statisticS [SYLS]...ccoierieriiieieiiieiieeieeeeeie e 94
8.3.2 Account statisticS [ACST] ...oeeivieeciieeeeeeeeeee e 95
8.3.3 Bilateral statistics table [BIST].....cc.ccooviiiviiiiiiieceeccee e, 97
8.3.4 Transaction event statistics [TEST]c.cccoovveviiiinciiiieeeieeee, 97
8.3.5 Intraday credit limit order execution statistics
[iccl order execution StatiSHICS]cccvceerveeeriieeeriiieeiieeerreeeeeee e 98
8.3.6 Netting event statistics [NEST]ccovveiiieiieniiiiieeieeeeieee 99
8.3.7 Account violation statistics [AVST]...cccceereniiiiiiniiiieieeee 99
8.3.8 Queue reason information [QURE]ccccooeviiiiiiiiiinennen. 100
8.3.9 Analysis indicators [analysis_indicator]...........ccccceveeriiennnnne. 100
8.4 Technical tablescociiiiiiiiiiiieieeeeeee e 101
8.4.1 Batch run information [BARI].......ccccooviiiiiiiiiiiiiieceeee, 101
8.4.2 Simulation run information [SIRI]........c.ccccccoeeiiiiiiiiiiiiieeenen. 101
8.4.3 Applicationruns [Applicationruns] (Not in use)ceeeu.e.. 102
8.4.4 Process 10g [Processlog]c.covveeruieeiienieiiienieeieeee e 103
9 Miscellaneouscceeeeeercneecrnncene .103
0.1 Date fOrmat......ccceeriiiiiiiiieieeieete ettt 103
0.2 TIME fOIMAL....ccuviiieiiieciie ettt e e e e e sree e eeaeeeaaee e 103
0.3 File temMPIatecccuvieiieiieeiieciie ettt e en 104
9.4 About using Microsoft Excel with the simulatorcccccceeeeenie. 104
0.5 EITOT LISttt 105
9.6 CSV and EXCel filesooouieiiiiiieiieiieeeeee e 105
10 Technical documentation 106
11 Troubleshooting guide 106
11.1 Database table T€PaIrS.......ccceeeeiuieeriiieeriie e 108
12 Acknowledgements 109
ANNEXEScoovvvvurcvennensuecennaes 114
I. Calculation of specific indicators 114
II. List of cross-check messages ..116
ITI. ABM property file eXampleccoueeeneenreensnensennsensseensnecssnncsaessacsssessnne 118
IV. Example ABM bank agent implementation 120
V. HTTP API examples 123
1. Template methods 123

Project methods 127

System methods 128
System dataset methods 129
File methods 131
Dataset methods 132
Simulation methods 132
Analysis methods 136
CURL API example 140
CURL example JSON fIleSccccvveeiiiieiiieeieeciee et 141
project.json 141
system.json142
SYStEMDALASEL. JSOMcueveeiieeiieeiieeie ettt et eee e e eee 142
IMPOTtPArtData.JSOMN ...oouviiiiiiiieiieeceee e 142
IMPOTtTranData.JSONeevvveeiiiriiieiiecie ettt 143
IMPOrtIccIData JSON.........eeiiiiiiieiieeiiee e 143
SIMUIATION.JSOM ...ttt et e e e ene 143

ANALYSIS.JSOM L.ttt ettt 144

Quick installation guide

1) Download and install MariaDB 11.8.3 (or newer stable release)
2) Request a simulator downloading link from BoF

3) Unazip the simulator package to C:\BoF-PSS\

4) Start the simulator by clicking c:\BoF-PSS\startMin.cmd

5) Open Chrome browser and open: http://localhost:8080/

For more detailed installation instructions, please refer to CH 2.

BoF-PSS3 User Manual

1 Introduction

The Bank of Finland Payment and Settlement System Simulator (BoF-PSS3), is an
analysis software designed for payment and settlement system simulations. The
simulator can be used for studying liquidity needs and risks in payment and
settlement systems. Special situations, which are often difficult or impossible to test
in a real environment, can be simulated with this tool.

This document is the user manual of BoF-PSS3. It describes features of the software
and their use. It also provides an overview of technical details of the simulator.

1.1 General architectural overview

The BoF-PSS3 simulator consists of 3 main parts:

a) A graphical user interface implemented as a web-application using mainly
techniques like html and JavaScript.

b) A back-end server than can be installed on a regular windows PC.

c¢) Database storage. Currently MariaDB is used in development.

The architecture of the PSS3 program is pictured below:

Architectural Overview

Backend Server \
Restful, MVC layered architecture

Hiip

uesis
e Input DB

1

Afternative www
application

Http API

Service Repository
Controller layer services
layer

v

CQutput DB

'y |

o
28,2020 | Pubic | BOFIFINFSA UINRESTRICTED 1 SUDEEMEANEX] % I NO BAKE

1.2 Input data

In order to function, the simulator needs at least transaction data as input data.
Here is a list of the datasets that can be given to the simulator for simulations:

BoF-PSS3 User Manual 2

Account balances (PART)

Transactions (TRAN)

Intraday credit limits (ICCL)

Bilateral and multilateral limits (BLIM)
Credit caps are also supported.

Events information (EVNT)
Reservations (RSRV).

Tailored systems only.

[Wy Wy

(M

Usually production data is favored but in some cases artificial data is also used.
This would depend on the study.

The simulator includes tools to import and validate these data. All the data are
stored in project specific databases. The users responsibility is to check that the
input data is formally valid and then import it into the simulator. The correctness of
the input data is vital. Account ids in all files must correspond to the account ids in
a participant dataset.

All input data must be presented in CSV (comma separated values) format, but it
can be entered in a user-defined order. The input data can be edited by exporting
them from the input database as CSV files to Excel. They can then be re-imported
after the changes. Older Excel versions can handle about 65,000 rows. Excel 2010
is already able to handle ~1 000 000 rows. If larger files need to be edited, other
tools (e.g. Python, Matlab, R, Access or SAS) or programming is usually needed.
One option is to edit the data directly in the simulator’s databases with SQL-queries.
The use of SQL-queries requires some moderate technical skills. In rare situations,
splitting tables in sub-tables may be a suitable solution. The simulator does not
include a proprietary editor for this purpose.

1.2.1 Simulation execution

The simulator includes tools for configuring payment and settlement system setups
and running simulations. The simulator records all events and bookings. Some
premade reports and statistics on simulation runs are available. The simulator
allows to set up and manage settlement structures, configure settlement rules and
launch, monitor and control simulation runs. The simulator keeps a log file for the
user of all simulations made.

BoF-PSS3 User Manual 3

1.3 Analysis functionalities and simulation results

The simulator has functionality for reporting basic statistics for common result
parameters. The output database tables contain data amongst other for the booking
order of transactions and balances of settlement accounts. The input database tables
contain the transactions posted to the production system, while the output tables
contain the settlement flow, i.e. settlement order and timing of submitted
transactions.

Users typically perform many different simulations and want to compare the results
of the different runs. When the simulator’s basic reports are not enough, more
complex or tailored analyses may require exporting CSV files for use with tools
such as Excel or other statistical software. It is thus advisable to create a structure
beforehand for simulation runs and determine which results are to be stored in
databases for further analysis. The databases can become overly massive when
transaction volumes are high and all transaction-level events are retained in the
databases. This is specifically the case when the automated stress tester is not used.

1.4 Supported system structures and simulation examples

BoF-PSS3 software supports a large variety of general system structures. It can
model most of the payment and securities settlement system structures and
processes found in real systems.

The simulator supports real-time gross settlement (RTGS), continuous net
settlement (CNS) and deferred net settlement (DNS) systems and hybrid systems.
The processing options for these systems are defined by selecting appropriate
algorithms. For example, QUE algorithms define how transactions are released
from queues, while PNS algorithms define when and how partial net settlement of
queued transactions will be invoked.

Here is a list of central supported features:

RTGS, DNS, CNS

Hybrid (combinations of the above)

LVPS and Retail

DVP, PVP

Bilateral and multilateral limits (credit and debit caps)
Multicurrency

Multisystem

(I I N I N N W

Securities settlement systems

BoF-PSS3 User Manual 4

QO CCP (limited)

The focal output factors in simulations are typically counterparty risk and overall
risk, liquidity consumption, settlement volumes, gridlock situations and queuing
time. Here are some purposes the simulator is used for:

Identify and quantify risks
Counterparty risk

Critical participants
Warning indicators
Scenario analysis

Stress testing

Feature prototyping
System design

(I R N Iy Iy N N

Academic research

Here are some possible scenario types:

Participant Default
Cyber attacks

Terror attack

Earthquake

Operational incidents
Bank run

Devaluation of Collateral
System change

Policy change

Mergers

(I R N Ny N N N B

U

Scenarios are usually generated by affecting input data and system setups in
various ways. Most commonly affected factors are the following:
Transactions (canceled, delayed, introduction order,...)

Beginning of day balances

Credit limits

Bilateral and multilateral limits (credit and debit caps)

System setups

Algorithms

(I N N W W

Account structure

BoF-PSS3 User Manual 5

Simulations may use available data from current systems or fictional, but
representative, data. The simulator can be described as a deterministic model with
stochastic input.

Data for some examples are distributed with the simulator software, e.g. an RTGS
simulation, an RTGS system with an ancillary CNS or DNS system and a real-
time DVP securities settlement system. Some correct results are provided for all
examples as illustration of what can be obtained as simulation output. All
examples use semicolon as data separator points as decimal separator. The data
for the examples and system descriptions are found in the directory C:\BoF-
PSS\examples\DECIMAL POINT.

2 Installation

Before using BoF-PSS software, you need to install MariaDB, MySQL (old) or MS
SQL (not tested) database server. The simulator is distributed with a JDBC database
connector. We recommend to use a MariaDB connector (mariadb-java-client-
2.2.5jar or newer) with MariaDB 10.11.

Information on how to order and download the BoF-PSS3 program is posted at
https://www.suomenpankki.fi/en/financial-stability/bof-pss2-simulator/ordering/.

In case you are a user of BOF-PSS2 and which to upgrade to PSS3. You should
consider the following. We recommend making a clean install. According to our
instructions, PSS3 will anyway be installed in a different folder than PSS2. So in
this sense you don’t need to uninstall PSS2.

PSS3 doesn’t use the same system database as PSS2. so here you might enter into
conflicts. If you want to reset the pss2_systemdb you can simply make the SQI drop
command on with Heidi SQL. When launched for the first time or if the pss_system
database is missing, PSS3 will recreate the pss_system database .

2.1 Hardware and software requirements

Hardware
At least 64-bit system with a regular 4 core processor with 16 GB of memory is
recommended. Sufficient main memory is essential for rapid execution of large

BoF-PSS3 User Manual 6

https://www.suomenpankki.fi/en/financial-stability/bof-pss2-simulator/ordering/

transaction volumes. For large simulations 6-10 cores and 16-24 GB or more (>1,2
million transactions and >1000 participants) is recommended.

Note that the 32-bit version of the Java virtual machine is able to use only
approximately 1.5 GB of memory. In order to be able to allocate more memory than
1.5 GB to the Java virtual machine and the simulator, 64-bit versions of the Java
Runtime Environment and the simulator are needed. Naturally the operating system
also needs to be a 64-bit environment.

Since the version 9.3.0 the simulator supports parallelisation of simulations. To
leverage this, you should run the simulator on a machine or environment with at
least 4 CPU’s, preferably more than 6. RAM memory should be scaled up
respectively. Approximately 1-2 GB per parallel simulation (eg. number of
available cores). It has to be noted that bottle neck processes like DB operations do
strongly benefit from higher performance cores and local SSD or NVMe hard
drives. Unfortunately, for some reason, cloud environments and virtual desktops
(VDT) are often provided with low performance server processors underperforming
by far main stream retail consumer PCs.

The BoF-PSS3 simulator can process massive transaction flows effectively with
adequate available memory resources. The complexity of the algorithms used and
the selected output tables to be computed during the simulations strongly influence
the running times and memory usage of simulations.

The BoF-PSS3 simulator keeps all transactions and other input data to be processed
during a simulation in the main memory. The number of transactions is the decisive
factor in main memory use. When there are more transactions than space in the
main memory, system performance is likely to degrade strongly due to necessary
disk swaps. Even then, the simulator continues processing during such
circumstances until the limit of 1.5 GB is achieved for the 32-bit version.

If you try to run too many simulations in parallel, you might encounter crashes. In
these cases, it 1s simply recommended to try with less simulations at a time. As at
10.12.2020 we have successful experience on running a 10-day simulation with 1,5
million transactions per day in 5 parallel threads in a 10 CPU machine with 4-5
minutes average processing time per day. This is not a explicit limit but just one
observation.

Needed Software
Windows 10 (newer DB software might not work with older windows versions)

Microsoft Excel installed (required to open reports from the user interface)
MariaDB/ MySQL /MS SQL-SERVER database server.

BoF-PSS3 User Manual 7

Sun Microsystem’s Java Runtime Environment (JRE) 11 (distributed and installed
with the BoF-PSS3 program).

The BoF-PSS3 program should work with limitations in Linux, although this is yet
to be tested. Please contact the Bank of Finland if you are interested in running the
software in a Linux environment.

2.2 Possible deployment setups

The architecture of the simulator allows several installation possibilities. Because
BOF-PSS3 simulator engine has been implemented as a back-end server application
with an http API, the simulator engine can be installed locally on a PC or on a
remote server. It has to be kept in mind that the simulator has not been designed to
be exposed to unsecure internet traffic nor network connections and it is important
to keep security concerns in mind. For more details see chapter 2.7.

As at 4.12.2023 we still have little experience on running the simulator on a server,

we recommend deploying it on a PC or on a virtual PC (VPC). The picture bellow
illustrates the different configuration possibilities.

Deployment alternatives

Backend
PC or VPC server on DB on same
www-browser same pc or PC or VPC
- Any software VPC
with support |
for http
connectivity

DB on same or
different server
VPC

o
2.8.2020 | Publc | BOFFIN-FSA-UNRESTRICTED L SUO’ME«”-?-’?ME& L

2.3 Installing a database server

The BoF-PSS3 program assumes that Microsoft Excel and MariaDB, MySQL, or
MS SQL Server are installed before the installation of the Simulator. Currently the

main database version used for development and by the simulator team is MariaDB
10.11 (as at 8.1.2024).

BoF-PSS3 User Manual 8

2.3.1 Installing MariaDB

MariaDB database server offers a drop-in replacement functionality for MySQL. It
is built by some of the original authors of MySQL together with assistance of free
and open-source software developers. Note that all DB versions do not allow to
save database files to other directories than the data directory of the DB engine. We
know that 5.2 and 5.3 do allow saving database table files freely, but for instance
version MariaDB 10 does not. This is not an issue for the simulator as the simulator
has always allowed to store databases to arbitrary locations. The simulator has an
automated database storing policy recognition system which will guide project
creation. MariaDB 10 is better performing than older versions in terms of speed.

Installation steps of the MariaDB 10 database server:

1. Download the latest MariaDB 10 installation utility corresponding to your
operation system.

2. Double click the installation file to start the installation and click Next in
the setup wizard window.

) MariaDB 10.5 (x64) Setup | = | = [

Welcome to the MariaDB 10.5 (x64)
Setup Wizard

The Setup Wizard will install MariaDB 10.5 (x64) on your
computer, Click Mexk to conbinues or Cancel ko exit the Sstup
Wizard,

MariaDB

Badl I MNext | | Caricel

BoF-PSS3 User Manual 9

Gzt Setbp MariaDB
Select the way you want features to be installed, Server 5—/

Click the icons in the tree below to change the way features will be installed,

7 MariaDB Server
i“ “““ =3 ~ | Database instance
| Client Programs

= Backup utilities

El— ~ | Development Components This Feature requires 141MB on
E-~-~-:IS ~ | Third party tools your hard drive, It has 3 of 3

2~ | HeidisqL subfeatures selected. The
subfeatures require 70MB on your
hard drive.

Location; C:\Program Files\MariaDB 10,5

3. Accept all the features and the installation location folder, the default
selections are recommended.

Default instance properties MariaDB /
MatlaDB 10,5 (x64) database configuration Server 7‘/

["|Modify password for database user 'root’

New root password: | | Enter new root password
Confirm: [| Retype the password

] Enable access from remote machines for
~ 'root’ user

["use UTF8 as default server’s character set

BoF-PSS3 User Manual 10

4. Please make sure you unselect the “Modify password for database user
‘root’”, since Simulator uses the root user’s access rights without password
set. Also unselect the “Use UTF8 as default server’s character set” since
that consumes approximately 10 percent more disk space compared to the
default “Latin character set”.

4 Database settings |=l=] x |
Default instance properties M a r'l q D B y
Mariabe 10,5 (x64) database configuration Sarver s __.r_f-l

Service Name: {MariaDE

[+| Enable networking

TCP port: 13'3EI5

Innodb engine settings
Buffer pool size: 511 ME

Page size: 15w KB

I Back || Mexk | | Caricel |

5. Please accept “Install as service” with MariaDB as the service name and
”Enable networking” on TCP port 3306 are selected and “Innodb engine
settings” with defaults settings.

BoF-PSS3 User Manual 11

4 MariaDB 10.5 (x64) Setup |= 1o .
MariaDB /

Si—f[ver % ,4/

Ready to install MariaDB 10.5 (x64)

Click Install ta begin the installation, Click Back to review or change any af your
installation settings, Click Cancal to exit the wizard.

| Back | mstal | [cancel

6. Click Install when Ready to install MariaDB.

Please note that you need to have full access rights on the data folder under the
MariaDB installation folder. After installing with defaults the data folder path
would be C:\Program Files\MariaDB 10.11\data

2.4 Installing the simulator

The Simulator application is delivered as a Zip file with naming convention:
BoF-PSS-[domain]-[version label as YYYYMMDD].zip
E.g. BoF-PSS-gen-20201127.zip

1. Uninstall old PSS2 Simulator (recommended)
1.1 Take a backup of your old simulator projects if needed.
1.2. Remove the existing \BoF-PSS2 folder structure as obsolete.
1.3 Drop the pss2_systemdb and the old project database created by PSS2.
The simulator will create a new upon launch. It might be possible to keep
the old pss2-systemdb but you might encounter some compatibility issues
depending on versions. If the pss2_systemdb is kept it wil continue to
point to old projects. Old PSS2 project databases are not supported by
PSS3. If you drop the pss2_systemdb, and leave old PSS2 project
databases, you might also face issues if you create a project with PSS3

BoF-PSS3 User Manual 12

with the same name as the old project. To recap the best is you drop the
pss2_systemdb and the project databases for clan start.

2. Copy the zip file to your C: root folder

3. Extract the zip file using "Extract to here"
After extracting the zip file the Simulator folder should contain:
- Simulator application (war file)
- startup scripts
- Simulator examples
- Java virtual machine binaries
- under the system's C: drive with a folder structure looking like:
C:\BOF-PSS
C:\BOF -PSS\EXAMPLES
C: \BOF -PSS\PROGRAM
C: \BOF -PSS\PROGRAM\JRE

2.5 Starting and closing the BoF-PSS3 simulator

With your Windows file manager navigate to folder c:\BoF-Pss and double-click the
file startmin.cmd that starts the Simulator application server in minimized command
Prompt window. You can verify the Simulator started OK by clicking the black
command prompt in Window's Task bar which opens the minimized Simulator
command prompt window (the Simulator's primary log window). When the
simulator is running OK you should see the following lines as last rows:

SimulatorWeb Version 2020-12-02 gen - Bank of Finland © 2020

Java version: 11

Database: MariaDB.10.5 (NOTE! value may vary depending on driver in
use.)

Datasource URL: jdbc:mysql://localhost:3306/pss2_systemdb

Driver: MariaDB Connector/J], version: 2.6.0

Open Chrome browser and add the following URL to address bar:
http://localhost:8080/ and press enter. The Simulator main view opens with open
Project panel where you can create your first analysis project.

Note! The simulator should be shut down using the stopSimulator.cmd that should
be in the same location as the startmin.cmd.

BoF-PSS3 User Manual 13

2.6 Run time start-up parameters

The simulator itself is a Java application, and it is run in a Java virtual machine.
The parameters of Java are defined in the start-up script of simulator in file c:\BoF-
PSS\PROGRAM\startServer.bat. This file contains a code line starting the Java virtual
machine with default memory usage settings.

In case of memory problems the memory parameters can be extended like
—Xms***m and —Xmx***m where —Xms sets the amount of memory given for the
simulator applications directly at start-up and —Xmx sets the maximum amount of
memory that can be given for the application. The asterisks *** represent the
amount of memory in megabytes.

Below is an example for reserving memory for Java environment:
set jvmParams=-Xms512m -Xmx1lg

2.7 Security Considerations

The simulator has not been designed to be used in an unsecure environment. This
means it needs to be addressed as any software installed locally on a laptop.
Though the simulator has been implemented as web application, it is not exposed
to external connections, if installed with default configurations on a machine
protected with firewalls, the same way as excel or any other locally installed
analytical software.

The simulator does not have user authentication features and must be operated in
a secure environment. Specially if it is operated with confidential data. This
means that the environment must be protected with fire walls from unwanted
connectivity or be disconnected from networks altogether.

As a rule of thumb, the installation of the simulator on a laptop or firmware will
not increase the vulnerability of the environment and does not require any
connectivity beyond what the user wouldn’t already have by other means.

By default, the simulator is set up so that it does not allow cross origin
connections and allows connections only from the local machine it is installed on
(localhost). For other types of deployments, please be in contact with the
simulator team.

3 Functioning of a simulation day

The simulators main functioning philosophy when executing a simulation is the
following:

BoF-PSS3 User Manual 14

1. When a simulation day starts the simulator reads in all the input data and
sets up the defined payment system and its algorithms. These are defined
by defining the simulation.

2. The input data is stacked as various events in what we call the event queue
of a simulation day. It consists of transactions, credit limit changes,
beginning of day and end of day events, direct algorithm calls, etc....

3. The events are taken for execution in the order of their occurrence; thus
they make the schedule for the simulation day.

4. These events are sent one by one to the event handler algorithm that has
methods to handle different types of events. The event handler can be
tailored.

5. Under the event handler there is always an entry algorithm and an end
algorithm.

6. The entry algorithm is called by the event handler when a new transaction
is introduced from the event queue

7. The entry algorithm has parameters such as “is entry settlement enabled”
or “FIFO enabled”. If entry settlement is not enabled, all transactions go to
the primary queue. Transactions are also put to queue if there is
insufficient liquidity to settle the transaction/payment. Exact behavior will
depend on the selected algorithm and parameters.

8. If there are sub algorithms selected in the system setup, the entry
algorithm will call them one by one in the order of definition. Only
algorithms that have no interval or time schedule parameters set are called!

Adaptability and Tailoring

Submission algorithm (SUB)

Pool of Events gets next t

Event handler (SEH)

Rules for different events: new transaction, limit change, resenvation change,
start of Algorithm, transaction expiry, end of day, ...

el LS Settlement END of Day
Eii & algorithm calls algorithm (SET) algorithm (END)

Splitting (SPL) QueueRelease (QUE)
Injection (INJ) Netting: multilateral,

bilateral, partial netting,

(MNS, PNS, DNS, BOS)

9. All sub algorithms with time parameters set will have call events
scheduled separately at the beginning of the simulation and these call
events will trigger the running of these algos. In practice it is the event
handler that gets the “run algo x” event and starts it.

10. The settlement algorithm when defined will loop all the sub algorithms
that do not have time parameters like the Entry. The settlement algorithm

BoF-PSS3 User Manual 15

is called when there is a change in liquidity conditions: ICCL change or
settlement of a transaction,

BoF-PSS3 User Manual

16

4 Operating the BoF-PSS3 simulator

This chapter describes the basic features of BoF-PSS3

4.1 Short description of BoF-PSS3 simulator use

Basically, the simulator consists of 3 types of functionalities. First it contains

features for managing projects, importing datasets, defining systems setups and

combining these to simulations. To make the use easier some tools like the
automated stress tester helps users to run stress tests automatedly. Under tasks you

can find predefined task lists which will allow users to execute consecutive tasks in

one go.

A basic simulation process is normally divided into the following distinct phases.

Creating a project

Defining the payment and settlement systems

You begin by specifying the systems you want to simulate. This includes
stating the system name, setting the open hours, and selecting the
processing logics and algorithms that are used in a system, see 4.3.
Importing input data

Next, you import input data for the system just specified into the input
database (participant names and transactions and optionally daily
opening balances, intraday credit limits and bilateral balances), see 4.4.
Defining simulations

Once you have specified the system structure and input data, you
configure simulations and cross-check data sets belonging to the
simulations.

Executing simulations

Simulations are executed by pressing the ® button at the end of each
simulation row. You can run one or more simulations at a time in
parallel. Running too many simulations at the same time might crash the
simulator due to resource constraints.

Analysing results

After running the simulations, you can download output tables, browse
output tables with SQL, view some basic graphs. The output data can be
further analysed and processed outside the simulator.

BoF-PSS3 User Manual 17

ﬂ Intranet — Intranet X W simu ator-web-vuetify X =+
¢ G} @® localhost8080 a « A e
PROJECTS ANALYSIS TASKS PROJECTS SIMULATIONS SYSTEMS AND DATASETS
Proj :-:o STEP .
1. Add anew project ~—
Project name 4+ Project location Size Created Modified Actions
STEP2 C:/BoF-PSS2/P_STEP2 10068 2020-11-13T12:4432 2020-11-13T12:4432 =@
Simtain'® 5. Add a new simulation
~
Search Q
SimId System SYCD DBAL ICCL BLIM RSRV EVNT Statistics Run Modified Actions
RealT ((202011413 20201113 DEEOE®
DNST 20201113 20201113 (GYeACREYO)
DNSTEST 20201116 2020-11-16 PDEOO®
MNSTEST2 0201116 0201116 DGO @@
RTTESTY 20201118 2020-11-18 PDEPE®
-
_____ 0 i s D
2. Add anew system ———w___
-
@
DBAL IcoL BLIM RSRV EVNT
\ 4. Import datasets
3_ Create System dataset ‘SmusstonaE Varsion 30204202 gan - Eank o Frizea € 2020

4.2 Working with projects

Each project has its own directory that carries the project name. Note that the project
folder is used by the back-end server. This means that in a setup where the back end
runs on a separate server, users might not have direct access to these folders. Under
this directory following sub-directories are created:

— Default directory where input files are located,

— Default directory where error lists are saved,

— Default directory where output files are saved, and
— Default directory where output reports are saved.

The simulator database files are stored under the data folder of the database engine’s
installation folder.

BoF-PSS3 User Manual 18

o N

4.2.1 Project duplicates and backups

All data which is defined or created in a simulation project is stored in project’s
database. This makes it possible to easily backup and restore or duplicate projects.
By copying the involved databases or parts of it.

Similarly, backups can be made of simulation projects. The same procedure can
also be used for transferring only some parts of the projects such as input database.

NOTE! The simulator application and the databases it uses (projects) must be
compatible.

The output database can be updated to a newer version by simply deleting it. When
a simulation is run, and the output DB is missing, the system recreates the output
DB according to the used version. The same occurs when the system DB is missing.

4.3 Setting up a payment and settlement system

The system data set is referred to with the acronym SYCD. The name is also used
in the database. You can add a new system dataset by hoovering over the SYCD
title and pressing the New button that will appear.

v B> M Simulaattorit - Valmisteilla X % simulator-web-vuetify X + - [m]
<« C M @ localhost:8080 Q W o} a e
@b SPintranet () BOF-PSS Team 2023... % simulator-web-vueti.. @ Maksujarjestelmat-.. & SPU Jalkapallo Nim... @ httpsi//nova.bofnet...
PROJECTS ANALYSIS TASKS PROJECTS SIMULATIONS SYSTEMS AND DATASETS @
Projects: Stress v
Simulations v
Systems and datasets A
- ®
SYCD New RT TRAN DBAL ICCL BLIM RSRV EVNT ASSO
NRAPS 54 Tanld am Delay 3 1Day 3 1day sm

Remove 31
RemoveEQL
trand am

}

mYyBDEEOO

SimulatorWeb Version 2023-10-20 gen - Bank of Finland © 2024

BoF-PSS3 User Manual 19

The system setup view looks like the following.

Add setup to system NRAPS

Datasetid Opens Clazes Intraday Credit Availability
MySystem (© 08:00:00 © 19:00:00 No credit available

Full name Handling of Uns=ttled Transactions
MySystem [] Transfer balances to next day Delete and include to statistics

Enter full name
Description

Qptional

Event handler algorithms

Entry algorithms

ety @

Settlement algorithms

Sub algorithms

End-of-day algaorithms

End0fDay (D) &

CANCEL SAVE

In order to setup a system you need to define: an ID for the system, the opening
hours, the availability of credit limits, the handling of unsettled transactions and
their effect to statistics and the algorithms in use.

Opening and closing hours must be between 00:00 and 24:00. The simulator
supports business days that can take place on 2 calendar days or start before the
weekend. Also default opening hours can be overridden by using an event data set
that defines exact opening and closing times and dates for each business day. The
use of event files is recommended in cases where business days extend over
calendar days.

If an event dataset is not available, the simulator performs Business Day
deduction from transaction data. This means that the transaction data defines the
business days present in a simulation. If transactions of one business day are
introduced on 2 calendar days the simulator will deduct that the business day occurs
on 2 calendar days and thus the opening and closing hours will be deducted to
belong to different days. A business day cannot take place on more than 2 days.
Weekends and holidays are supported. If a business day occurs on several calendar
days, it is recommended to use event data sets to explicitely define the starts and

BoF-PSS3 User Manual 20

ends of business days. Especially in cases that transactions do occur only on one
calendar day but some other processes can occur on other days for example.

Transfer balances to next day can be used in multi-day simulations for
transferring the end-of-day balances to become the beginning-of-day balances for
the next day.

Intraday credit availability requires a choice between three options. The selection
‘Credits according to limit table’ requires an ICCL dataset containing the intraday
credit limits to be defined. ‘No credits available’ indicates that only the liquidity
on accounts is available. This means that only a DBAL data set is needed. The last
option ‘credit available without limits’ indicates that overdrafts are freely
available. This option can be used to find out the upper bound of liquidity. Note
that liquidity has to be provided in some form, otherwise no transactions will settle.

Handling of unsettled transactions has four options. All unsettled transactions
will be kept in a special queue for unsettled transactions until the end-of-day and
the processing will be dependent on the selected option.

1. Transfer unsettled transactions to next day/settlement occasion will place
unsettled transactions back in the transaction queues to be settled later if
possible.

2. Delete unsettled transactions (include in statistics) will remove the
transactions from queue but still include them in output statistics and reports.

3. Delete unsettled transactions (exclude from statistics) means that the unsettled
transactions will be removed from queue and also from all transaction level
statistics and most system and account level statistics. They will only be
included in aggregate transaction value and transaction count numbers in
system and account level statistics.

4. Force end-of-day settlement will result in bookings on the accounts irrespective
of any credit limit violations. This can lead to negative account balances at end
of day. Forced end-of-day settlement can be used to find out the minimum
liquidity needed to settle all transactions at least at the ends of the day. An
account violation record (AVST) will be written for every violating transaction.
These transactions are not affecting delay indicators and are not recorded to
test statistics. These transactions do not count as settled in SYLS and ACST.
QURE statistic is updated normally.

Selected algorithms define the processing methods. At least an Entry (ENT) and an
end-of-day (END) algorithm must be selected for all systems. Simulations use by
default a general event handler algorithm which does not need to be selected. Only
if a tailored eventhandler is wished to be used, it needs to be included to the
simulator and selected. Otherwise the eventhandler selection can be left empty.

BoF-PSS3 User Manual 21

Algorithms are selected by clicking the respective algorithm category field and
checking the boxes of the corresponding algorithms that are wanted to be included
to the simulations . Selected algorithms can have parameters that need to be set

separately. The parameters can be edited by pressing the @ icon at the end of the
name of each displayed algorithm.

For more details on algorithms please see 6.1 Algorithms .

4.4 Importing data

You can import participant data, daily balances data, intraday credit limits data,
transaction data, bilateral credit limit and daily event (EVNT) data. The input file
has to be a text file, e.g. .txt or .csv.

The supported default values for the csv data separator and decimal are “;” and *.’.
Time is displayed as '"hhmmss.SSSSSS' and dates are displayed as 'yyyymmdd'. The
amount of rows to be skipped at the beginning is 2.

Long account names and ID’s are only stored to the PART table with a technical id
which numbering starts from 1. This makes referencing of data significantly faster
and less storage space consuming. But in order to allow coherent account id
indexing, the importing must be done in a more disciplined way. All input data sets
have to be associated with a participant dataset explicitly. Before importing any
other data set, there must be participant dataset in the system. Or a participant
dataset must be generated from the imported data.

It is also possible to import the data without PART data. In this case part data will
be created by the import process. For this, it is recommendable to create it first with
the TRAN data.

For more details on the technical referencing please refer to the chapter 6 on
database table descriptions.

The different input data types/data tables are coded as follows:

— PART contains participant and account data. This can be defined on participant
level only or alternatively on combined participant and account level. In the
latter case, the same participant may have multiple accounts, but for each both
the participant and account ID should be specified. This feature can be used to

BoF-PSS3 User Manual 22

define different omnibus accounts for clearing parties in a securities settlement
system.

— DBAL contains the initial daily balances data of participants or accounts. It is
optional. Null values are considered as zero.

— ICCL contains intraday credit limit changes of participants. It is also optional.
Null values are considered as zeros.

— TRAN contains the transactions of a given system. There can also be
transactions pointing to other systems. This is done by defining the ‘to-system’
field for transactions. The ‘from-system’ field must always contain the same
ID, which is defined as the system ID of the dataset.

— BLIM contains the bilateral limits between pairs of participants. It is optional.

— RSRYV contains information on reservations. Reservations are used to reserve a
specific amount of the available liquidity to be used to settle some specific type
of transactions. Support for reservations is algorithm specific and for the
moment there are no built in algorithms in the generally available version of
BoF-PSS3 which support the use of reservations. Reservations data can be used
in own user modules. For the availability RSRV supporting algorithms you
should check with the simulator team. There can be many different reservations
defined for one account.

— SYCD contains system control data. These data must be specified for each
system. This specification is done in the System control data specification —

screen, not by importing a dataset.
— EVNT refers to data sets that contain timing of events such as start and end of
days. Can be used to introduce some new tailored eventhandler specific events.

A system ID has to be defined for each imported data table. It is used when
searching and configuring data that belongs to the same system. System ID is
selected from a drop down list, which includes all system IDs that have been defined
in the system definition window, see chapter 4.3.

Multiple data sets can be used for running the simulations with varying input data.
This is facilitated by a data set ID specified for each data table. The input database
will thus contain parallel data sets with the same information, e.g. different data sets
for intraday credits to simulate a situation with varying liquidity. There may also
be different transaction flows depicting e.g. crisis situations. To manage a large
number of parallel data sets effectively, it is important to create a consistent naming
convention. The data set ID can be up to eight characters long.

It is important to note that the input systems only check the data content at the field
level. Due to possibility of multiple parallel data sets, comprehensive cross-
checking can only be performed after simulations are configured and parallel data
sets selected.

BoF-PSS3 User Manual 23

Templates are used for inputting data using CSV files. The templates describe the
data field order in the CSV files.

When you create input data in a CSV file, consider the following:

— Make sure that the data and decimal delimiters are specified correctly.

— Values of currency can only be stated to two places after the decimal point.

— All data rows in the CSV-file should have the same number of data fields and
the input template defines how these correspond to the input data base of the
simulator.

— Transaction ID in TRAN tables can be numeric or alphabetical; they are sorted
alphabetically. The transaction ID must be unique as it is a sorting parameter to
distinguish between transactions that otherwise would occur in the same order.
It is also used as a key when reporting input errors. If you use numeric values,
use a sufficiently large first number (e.g. 10001) for transaction files involving
ten thousand transactions to assure successful alphabetic sorting.

— When the simulation contains more than one system and interlinked
transactions the TRAN data of a given system must hold all debit transactions
(FROM-transactions) of that system. The simulator operates on credit transfer
basis so intersystem transactions can only be made as credits to another system
(i.e. all direct debit type of transactions in real systems must be converted to
credit transfers in the simulator.)

— When DVP/PVP transactions are introduced, a link code is needed to define the
linked transactions. A system can have both linked and unlinked transactions.
More than 2 trades or payments can be linked together.

BoF-PSS3 User Manual 24

— o

ntranet % | % Photo-GooglePhotos X W simulator-web-vueti % @ Sweggerl x himl - What does enctype- X | G entity - GoogleSearch ¢ | [Maksujirjestelmat-osasto - X | @) M) Simulsatiorit - Valmiste % | +

C {1 @ localhostB080 ax 9@ 0 »0

PROJECTS ANALYSIS TASKS PROJECTS SIMULATIONS SYSTEMS AND DATASETS
ijects:o STEP2 v
Simulations v

1. Hoover on the item you
want to import to make the

Systeme® and dataset selections available. R

- ®

SYCD PART TRAN New AL ICCL BLIM RSRV EVNT

DNST 244 MNSTEST1 MNSTEST

RealT 244 MNSTEST2 MNSTESTZ

RealTDef 19 Test1 17d Test117d
TEST2 17d TEST217d
Tran1 24d Tran1 24

SimulatorWeb Version 2020-12-02 gen - Bank of Finland ® 2020

2. Press new to start the import
process

4.4.1 Errors in import

The simulator is able to report some errors occurring in the error process or the data.
The notification window will shoe an error status in red if errors are found. Detailed
error reports can be found from the tasks window’s task run component.

The error list file is located in the ERRORLIST directory of the project. It is named
like ImportInputError [YYYYMMDD] [HHMMSS].csv,
for example, ImportInputError_090407_121030.csv.

In the error list the row refers to the row number in the input file and the col to the
column number in the input file. The most common errors found are format errors.
For date and time fields the formats used in the imported file should be the same as
specified in the data format defaults. Numeric fields should be completely numeric,
and the decimal sign should be the same as stated in the import screen. The
simulator does not support ‘thousand’ signs. The error ‘duplicate entry’ indicates
that there are duplicated key information in the input file e.g. two rows with
transaction data with coinciding transaction IDs. In case of coinciding keys the first
data row is imported, and the next ones are discarded with an error message.

Different kind of format errors and delimiter changes can arise when the input CSV
file has been exported from another program, like Excel. It is advisable to check the
content of exported CSV files with a software showing the true content of the CSV

BoF-PSS3 User Manual 25

file e.g. Notepad. Check delimiters, date and time formats and decimal information,
because there seems often to be small differences in these details if the simulator
and the CSV data exporting software have not been synchronized earlier.

4.5 Defining a simulation

Once a system has been created, the system dataset defined, the import datasets
imported, a simulation can be defined.

This is done by following the following steps:
1. Click the add simulation button-

PROJECTS ANALYSIS TASKS PROJECTS SIMULATIONS SYSTEMS AND DATASETS o

Projects: Firstproject v
Simulations A

Search Q

Sim Id System SYCD PART TRAN DBAL ICCL BLIM RSRV EVNT ASSO Statistics Run Modified Actions

No data available

(]

Systems® and datasets v

TYAEREEO

2. The following form will open which you will have to fill

Add Simulation

«—

Simulation Id Description
Name Submission algorithm -
Select ABM properties file v +
Seledysystem SYCD PART TRAN DBAL ICCL RSRV EVNT ASSO

NRAPS

Select output statistics
(svis) (acsT) (TesT) NEST AvsT BIST QURE 10ES

CANCEL

You need to give the simulation a simulation id, select a submission
algorithm, select a system and associate it with your import data. You don’t
need to mind about the ABM property file unless you want to perform a ABM
simulation. ABM simulations are complicated and require deep knowledge of
the simulator and probably support from the simulator team.

3. Finally press save

BoF-PSS3 User Manual 26

4.5.1 Cross-checking data sets

After creating a simulations, it is possible to run cross-checks. Cross-checking is
recommended when there have been changes in the input data. This functionality
performs some checks on the input datasets selected for a simulation (e.g., all
accounts needed are available for booking transactions, intraday credit changes take
place within business hours).

The cross-check functionality creates an input data analysis report that might reveal
findings in the data. The cross-check functionality is intended to help users to find
errors in the input data. Cross-check findings do not automatically prevent users
from performing successful simulations. It is good practice to run a cross-check
after a simulation is defined and data is used for the first time.

The import functionality already makes sure some mistakes are not possible, thus
some of the issues the cross-checks can identity, are already recognized at an earlier
stage.

To run the cross-checks on datasets, first a simulation must be created (see section
2.5). After a simulation has been created, the cross-checks can be run by pressing
the button & and clicking the Run cross-check row of the list see picture below. A
report will be created, and the results can be viewed by clicking the button E .

v Fisu-intranet X | @F MISimulaatt X 5 paymentand X | H@> Misimulaatt X | @) (1) WhatsApp X 5 simulator-we X+ = O X
<« C m @ localhost:8080 aQ W im]) a o
@) SPintranet () BOF-PSS Team 202 5 simulator-web-vue.. B Maksujarjestelmit-... & SPU Jalkapallo Nim B https//nova.bofnet W Wildcat banking -
PROJECTS ANALYSIS TASKsS PROJECTS SIMULATIONS SYSTEMS AND DATASETS © -
:":Jsmse Taskautomation v
ill"J|J’i-)"io ~
.
Search Q
Simld System sycp PART TRAN DBAL ICCL BLIM RSRV EVNT ASSO Statistics Run M“""
— — - = B — svLS) (10ES) (TEST 202310 Run cross-check
bench (s (v9) Gaw) Gaw) (o) Go) v wa e 20231613 SEDCnmpulechecksums
— Verify checksums
Systems :arm‘-mm-:rw».o N
- ®
SYCD PART TRAN DBAL IccL BLIM RSRV EVNT ASSO
ublnis 1 Raw 114 Raw 1w Raw 11 Raw 1
UNIS 1M
- (6] h

It should be noted that, if the cross-check reporting succeeds technically, the status
of the task is set to green. There can still be many findings on the given data in the

report.

BoF-PSS3 User Manual

27

Task name Description Started Completed Status Actions
v Create simulation and run cross-check Create bench simulation and run cross-checks 09:08:28 09:17:43 ® @R

The executing of the cross-check tool can also end to Status Fail (red balloon). This
means that the cross-check report could not be run for the given data technically. In
this case the error report is created, and it is located in the ERRORLIST directory
of the project. It does not tell anything about the content of the given data.

The full list of cross-check messages are documented in the Annex II

The error list contains a reference to the incoherent input data record and
information about the missing relationship data. The dataset ID and a short
description will be shown for each error.

Typical cross-check errors are

- Date errors: the dates in DBAL, BLIM or ICCL tables are outside the simulation
dates, i.e. dates for which transactions are specified in the TRAN table. Limits
and balances should only be defined for those days which are simulated.

- Time errors: the transaction introduction times specified in the TRAN table are
outside the opening hours of the simulated system, as defined in system data or
selected EVNT dataset. This might cause confusion to users in cases
transactions are introduced before the opening of the business day. In this case
simulations can still be run and the users should disregard this kind of errors.
Also in these cases simulations should be run without cross-checks as these
cross-checks will stop the simulation execution.

- Participant errors: there are missing participants (or typing errors) in the
participant data. TRAN-PART refers to transactions with missing participants
in PART data, DBAL-PART refers to missing participant data for DBAL data
and ICCL-PART refers to missing participant data for ICCL data. For all
participants quoted in TRAN, ICCL, BLIM and DBAL records there must be
the corresponding participant in the PART data. If multiple systems or accounts
are defined, the participant is checked as a combination of the system ID,
participant ID and account ID.

- Erroneous system ID’s in TRAN data: if the from system id field is explicitly
defined, it should be the same as the ID of the system which this data set is
attached to.

BoF-PSS3 User Manual 28

4.5.2 Creating multi system simulations

Simulations with multiple interacting systems can be created and simulated with
BoF-PSS. This enables simulation and analysis of parallel systems with
independent processing logics, such as network of several RTGS systems such as
TARGET, combination of a RTGS system and an ancillary CNS or DNS system or
a RTGS payment system together with a securities settlement system working with
DVP processing.

In multi system simulations individual systems are set up independently one by one:
system definition and data imports are performed for each simulated system
separately. System ID field is used to collect together definitions and input data of
individual systems.

For transactions between systems the receiving system name has to be defined in
input data. Transactions are always included in transaction data set of that system,
where the from-participant of each transaction is located. The system names used
in input data (e.g. From-system and To-system in transactions) need to be the same
which are used as System IDs in system definition.

The transaction IDs must be unique simulation-wide, i.e. the transaction data
sets of the different systems cannot use same transaction IDs. Cross-check will
display reused IDs as errors of the second transaction data set that uses them.

An example of multi system simulation is provided in example2 material included
with the simulator (C:\BoF-PSS\EXAMPLES). It presents a main RTGS system
and an ancillary CNS using the accounts in the RTGS system as the source of
liquidity. In the input data the “liquidity injections from system” and “liquidity
injections from participant”-fields are defined for each participant. In the input data
of this example the RTGS system is referred as “M” and the ancillary system is
referred with “K”. These names have to be used also as System IDs in the
simulation. In multi system simulations, the cross-check is checking also coherency
of multi system transactions and used System IDs.

Multi system simulations are created in simulation configuration screen by

including all necessary systems one by one on their own rows. Screenshot from
example 2 simulation configuration is shown below.

4.5.3 ABM Simulations

Users can instruct the simulator to associate active account management to
accounts. This is done by selecting a ABM configuration file on the screen.

BoF-PSS3 User Manual 29

See the new field called “Agent file”.

The property file can by edited and copies can be made. The ABM property files
are fetched by default from the BOF-PSS\program\ABM directory. The default
example property file can also be found from BOF-PSS\program\ABM directory
The Browse function allows to store the files also into other places.

The property file contains the information on accounts that have been allocated an
account management algorithm with the specific parameters. There can be many
account management algorithms and users can make new one’s based on the ones
distributed with the simulator. For more specific description on the ABM
algorithms and parameters, please refer to the section 6.7 .

When a simulation is executed as an ABM simulation, additional ABM log files
are created besides the basic simulation log. The ABM logs are created by account.

4.6 Executing simulations

You can execute simulations on the Simulation execution screen. The screen opens

by clicking the Simulation execution button on the Main menu. Simulations can
be executed as single runs or in batches consisting of many simulations.

4.6.1 Errors in simulations

On the Simulation execution screen:

View errors arising in the simulations by clicking the View error report button.
The error list file is located in the error list directory of the project. It is named
SimulationExecutionError_[YYYYMMDD]_[HHMMSS].txt for example,
SimulationExecutionError_090407_121030.csv. Unnecessary error lists should be
deleted. All errors or relevant simulation related information might not be present
in the error file, thus one should always also check the simulation log file.

4.7 Analysing results

Simulation results are stored in the output tables of the project database. The results
can be viewed using available reporting features and by accessing the database
tables directly with SQL or other tools. All data can also be downloaded as CSVs.

BoF-PSS3 User Manual 30

http://vety/RM/BOF-PSS2/Simulaattorin%20dokumentit/03_02_02.htm
http://vety/RM/BOF-PSS2/Simulaattorin%20dokumentit/03_02_02.htm

The automated stress testing module 4.8 provides some reporting features of its
own.

4.8 Automated stress testing module

The Automated stress testing module has been developed to make the running and
analysis of the data and stress tests results easier.

The stress tester supports one analysis type: stress testing based on removal and
transformation of transactions. It is possible to affect the way accounts are treated
for scenario creations. Accounts can be affected either individually for each
scenario or all selected accounts of a participant can be affected at the same time.
As a third option, all selected accounts can be affected in one simulation(scenario).

The interface allows to alter the SQL-query and its conditions used to retrieve the
transactions for each scenario. This allows the user to define for example, that only
payments not belonging to a certain category or occurring between a specific time
period are dropped.

In short, the module works in the following way. First you need to define a
benchmark simulation with the data and the system setups you wish to analyse and
put under stress. After that, you can open the stress testing analysis tool and create
a new analysis for which you will define the benchmark scenario to be used as a
starting point. The user will have to select the accounts to be included in the
analysis. Stress scenarios will be run for all the selected accounts. After all the
scenarios have been run the user can generate a report tailored for comparative
stress testing analysis. The report contains account level information such as
upperbounds, maximum upperbounds, liquidity deterioration figures, values of
unsettled sent and received transactions and many others. For further details see
following chapters.

4.8.1 Creating a new analysis

To create a new stress analysis or access an existing one you need to open the stress
testing analysis window from the main menu. The Stress testing view will open.

BoF-PSS3 User Manual 31

C Y @ localhost:8080/analysis Q % © e 0

@ diepio E} M) l:] TFS @ taalla harjoittelet os L@ Eam to Die 2: Exod... ‘I Hardware, Moteboo. » Ot
PROJECTS ANALYSIS TASKS STRESS TESTER
Stress tester° STEP2 ~
)

Search Q
Name Description Simulation Rule Status Modified Actions
Stress - . - 2020-12- ®®
analysis Stress analysis DMST FAIL_BY_PARTICIPANT [INITIAL 03T19:52.06 @

it Version 2020-12-02 ger - Zark d % 2020

From this view it is possible to view old analysis made with the selected project and

create new one’s by pressing the button selecting a benchmark simulation,
giving it a name and saving it.

4.8.2 Selecting the accounts to be affected in a scenario

To select the accounts to be affected in the scenarios, the user needs to open the
“setup scenarios and accounts to be failed” view. On the left all the non-selected
accounts are visible. Accounts can be selected by dragging accounts to the right.

BoF-PSS3 User Manual 32

C Y @ localhost:8080/analysis aQa % OHE < 0N

Apps @ diepic B M) P TFS @ teal harjoitteletos.. [Eamto Die2:Exod.. [Hardware, Noteboo.. (@ PCle mit GPU NVID.. @ MSI GeForce RTX 2.., » Other

Add Stress test

ess rule
FAIL_BY_PARTICIPANT

Select ranaaction fiter aql file

default.sql

Search accounts

Accounts to be affected individually

DABAFIHIA
EssERkt

DNRARHGT
HANDFI
HELSTII
HOLVERIL

HDEAFIH=T
YR
oPEEIZ2

SBANFEHLT

CANCEL SAVE

The “Scenario rule” selection affects how the scenarios are generated. “by
accounts” means that scenarios will be generated for each account and the scenario
definition behind #scenario id# tag used in the SQL Data filters, will contain only
one account id at a time. “by participants” means that scenarios will be generated
by participants and the scenario definition behind #scenario_id# tag will contain all
the selected accounts of one participant at a time. This allows to have all the
accounts of one participant to be affected in the same scenario. “All selected” means
that only one scenario will be created and the # scenario_id # tag will refer to all
the selected accounts. For more details see below.

The selections are saved only when the save button is pressed. Be aware that saving
will discard any priorly run results for this analysis.

4.8.3 SQL-query filters for scenario creation

The Data filter selection allows to select a specific SQL-query to be used in the
generation of the scenarios. The queries are used to get the set of transactions to be

BoF-PSS3 User Manual 33

used in each scenario. The queries contain tags that are replaced by scenario specific
values when the stress tester runs scenarios.

The SQL-queries are stored in text files in folder
C:\BoF-PSS\PROGRAM\filters\stressTester. The defaultFilter is a query for generating
failure scenarios by removing transactions belonging to selected accounts. Users
can use the default filter to create customized queries to direct the scenario creation.
Users cannot modify the defaultFilter but can create copies of it.

The following tags are supported since version 7.0.3:

scenario_id #: substitutes the analysis id to the sql query allowing to link to the
list of account ids involved with the scenario.

#system_id#: Derived from benchmark definition

#dataset 1d#: Derived from benchmark definition

#business day#: Stress test are run day by day separately.

4.8.4 Running of the analysis

To obtain the analysis report, one needs to run the scenarios first. When pressing
the Run scenarios button the system will:
1. run the benchmark if it has not been run yet
2. run the benchmark with illimited intraday credits to calculate figures for the
upperbound of liquidity
3. it will generate and run the one day scenarios for each selected account. In
order to save space the input data for scenarios is not stored to the input
database’s tran table. Simulation results are stored only to the tables SYLS,
ACST and TEST of the output database.

4.8.5 Working with the results

After you have run the scenarios you can obtain the results by pressing the Run
report button. The analyser will collect the account level results for all the scenarios
and the benchmark into an excel. The data content is sufficient to obtain basic
charts, reports and comparisons related to the benchmark and run scenarios. The
report contains all the sufficient data amongst other to:

- obtain rankings for systemic importance of counterparts in terms of caused

unsettled payments, intermediated stress
- draw counterparty exposure matrixes in terms of unsettled payments, liquidity

deterioration
- observe average sending and receiving times and the differences to the
benchmark case

BoF-PSS3 User Manual 34

The report will contain account level information rows for each day, scenario and
benchmark. The data is partly extracted from the ACST and calculated from the
TEST table. The report contains two automatically updated charts and the

counterparty risk matrixes.

The analysis report contains the following data fields:

BenchScenario This field can have 2 values, and it indicates
whether the row information relates to the
benchmark simulation or a scenario. Possible
values: Bench, Scenario

SimRunld Name and ID of the simulation. For scenarios
the name is generated by concatenating the
name given to the analysis and the accountID

Systemld System ID of the Benchmark

failingAccountld Account ID of the failing account

Accountld Account ID to which the figures belong

BusinessDay Business day of the figures

BoDBalance Beginning of day balance for the account as
in ACST-table

EoDBalance End of day balance for the account as in
ACST-table

MinBalance Minimum balance during the day for the
account as in ACST-table

EoDCreditLimit Intraday credit limit at the end of the day for
the account as in ACST-table

CreditLimitMaxUsage If the account has had a negative balance
during the day (e.g. has relied on credit limit),
the value here 1s: minimum account balance
*-1/ Eod credit limit * 100

SettledCount Count of the sent and settled transactions

SettledValue Value of the sent and settled transactions

SentUnstCountDirect Count of the transactions removed due to the
scenario

SentUnstValueDirect Value of the transactions removed due to the

scenario

SentUnstCCPValueDirect

This column is present only if the simulator
recognizes, the data to be morphologically
complient with trade data. The field is
calculated form usercod 4. The field will
contain meaningful results only if all values
entered into usercod4 field are in same
currency. The values in the value field used
for the other calculations can contain
amounts and values in different currencies
making them incomparable.

SentUnstSystemicEffectCount

Count of the unsettled transactions in the
simulation or scenario. In scenarios these

BoF-PSS3 User Manual

35

would correspond to the systemic or second
round effects due to the altered situation.
When calculated for the benchmark, the
count is just the count of unsettled
transactions. When the value is calculated for
a scenario, the benchmark’s corresponding
value is subtracted from the count.

SentUnstSystemicEffectValue

Value of the unsettled transactions in the
simulation or scenario. In scenarios these
would correspond to the systemic or second
round effects due to the altered situation.

When calculated for the benchmark, the
value is just the sum of unsettled transactions.
When the value is calculated for a scenario,
the benchmark’s corresponding value is
subtracted from the sum.

ReceivedPaymentsCount

Count of payments received as in the ACST
table

ReceivedPaymentsValue

Value of payments received as in the ACST
table

ReceivedUnstCountDirect

Count of payments not received because the
transactions removed due to the scenario.
Calculation is based on TEST data.

ReceivedUnstValueDirect

Value of payments not received because the
transactions removed due to the scenario.
Calculation is based on TEST data.

ReceivedUnstCCPValueDirect

This column is present only if the simulator
recognizes, the data to be morphologically
compliant with trade data. The field is
calculated form usercod 4. The field will
contain meaningful results only if all values
entered into usercod4 field are in same
currency. The values in the value field used
for the other calculations can contain
amounts and values in different currencies
making them incomparable.

ReceivedUnstSystemicEffectCount

Count of payments not received in the
simulation. In scenarios these would
correspond to the systemic or second round
effects due to the altered situation.

ReceivedUnstSystemicEffectValue

Value of payments not received in the
simulation. In scenarios these would
correspond to the systemic or second round
effects due to the altered situation.

ReceivedPaymentsDiffValue

Value of received payments in the
benchmark — value of received payments.
Positive value indicates a decrease in original
value.

BoF-PSS3 User Manual

36

LB

Lower bound of liquidity. Net liquidity
needed for the day.

LBDiff

LB of benchmark — LB of scenario

UB

Upper bound of liquidity. The amount of
initial liquidity needed to settle all payments
introduced in the order of the input data.
Currently this is only calculated for the
benchmark. Calculation occurs by rerunning
the benchmark scenario with the selection
intraday credits available without limits. UB
= beginning of day balance — minimum
balance of the simulation with unlimited
credits.

MaxUpperBound

Sum of values of all outgoing payments.
Total gross outflow.

MinLiquidityDeterioration

Needed extra liquidity to keep end of
day(EOD) balance in the scenario,
unchanged when other non-failing
participants are able to compensate and still
send their unsettled payments.
MinLiquidityDeterioration =

End of day balance in benchmark simulation
- End of day balance in scenario

+ outgoing unsettled in scenario (outgoing
systemic)

- Unsettled in benchmark (can be used for
modell accuracy correction)

- incoming unsettled (systemic, not direct) in
scenario (it is assumed that others are able to
send even if not in the simulation).

It reflects the needed extra liquidity to settle
all unsettled payments and achieve same
level of liquidity as in benchmark. It is
assumed that unsettled incoming payments
are settled and the buffers of other
participants are sufficient and they are able to
bring in extra liquidity. If value is negative it
is an improvement and it is rounded to 0.

MaxLiquidityDeterioration

Needed extra liquidity to keep end of
day(EOD) balance in the scenario,
unchanged when other participants are not
able to compensate and cannot send all of
their payments.

Maximum Liquidity Deterioration =

End of day balance in benchmark simulation
- End of day balance in scenario

+ outgoing unsettled in scenario (systemic)

BoF-PSS3 User Manual

37

- Unsettled in benchmark (systemic, can be
used for model correction)

It reflects the needed extra liquidity to settle
all unsettled payments and achieve same
level of end of day liquidity as in the
benchmark. It is assumed that other
participants are not able to bring in extra
liquidity intra day. If value is negative it is an
improvement and it is rounded to 0.

SettlementDelay

Same as a_setdelay from the ACST table.

SettlementDelayDiff

Settlement delay of the scenario — Settlement
delay of the benchmark

WeightedAvgReceivingTime

Value weighted average of settlement time of
received payments

WeightedAvgReceivingTimeDiff

WeightedAvgReceivingTime of the
scenario- respective value of the benchmark

WeightedAvgSendingTime

Value weighted average of settlement time of
sent payments

WeightedAvgSendingTimeDiff

WeightedAvgSendingTime of the scenario —

respective value of the benchmark.

4.9 Task Automation Tool and Task Sets

The task automation tools functionality is meant to create task lists to allow easier
repeatability of specific task sequences. Also new functionalities can be introduced
as tasks. The initial versions are still hard coded. In the future releases, more tasks
and flexibility are likely to be made available. The idea is that the task automation
tool allows the user to define tasks to be performed in one go. The task set for
importing and running a benchmark simulation can be found under the Task
automation tools. First you need to select the task set called “Import tasks”. Once
this is done all the tasks belonging to the task set will be displayed on the right.

In order to instruct the automation tool which tasks to include to the run, the user
needs to check the corresponding boxes in the Run column. If the run box of the
task is checked, the task will be run. The tasks are run in the top-down order.

Many of the tasks need some additional parameter information to function. The
parameters can be edited by double clicking the parameter field of a task.

The Import tasks task set has 3 common parameters used by the individual tasks.
The system id indicates the system under which the data is imported. The value
entered to the field “Data set name of imported datasets”, is used as a dataset name

BoF-PSS3 User Manual 38

for all imported datasets. The value is also used by other tasks to indicate the name
of the datasets to which a task is targeted.

4.9.1 Import tasks

The import task set provides the tasks to perform the steps to import and manipulate
data and perform a normal day, 1 system (benchmark) simulation. Benchmark
simulations are used as reference for scenario simulations like stress tests. Results
of scenarios are compared to the results of benchmark simulations. Once set up, the
benchmark simulation can be used as a base for stress test or other analysis.

The following Import tasks are available:
- Clear project’s old input and output data
- import data

- Exclude transactions

- Account pool data

- Run cross-checks

- Run simulation

The tasks are explained in detail here under.

There are 3 common parameters for the tasks. The system, the data set name and
the account pooling data set name suffix.

The system selection is a combination of a system ID and a system data set. The
system is used by the task Import data to indicate the system under which data is
imported. The run simulation will use the system dataset information to create the
simulation setup.

The dataset name, which default value is Raw, is used to name all the imported
datasets. Also, the account pooler if used will name the pooled data sets as a
combination of the data set name and account pooler suffix (Ap). This means, if
account pooling is used, the final datasets used by the simulation will be named by
default RawAp. If the account pooling task is not selected, and there are datasets
that have a name that match the combination of the data set name and account
pooling suffix, the user will be asked for which data sets the user wants to run the
benchmark.

Clear project input and output data
This step is optional. If the project contains old input data and results of obsolete

simulations, the databases can be cleared. This step removes the contents of all input
and output databases including simulation definitions and stress tester analysis

BoF-PSS3 User Manual 39

setups and results. This task does not delete system setups nor templates. The
clearing task is fast. Especially it is significantly faster with big datasets comparing
to an overwrite operation in the Import data task when reusing an existing dataset
name.

It is highly recommended to run this task if there are no reasons opposing it.

Import data task

The Import data task imports all the input files, either from a tar file that respects
GZ.tar format or separate csv-files in an indicated directory. First the user needs
to double click the parameter field of the import data task. A new window with all
the necessary parameter fields will open.

Edit Import Gen data parameters

Select CSV file

:JJ File input Input file(s) folder path

Select EVINT template
gen - EVNT x -
Select PART template
gen - PART > -
Select TRAN template
gen - TRAN >
Select DEAL template
gen - DBAL > -
Select ICCL template
gen - ICCL -
Select BLIM template
gen - BLIM -
= Selecte. Select exclude business days txt file - *

< October 2023

1 z 3 4 6 7

2 10 11 2 12 14

CAMNCEL

Then the user needs to select either a tar file or indicate the directory from which
to import the extracted and unzipped csv files.

The exclude days file allows the user to select a file containing days to be excluded
from the import process. The user can edit and create new definition files. The
excluded days files are stored in a default folder defined in a property file. The
property file is called loadFile.porperties.

BoF-PSS3 User Manual 40

It is also necessary to select the correct import templates for the import process. The
templates are the same that can be created and edited with the old interface: Import
input file. Default templates are defined in the loadFile.properties file. The csv’s to
be imported either directly or form the tar-files need to follow the formats indicated
by the templates. The names of the CSV files need to contain the words
corresponding to the dataset type indicators: tran, part, iccl, dbl, blim, evnt, rsrv, or
gacc.

When loading data and there already are data sets with the same name, the system
prompts the user whether to overwrite the existing data or not. If there are no other
input datasets in the database, the system will use the same truncate operations as
the “clear project and output data” to remove the old datasets, which is very fast. If
there are other datasets in the database with other dataset ids, a slower overwrite
operation will take place. If the database is big this might be a very slow (very very
slow) operation.

Exclude transactions
The remove transactions task consists simply of the execution of an SQL- sentence.

The user needs to select an SQL-file containing an SQL sentence that alters the data
somehow. An example file is provided. The file can contain also update queries to
change data.

The default file should not be changed and saved with the same name. The file can
be edited by users and saved with another name to the same folder.

To select the SQL-sentence to be executed by the task, the user needs to double
click the parameter field of the task and select the appropriate file. The edit button
opens the text file containing the sql-sentence and allows to create a new file with
user made modifications.

This task applies the sql-sentence of the file, to the tran dataset imported before and
indicated by the global parameters: system (as selected in the drop down on top of
the GUI) and data set name (in the text box at the top as well).

The SQL queries are performed as a SQL prepared statements. This means that the
“t datsetid = ?” condition as such, in the current version, can be present in the
sentence only once.

Account pool data (Merge accounts)
This task simply runs the account pooler. It uses the GACC-file present in the input
data. Resulting datasets will be renamed by adding the account pooling data set

suffix to the dataset name from the top of the GUI. To function this task requires
the group of accounts file (GACC) to be present amongst the input files.

BoF-PSS3 User Manual 41

Perform cross-checks
This task performs the same cross-checks that can be run from the simulation

configuration view.

It is not compulsory to run this task, but if there are doubts on the integrity of the
data, it is good to run it. Once the data integrity can be trusted this step can be
skipped to speed up the process.

The cross-check report contains results that are categorized as errors and warnings.
Errors are to be taken seriously. Warnings are such that the simulator should be able
to perform a simulation. Warnings can be errors but aren’t necessarily so.

Run benchmark simulation
This task will create and run the benchmark simulation for the datasets named

according to the name fields (dataset name and account pooling suffix) on top of
the GUI. The system setup used to run the benchmark is the one selected on the top
row of the GUI The benchmark simulation is named “Bench”. If the
accountpooling task has not been selected but there are datasets with a name
corresponding to the pooled datasets according to the naming parameters dataset
name and accountpooling suffix, RawAp in the default case, the user is asked for
which dataversion the benchmark is to be run.

4.9.2 CCP tasks

As at 11.1.2024, the CCP tasks have not been updated for a while, and their
activation would require some testing and possibly some code updates.

The version 7.0.3 contains one task set: CCP tasks. The task set has been developed
to allow manipulating trade data of a certain form, to allow CSD settlement
simulations of CCP’s trades. In theory the tool could potentially be used to simulate
commodities markets and maybe derivatives to some extent. These would have to
be evaluated separately.

The task automation view checks whether there are eligible tran datasets in the tran
table that fulfil the requirements of the CCP-tools. In practice this means that there
needs to be a tran dataset with the following fields populated:

t_assename: ISIN code if available, could be something else too.
t_usercodl : contains currency code

t_usercod2 : contains CSD id
t_usercod4: contains the money value

BoF-PSS3 User Manual 42

One CCP template for importing trade data, used in an internal project, is provided
with the general version. Other templates could be used too depending on the files
to be imported. This template should be considered as an example, but could be
used in other projects too.

The provided tasks are:

Add CCP transactions
This task requires a transaction data set, containing trades, with or without cash
legs, to be present in the current project. This task will perform novation of the

trades by setting the CCP as a counterparty to each trade. The created datasetid is
named “CCP”.

Net CCP data

The task performs a basic CCP netting. The netting for securities is performed by
CSD, participant, instrument and currency (CCY). Cash legs are netted according
to CSD, participant and currency (CCY). A new transaction dataset is created for
all CSDs. The datasets are named according to field t usercod2 (a maximum of 8
characters still applies!!!). The selection “Generate one CSD” will treat the CSDs
as one. The transaction data set will be named: “one”.

Create participant data

Generates participant and account data directly from the selected transaction
dataset. One participant dataset is created for each CSD separately. The part dataset
is named according to the CSD name.

Create CSD system setup
The task replicates the available system setup to create the CSD specific

benchmarks for each CSD indentifyed from the transaction data field t usercod?2.
The task will define the CSD specific benchmark simulations.

Note! As there is currently no Benchmark selection, there can be only one system
setup defined. The existing system setup will be used in benchmarks.

Create CSD DBAL data
This task will create UB and LB dbal data sets for all CSDs, by running the CSD
specific benchmark with the liquidity available without limits setting.

Create and run all CSDs
This task will create the analysis setups for all CSDs and initiate the execution of

the automated stress tests. See 4.8. The task assumes the presence of configuration
file located in the projects input directory: participantsToBeFailed.csv

The file must contain participant id’s. The first row of the file is a label row, and
participant ids are to be defined starting form the second row, one id per row. As

BoF-PSS3 User Manual 43

the failure scenarios for CCPs are participant and not account level this is justified.
The task will run the stress test with the “by participant selection and will provide
the stress tester module with the account id’s belonging to the participant. The task
uses the default.sql filter.

Anyway if the assumptions related to this task are not appropriate, it is always
possible to run the scenarios with the stress tester separately.

Create and run cover 2 on all CSD’s

Same as above but will use a csv-file named cover2participantsTobeFailed.csv
stored in the same input folder.

In addition to traditional transaction data, the following data must be stored
according to the following table:

Information Field in TRAN table
identifier of the asset like ISIN t assename
CCY (currency) t usercodl
CSD t usercod?2
Value of the trade in traded CCY t usercod4

5 Operating the simulator via HTTP API

The Simulator application provides a HTTP (Hypertext Transfer Protocol) API
interface to operate the simulator. The Simulator Ul running in a web browser, uses
these HTTP API methods to operate the simulator e.g. to create and maintain the
user projects and all the data needed to create and run simulations.

The HTTP API can be used in the same way as a CLI allowing users to access all
the methods available to the simulator UI. This allows users to integrate the
simulator with other tools and programs very efficiently. For example, users can
develop even their own GUIs based on these methods.

Users that want to use the Simulator http-API, need to be familiar with the HTTP
protocol and the JSON object format that is used to transfer data between clients
and Simulator API. The simulator respects REST and MVC design and
architectural principles.

To access a HTTP API, utility tools like CURL, provide a way to make HTTP
method calls over the network. Many or most analysis software and programming
environments provide tools to support http connectivity nowadays.

BoF-PSS3 User Manual 44

Annex Error! Reference source not found. provides the description of some
central API methods and a CURL example on how to use the API.

5.1 Used technology

In order to be able to use the http API directly, users would need to be or get familiar
with the HTTP protocol, JSON and possibly html techniques e.g. in other terms
client side web programming techniques.

5.1.1 HTTP protocol

In short the HTTP protocol lays down rules on how a client and a server
communicate between each other. Amongst others, the protocol defines request
method types used for communications between clients and servers. The types used
by the simulator are mainly: POST, PUT, GET and DELETE.

The simulator API respects the HTTP protocol and provides a standardized and
Restfull way to communicate with the simulator over TCP/IP network using HTTP
protocol.

In practice the use of HTTP protocol means, that method calls are made with URL
calls like http://localhost:8080/ that opens the simulator GUI in your browser.

For more information see https://developer.mozilla.org/en-US/docs/Web/HTTP

5.1.2 JSON notation

JSON notation is a text based format to describe data structures in a simple name
value pair manner (see https://www.json.org/json-en.html).
Below is an example of a single data JSON structure:

{

"name": "Maria",

"gender": "F"

h

Below is an example of data structure of a JSON array (note the square

braquets ‘[‘]’):

[

{"name": "JSON", "flexibility": "high"},

"name": "XML", "flexibility": "low"}
]

BoF-PSS3 User Manual 45

http://localhost:8080/

5.2 Simulator API methods

The Simulator API uses mainly the following HTTP methods types:
GET - is used to query information and it returns typically a JSON object
related to given query path
POST - is used to create a data entity
PUT - is used to update a data entity
DELETE - is used to remove data

E.g. HTTP method call DELETE /projects/myprojectname removes a project from
the Simulator database.

A complete up to date list of API methods can be displayed with Swagger and the
springdoc-openapi-ui library. When your simulator application is running, you can
obtain the full method listing by opening the page http://localhost:8080/swagger-
ui.html in your web browser. The list is in alphabetical order.

Some of the methods are described in more detail in next chapter. Below some
important HTTP API methods are described. The URL used to reach the method is
derived by adding http://Domain in front of the */.....” URL path.

In order to interpret the method description under please take note that each method
call is an URL call that might have a JSON file passed as form data. Also the method
type (DELETE, POST, PUT,...) is passed on the background by the framework.
All parameters such as JSON files are not shown on the URL syntax but are passed
on, on the background. The CURL example demonstrates this in practice.

For example the GET method /templates in the annex Error! Reference source
not found. would look like:

http://localhost:8080/templates. Inserting a URL to browser’s address bar will use
the GET method in browser URLs. This means that other methods than GET cannot
be made purely as address bar URL calls. They would need to be made through
HTML forms, JavaScript or some framework through which you can set the request

method to something else than GET.

BoF-PSS3 User Manual 46

http://domain/
http://localhost:8080/templates

6 Algorithms and user modules

6.1 Algorithms

“Algorithms” is a common term applied to the simulator’s special settlement
functions such as splitting and netting. Common algorithms are provided as part of
the software, and users can also develop their own algorithm modules. The interface
for BoF-PSS3 algorithms and user-defined modules is the same.

The available algorithms are divided into the following main groups:

— Submission algorithms (SUB) fetch the next transaction to be submitted for
processing.

— The system event handler algorithms (I) can be used to bypass the default event
handling logics related to events (end of day, introduction of new transaction,
limit changes, Transaction expiry, ...) occurring during a simulation.

— Entry algorithms (ENT) make the initial processing of each transaction.

— Settlement algorithms (SET) call specified subalgorithms to settle queued
transactions. The SET algorithms them selves do not contain any logic to
release payments.

— End-of-day algorithms (END) process the final steps during a day or settlement
cycle.

— Time estimation algorithms (TEA) are used to estimate the real time used for
specific process. For example, a TEA algorithm can be used to induce a more
realistic delay due to the processing of a settlement algorithm. TEA is also
needed to simulate parallel processing of algorithms. To be able to use a TEA-
algorithm, the parent algorithm must support TEA estimation.

— Settlement Confirmation Messenger (SCM) algorithms are used to deliver
feedback messages from booking events of eventhandlers. These can be used
to activate agents. By modifying them it is theoretically possible to add other
functionality to them too. The point is that they are activated when transactions
are settled.

The submission algorithm is only available at the simulation level. For every
simulation, a submission algorithm must be selected. This is done later when
defining a simulation. Its task is to determine which transaction is the next to be
processed from all pending transactions in all systems. All other algorithms are
specified at system level. The submission algorithm can be thought of as the process
in which the bank decides, which is the next transaction to submit for processing to
any of the systems in the simulation. This is the algorithm to modify if new
behavioural patterns for banks are introduced.

BoF-PSS3 User Manual 47

The other main algorithms are assigned on system level. For example, an RTGS
and net-settlement system can use different entry-algorithms in the same
simulation. For every system, the entry (ENT) and end-of-day (END) algorithms
must be specified. The system event handler and settlement algorithm are optional.

The following sub-algorithms can be used with ENT entry algorithms:

e Splitting algorithms (SPL) split a large transaction into sub-transactions
according to specific rules.

e Injection algorithms (INJ) transfer liquidity between ancillary and main
systems.

The following sub-algorithms can be used with SET settlement algorithms:

e Queue release algorithms (QUE) check and fetch individual transactions for
possible settlement from the waiting queue in the order defined in the algorithm.
They are useful for settling previously queued transactions once an account or
participant has received more liquidity.

e Splitting algorithms (SPL) split transactions into smaller sub-transactions.

e Injection algorithms (INJ) transfer liquidity between ancillary and main
systems.

e Bilateral off-setting (BOS) checks and fetches transactions that can be
bilaterally off-set from the waiting queues.

e Partial netting algorithms (PNS) seek to settle a group of the queued
transactions.

e Multilateral netting algorithms (MNS) attempt to settle all queued transactions
in one netting event.

For special cases following separate algorithm categories are available:

e Queue release algorithm for secondary queue (QU2) is used in special case of
receipt reactive gross settlement.

e In simulations with bilateral limits own algorithms are used. See section 6.3 for
more details. For example, the bilaterally queued payments are released by
QUB-algorithms.

e Partial net settlement or bilateral offsetting of bilaterally queued payments is
handled by BBS-algorithms in simulations with bilateral limits.

For each payment and settlement system, there can only be one specific sub-
algorithm defined of each category in the current ENT and SET algorithms. This
means that the main algorithms will use the same splitting and injection algorithms,

BoF-PSS3 User Manual 48

if these are defined. The order in which the sub-algorithms are set in the simulator
control data specifications is important because sub-algorithms are called from
the main algorithms in the order they were set.

The specific algorithms are attached to the specified payment and settlement
systems on the System control data specification/modification screen. The
required parameter values are given at the same time as a parameter string. The
basic controls are made for the parameters, but it is essential that users are cautious
when introducing parameters. Any user-defined modules must be introduced to the
system by stating the initial specifications on the User module definition screen.
Thereafter, it is possible invoke them on the System control data
specification/modification screen in the same way as originally provided modules
and algorithms.

The time estimation algorithms (TEA) are tied to other algorithms and thus defined
slightly differently (see chapter Error! Reference source not found. step Error!
Reference source not found.). They provide function to calculate an estimate to
the time that would have been used in the real world by a specific algorithm.

The algorithms provided with the simulator are described in the table below.
Whether an algorithm supports DVP or PVP, bilateral or multilateral credit or debit
caps, the information will be provided for each algorithm separately.

Type Name Parameters Description

Fetches the next transaction or system event
SUB |SUFIFOPR |None (among all systems) according to simulation
time, priority and transaction id.

is entry settlement Performs the basic entry processes on a
enabled(true or false; specified transaction. As default respects FIFO
default = true) unless the subalgorithms it calls do not or the is

FIFO enabled parameter is set to false.
is FIFO enabled (true or [Entry settlement can be switched off by setting

false; default = true) the “is entry settlement enabled” parameter to
false. This is required for DNS setups for
priority threshold for example. If the sending participant has no
forced entry settlement (0- [transaction in queue, the algorithm checks the
127 possibilities for booking according to available

liquidity (balance + available intraday credit). If

ENT [Entry priority threshold touse [booking is not successful, it will run the

secondary queue possibly defined sub algorithms which types

are: INJ, SPL, QUE, BOS, BBS, PNS, MNS.
is linked payments The injection(INJ) and splitting(SPL)
settlement enabled algorithms are given priority over the others.
(True or False. Default: The rest are executed in the order they have
False) been defined in the system setup. If the

subalgorithms fail too, the payment is put to
Priority(0-9) queue.

Supports DVP/PVP settlement with n >=2
Open (hhmmss) linked transactions or trades. The parameter “is

BoF-PSS3 User Manual 49

Type

Name

Parameters

Description

Close (hhmmss)

Allow queueing of linked
payments (True or False.
Default = false

linked payments settlement
method (gross or nett.
Default: GROSS)

[linked payments settlement enabled”
indicates whether the Entry algorithm is
allowed to settle linked payments. Linked
payments are payments that have the same
value in the transactions’ data field:

T LINKCODE. If linked payment settlement is
disabled and linked payments are not allowed
to be queued, the linked payments will never be
settled. If forced entry settlement priority
threshold is set and one of the linked payments
has a priority that is same or exceeds it, all
payments with the same linkcode are settled.

If the parameter linked payments settlement
{method is set to NETT, The linked transactions
are settled on a net bases. Statistics are affected
like all the linked payments would be settled at
the same time like in netting. The selection
GROSS means the linked payments are settled
with the same settlement time but one by one in
the order they were submitted.

If allow queueing of linked payments is set to
true, linked payments are put to the same
primary queue with other non-linked payments.
If FIFO is enabled, also the linked payments
will block the queue. Linked payments need to
be present in the queue to allow other
algorithms to settle the linked transactions.

priority threshold for forced entry
settlement

All transactions with a priority equal or higher
to the priority threshold for forced entry
settlement -parameter are settled immediately
regardless of sufficiency of liquidity. When the
liquidity constraint is violated a violation entry
is written to the AVST-table.

|Priority threshold to use secondary queue
Transactions with smaller priority than the
priority threshold to use secondary queue
-parameter are placed in secondary queue
(QU2). Opening hours for QU2 are defined
with parameters Open and Close.

Entry does not consider reservations.

END

EndOfDay

repatriate liquidity at EOD
interval (1-60)
timel (hhmmss)

Time Schedules (hhmmss)

Basic end of day algorithm of RTGS process.

It is normally called at the end of the simulation
day.

Executes the settlement algorithm and specified
subalgorithms for one final time and performs
end of day procedures for transactions
remaining in queues.

The settlement algorithm is called for each
remaining participant separately passing the
participant as parameter.

BoF-PSS3 User Manual

50

Type

Name

Parameters

Description

It is possible to set times, when the algorithm is
executed with the time parameters. The
maximum number of separate settlement runs is
40.

[repatriate liquidity at EOD

If this is set to true, any possibly injected
liquidity from another system (with an
algorithm of type INJ) is repatriated when this
algorithm is run. The repatriation transfers’
transaction IDs’ start with S.

SET |settlement

Queue name (PRIMARY,
SECONDARY,
TERTIARY)

Calls specified subalgorithms to settle queued
payments. It is invoked each time a new
transaction is put into queues or liquidity has
been transferred to an account with queued
transactions. Calls algorithms of types: QUE,
SPL, INJ, PNS, MNS

QUE |QueucRelease

sortBy
bypass allowed (TRUE or
FALSE)

Releases individual transactions from waiting
queues upon arrival of additional liquidity in
priority and FIFO order by default. The exact
behavior depends on the calling algorithm.
QueucRelease performs FIFO on the set of
transactions it receives as parameter. The
default event handler calls it account by
account, which means that it acts as an account
wise FIFO algorithm.

Supports DVP/PVP settlement with n >=2
linked transactions or trades. Settlement of
linked transactions can break the FIFO rule
regardless of bypass parameter selection.

Supports limits (BLIM).

|sortBy

The sortBy parameter affects the order of the
queued transactions. It directly affects the order
in which transactions are settled or taken out of
a solution. This parameter can be used to
deviate from FIFO.

|bypass allowed
If bypass allowed is set to true, the algorithm
will not respect FIFO.

SC

ReceiptReacti
QU2 |veQueueRelea

eod (“gross” or “return”)
mewprior (0-9, optional)

Releases transactions from secondary queue in
priority FIFO order in receipt reactive gross
settlement simulations.

EOD parameter defines the processing logic of
secondary queue payments at the end of each
period: gross means transactions are moved
into primary RTGS queue, return means
transactions are discarded (i.e. returned to
original sender).

Supports DVP/PVP settlement with n >=2
linked transactions or trades.

BoF-PSS3 User Manual

51

Type

Name

Parameters

Description

In the former case transactions are given a new
uniform priority if NewPriority has a value.
Otherwise, they retain their original priority.
(See ch. 6.4.1 for more details)

SPL

Transaction-
SplittingTo-
Tranches

Max. transaction value,
positive amount with two
decimals

Splits transactions into sub-transactions
according to specified maximum transaction
value. For example, if a max value of 500 is
specified, a transaction of 1,350 is split into
sub-transactions of 500, 500 and 350, with 350
the last to be processed.

SPL

Transaction-
Splitting-
BasedOn-
Available-
Liquidity

None

Splits transactions using available liquidity. For
example, when 450 is available on the account,
a transaction of 1,350 is split into 450 and 900
of which the 450 is directly processed and 900
remains in the waiting queue.

INJ

Injection

Value: Positive value with
two decimals

Percentage: format positive
100.00

Mainly, the INVALUEI] algorithm is called by
entry and settlement algorithms such as Entry
and Settlement.

The algorithm as such does not settle anything.
It injects liquidity to a participant/account when
required in given amounts defined with the
parameter value of the algorithm if called with
a transaction as parameter like in entry. The
source of liquidity and permission to perform
injections are defined by using the “Liquidity
injections from system” and “Liquidity
injections from participant” fields in PART
data. The injection is performed by generating a
payment. The payments ID starts with I. The
value is set to the amount indicated by the
parameter.

'When the algorihm is called with a participant
as parameter like when it is called by
SEBASICI, if liquidity is sufficient, the
injected liquidity is released and returned back
to the source participant/account by generating
payments. The values are set to be equal with
the parameter value defined in system
definition for the algorithm. The liquidity
repatriation transaction ID starts with J. If
needed the algorithm can generate several
transactions.

Typically, liquidity injections can be used
between a main and ancillary payment system.

[Percentage

Injects an amount that corresponds to a given
percentage of the credit limit available in the
ancillary system.

If both parameters are not set, the injection
algorithm tries to transfer the exact needed
amount

BoF-PSS3 User Manual

52

Type

Name

Parameters

Description

BOS

Bilateral-
OffSetting

sortBy

Performs bilateral off-setting of waiting queues
in FIFO and priority order (default behavior)
and using available liquidity. All transaction in
primary queue are included into the search. The
algorithm skips transactions with linkcodes,
thus it does not support DVP or PVP.

The algorithm is performed after each
transaction queue entry and liquidity change, so
caution is needed with large transaction
volumes.

Because of the bilateral processing, the priority
FIFO rule can become bypassed on system
level in bilateral off-setting.

BOS algorithms skip transactions with
linkcodes.

|[sortBy

The sortBy parameter affects the order of the
queued transactions. It directly affects the order
in which transactions are settled or taken out of
a solution. This parameter can be used to
deviate from FIFO.

BBS

Bilateral
Partial Netting

sortBy
interval (1-60)

interval start time
(hhmmss)

Time Schedules (hhmmss)

Performs partial bilateral net offsetting of
bilaterally queued transactions in FIFO or
selected sortBy order and priority order by
including transactions that can be settled within
the available bilateral limit. All transaction in
primary queue are included into the search. The
algorithm does not control for linkcodes, thus it
does not support DVP or PVP. Because of this,
the algorithm can settle single linked payments.
The algorithm removes transactions one-by-one
in according to the sortBy order priority and
time order (starts by removing the most recent
submitted transactions with the lowest priority)
for each participant pair.

The solution must fulfil the bilateral limit
criteria and the overall balance limitations. The
algorithm is performed after each transaction
queue entry, liquidity transfer and overall credit
and bilateral limit change, so caution is needed
with large transaction volumes.

Because of the bilateral processing, the priority
FIFO rule can become bypassed on system
level.

Supports Credit cap limits as well.

{[sortBy

The sortBy parameter affects the order of the
queued transactions. It directly affects the order
in which transactions are settled or taken out of
a solution. This parameter can be used to
deviate from FIFO.

BoF-PSS3 User Manual

53

Type

Name

Parameters

Description

If none of the parameters interval nor time
schedules are given, the algorithm is run when
there is a change in liquidity conditions. In
practice this is when a new transaction is
queued, or liquidity increased on some account.

{Interval (in minutes)

Interval defines how often the algorithm is run.
A value of 60 means the algorithm is run every
minute.

linterval start time
interval start time defines the time when the
algorithm is run the first time.

Time Schedules

Time Schedules allow the user to define a fixed
time schedule for the running of the algorithms.
This corresponds to a deferred system setup
(DNS).

PNS

PartialNetting

sortBy
interval (1-60)

interval start time
(hhmmss)

Time Schedules (hhmmss)

Performs partial net settlement of queued
transactions in FIFO and priority order by
including transactions that can be settled with
available liquidity (the algorithm removes
transactions one-by-one for participants unable
to settle, to see if a partial settlement is
possible).

Supports DVP/PVP settlement with n >=2
linked transactions or trades. The algorithm is
performed after each transaction queue entry,
so caution is needed with large transaction
volumes.

Supports DVP/PVP settlement with n >=2
linked transactions or trades.

{sortBy

The sortBy parameter affects the order of the
queued transactions. It directly affects the order
in which transactions are settled or taken out of
a solution. This parameter can be used to
deviate from FIFO.

If none of the parameters interval nor time
schedules are given, the algorithm is run when
there is a change in liquidity conditions. In
practice this is when a new transaction is
queued, or liquidity increased on some account.

{Interval (in minutes)

Interval defines how often the algorithm is run.
A value of 60 means the algorithm is run every
minute.

linterval start time

BoF-PSS3 User Manual

54

Type Name

Parameters

Description

interval start time defines the time when the
algorithm is run the first time.

Time Schedules

Time Schedules allow the user to define a fixed
time schedule for the running of the algorithms.
This corresponds to a deferred system setup
(DNS).

MultilateralNe
tting

interval (1-60)

MNS interval start time
(hhmmss)

Time Schedules (hhmmss)

Performs total net settlement of all queued
transactions when sufficient liquidity is
available . This is equivalent to all or nothing
settlement.

If none of the parameters interval not time
schedules are given, the algorithm is run when
there is a change in liquidity conditions. In
practice this is when a new transaction is
queued, or liquidity increased on some account.

{Interval (in minutes)

Interval defines how often the algorithm is run.
A value of 60 means the algorithm is run every
minute.

linterval start time
interval start time defines the time when the
algorithm is run the first time.

Time Schedules

Time Schedules allow the user to define a fixed
time schedule for the running of the algorithms.
This corresponds to a deferred system setup
(DNS).

BoF-PSS3 User Manual

55

6.2 Example algorithm selection for a pure RTGS or
instant payment system

Real-time Gross Settlement (RTGS) systems process transactions one-by-one
directly when they are introduced. Each transaction is booked, queued or discarded
as defined by the algorithms, set for the system. The release of queued transactions
is determined using various settlement algorithms.

To define a setup that replicates a pure RTGS or a retail instant payment system,
one should choose only the Entry and the EndOfDay algorithms. The idea is that
payments are settle at entry by the Entry algorithm or not settled at all.

Edit setup of system NRAPS ¢ 2, modified 2024-01-12717-30:26

Dataset id Opens Closes Intraday Credit Availability

RTGS (© 08:00:00 @© 19:00:00 Credit according to limit data -
Full name Handling of Unsettled Transactions

Pure RTGS [J Transfer balances to next day Delete and include to statistics -

Description
A setup of a pure instant settlement system without queue release

Event handler algorithms -

Entry algorithms

Emry@ @ M

Settlement algorithms -

Sub algorithms -

End-of-day algorithms

EndofDay (3) () -

CANCEL SAVE

Only those algorithms that are strictly necessary to describe the desired processing
logic should be included in a system definition. Before performing large scale
simulations it is wise to validate the created model by testing the process with
simple examples with only few transactions so that the correct outcome for the input
can be verified from the output.

Note that there is no checking logic in the simulator to assess whether the selected
algorithm combination is rational. The user is responsible for selecting appropriate
algorithms among those applicable for RTGS simulations.

BoF-PSS3 User Manual 56

6.2.1 Example of a DNS or batch systemstems

A pure batch-based system does not settle transactions when they are introduced.
All payments are queued first. A batch-based system can be defined by adding any
of the PNS, MNS or BBS algorithms e.g. PartialNetting, MultilateralNetting.
Bilateral Partial Netting. The algorithm must support the Time Schedules
parameter.

Under is a picture of a DNS setup with the PartialNetting algorithm.

Add setup to system NRAPS

Dataset id Opens Closes Intraday Credit Availability

DNS (© 08:00:00 (© 19:00:00 Credit according to limit data -
Full name Handling of Unsettled Transactions

DNS Batch [Transfer balances to next day Delete and include to statistics -
Description

Event handler algorithms -

Entry algorithms

Entry(D) @ -

Settlement algorithms -

Sub algerithms

Parl\a\Neﬂmg@ @ M

End-of-day algorithms

EndofDay (i) @ -

-

CANCEL SAVE

A batch or DNS based system does not allow settlement of transactions at Entry.
To achieve this and to force all payments to go to queue, the “is entry settlement
enabled” parameter must be set to false. See below:

BoF-PSS3 User Manual 57

Entry
s entry settliement enabled -
FALSE -
is FIFO enabled -
priority threshold for forced entry settlement -
priority threshold to use secondary queue -
open
Que2 open time (hhmmss
close
qQue2 closing time (hhmmss)
is linked payments settlement enabled -
allow queueing of linked payments -
b
CANCEL 0K

To set the times when the batch processing or netting is performed, a time schedule
must be defined for the running of the PartialNetting algorithm. This is done by
editing the parameters of the algorithm. Under is an example of a batch schedule
defining runs for 9, 11 and 13 o’clock.

PartialNetting

sortBy -

interval

Minutes interval (1-60)

interval start time

Time (hhmmss, optional)

|

Time (hhmmss, optional)

090000 €
110000 €3
130000 €3

CANCEL 0K

BoF-PSS3 User Manual 58

6.3 Calculation of bilateral limits

Bilateral limits can be used to describe debit caps, credit caps and similar participant
level bilateral or multilateral restrictions for payment clearing and settlement. Not
all algorithm support bilateral and multilateral limits. Support for bilateral limits
can be checked from the algorithm descriptions. The functioning of these limits is
described below first in bilateral level. Definition of multilateral level is explained
separately at the end.

If a bilateral limit (debit cap) is set from participant 4 to participant B, the
cumulative net value of payments settled between these participants — called
bilateral balance — must remain within the given limit. The debit cap defines the
smallest allowed value for this bilateral balance. A ‘sending surplus’ (i.e. when A
has sent a greater value of payments to B than it has received) is equivalent to a
negative value of the bilateral balance. Thus a negative limit value defines a
situation, where a higher value of payments is allowed to be sent to a given
participant than is received. The opposite case, a positive bilateral limit, means that
participant 4 requires that a certain value of payments has arrived from participant
B before it settles any outgoing payments to B.The constraint can be formulated the
following way for any given moment 7*

bilateral balance(T) = Sg4(T) — Su5(T) = debit cap(T)

where Syy (t) denotes the cumulative value of settled payments from participant X
toward participant Y starting from beginning of day until the time ¢.

A bilateral credit cap defines similarly the upper limit for the bilateral balance
between A and B. Thus if A sets a credit cap against B, the incoming payments
from B to A are blocked if they lead to an increase of A’s bilateral balance over the
given credit cap. The constraint takes the following form:

bilateral balance(T) = Sg,(T) — Su5(T) < credit cap(T)

The calculation of bilateral balance starts from zero from the beginning of each
simulated day, or from the moment when first bilateral limit is defined to the given
pair of participants. Thus, bilateral positions are followed only for those participant
pairs where some constraints are also in place. No balances are transferred to next
day in multiday simulations.

BoF-PSS3 User Manual 59

All bilateral limits are set within the BLIM input table. The limits do not need to be
symmetric, i.e., limit from 4 to B does not need to be same as from B to A. Bilateral
limits are only in force for those participant pairs for which they are explicitly
specified. Debit caps are defined by setting a value to the L NEWVALUE field and
credit caps are defined by setting a value in the L DBCVALUE field of the BLIM
data table. either one or both values can be set with one row of input data file. In
such simulator projects, which are created with older version than 3.1.0, such debit
and credit cap values, which have same participants and same time label, are
necessary to be imported in one and same row of data file. For more details see
Descriptions of Databases and files.

Specified bilateral limits are valid until the simulation ends or the limit is changed.
Individual bilateral limits can be altered during the day and completely removed by
placing a special value (0.99) in the input.

If a new value of bilateral limit is defined, which causes the already existing
bilateral balance to be infeasible, the limit change will still take place. The new
limit will block all payments, which would cause the situation to become still worse.
Thus, violated debit cap does not prevent inflow of payments even if bilateral
position would remain below the defined limit still after the payment is received.
Similarly violated credit cap position does not prevent outgoing payments.

In addition to bilateral limits, also multilateral intraday limits can be defined in
BLIM table by stating the receiving participant as *MULTILIMIT. This means that
net value of payments sent and received between specified participant/account and
all others has to remain within the given multilimit. Values for multilimit are given
similarly as other bilateral limits i.e. negative value indicates that sending surplus
is allowed. Another way to describe the difference is to note that ICCL data can be
used to define actual liquidity for participants, while BLIM data only defines
limitations for the flow of existing liquidity. Thus, such simulation would not be
able to settle any payments regardless of the BLIM values, where only bilateral
limits would be defined but no liquidity would be given with DBAL or ICCL data
or by granting of unlimited credit in the system setup.

The bilateral limits can be applied to one part of the transaction flow. This is carried
out by giving a high priority for those transactions, which need to be settled
regardless of bilateral limits. All transactions that pass the bilateral limit control
have also to pass the general liquidity availability control i.e. general credit limits
may not be violated. High priority transactions, and those which have no bilateral
limits affecting them, are processed normally by the simulator.

BoF-PSS3 User Manual 60

6.4 Algorithms for special cases

This chapter contains descriptions of different sets of algorithms that have been
developed for special cases. Often the settlement convention in question requires a
special set of algorithms to be selected, and these algorithms will probably not
function as intended in other combinations. A given set of algorithms need to be
used as described and if used in other combination great caution is needed.

Following special algorithm sets are described here:

- receipt-reactive RTGS in chapter 6.4.1

- DVP linking of multiple transactions i.e. Group code algorithms in chapter
Error! Reference source not found.

6.4.1 Receipt-reactive RTGS

The general idea of the receipt-reactive RTGS convention is that the participants
can divert some part of the outgoing payment flow to a secondary queue. Using a
predetermined time period (e.g. one minute, one hour) to cumulate the amount of
incoming funds, this secondary queue releases payments whose amounts aggregate
up to, but do not exceed, this total amount of incoming funds. Figure 1 contains a
visual presentation of the dynamics in the receipt reactive model for two time
periods.

This settlement convention is a type of liquidity management convention that
functions independently from a participant’s total liquidity balance. The secondary
receipt-reactive queue complements the higher priority RTGS payment flow so that
a participant’s total liquidity balance never goes down under the starting balance
because of the receipt-reactive queue’s handling of its lower priority payments.

The receipt reactive model requires a set of three algorithms: Entry algorithm,
settlement algorithm and queue release algorithm for secondary queues
ReceiptReactiveQueueRelease. A time period parameter is introduced in the first
of the user-defined fields in the participant table (PART). This predetermines the
amount of time during which incoming funds will be cumulated for the purpose of
allowing payment release from the receipt-reactive queue. Note that there need to
be a time period value for each participant using this feature. If this value is zero
or there is no period value given, transactions for such participant stay in the
secondary queue until it is closed.

The processing steps in the receipt reactive model can be described as follows
- in the entry phase the transactions can be divided into three streams:

BoF-PSS3 User Manual 61

- immediately forced settlement of payments with highly urgent priority
(i.e. settled even if these violate all limits),

- normal transactions for RTGS processing including the normal primary
queue and

- low priority payments for the secondary queue during the open hours of
the secondary queue

in the settlement phase all normal RTGS algorithms can be called and in

addition a QU2 algorithm for releasing transactions from the secondary

queue

in the queue release phase of the secondary queue the transactions which fit

the positive net balance of that given period will be settled in priority and

FIFO order,. The period in minutes can be defined separately for each

participant. At the end of the period the remaining transactions in the

secondary queue of that period can be moved up to the RTGS queue with

their original priority or by giving them a new uniform priority or

alternatively they can be discarded.

The Entry algorithm takes four parameters:

priority threshold to use secondary queue (0-9), which defines the value of
priority required for entering the normal RTGS process. Transactions with
a lower priority than the limit value are placed into the secondary queue.

Priority (0-9) defines the minimum value of priority for highly urgent
payments. Transactions with equal or higher priority are settled immediately
even if they would violate any limit.

Open (hhmmss) defines when the secondary queue is opened. All
transactions entered before this point in time are treated as normal RTGS
transactions.

Close (hhmmss) defines when the secondary queue is closed. All
transactions entered after this point in time are treated as normal RTGS
transactions.

The QU2 queue releasing algorithm, QURRFIPR, releases transactions from the
secondary queue based on the period information provided in the P USERCOD1
field of the PART table and it employs the following parameters:

EOD (“gross” or “return”), which defines if unsettled secondary queue
transactions are moved to the RTGS queue — the “gross” case — or if
unsettled transactions are discarded i.e. returned to sender — the “return”
case.

NewPriority (0:9) is optional. It defines the value of priority given to the
transactions moved via “gross” to the normal RTGS queue. If the parameter
has not any value, transactions are moved with their original priorities.

BoF-PSS3 User Manual 62

The period parameter in the PART-table has an important function as it defines how
the open hours of the secondary queue can be divided into sub-periods. The format
for this parameter is hh:mm, for example 01:30. If incorrect format is used, period
of 60 minutes is assumed and an error message is shown in the console. Within each
sub-period the net received balance starts from zero and is calculated such that
outgoing payments released by the secondary receipt-reactive queue are netted
against all incoming payments. This net received balance must always be greater
than or equal to zero. Payments sent via the normal RTGS process by certain
participant do not affect the processing of payments in the secondary queue of this
particular participant: only amount of funds received and payments sent from the
secondary queue are relevant. For example if the period is defined to be 30 minutes,
a participant can settle as many secondary queue transactions in FIFO order up to
the aggregate amount of surplus received during the given 30 minute interval. This
is not an end-of-period settlement, but payments can be released from the receipt-
reactive queue all time during the period so long as the net received balance is non-
negative. After the end of the period in our example 30 minutes, the net received
balance is set to zero and the process begins again.

When the secondary queue closes by the end of the period, the EOD process will
determine how unsettled transactions are treated. When value of EOD parameter is
“gross”, the transactions from secondary queue are moved to primary queue with
the NewPriority value and parameter value “return” will discard the transactions.
For example if OPEN is defined as 10:15:00, CLOSE as 15:30:00 and the period as
30 minutes, the receipt-reactive calculation periods will be 10:15-10:44:59,
10:45:00-11:14:59,...,15:15:00-15:30:00.

BoF-PSS3 User Manual 63

Balance
Release ofiqueued
Receipt of payment niessages
Payment
bank i’s
balance
Release of queued
/ payment messages
Receipt of
RTGS payments P >
. payment |
made by bank i |
. , | Time
Open Period 1 Period 2 Close

Figure 1 Dynamics of participant balance under receipt-reactive settlement

6.5 System event handler algorithms (SEH)

This is a special type of algorithms that are used to adjust the basic rules of a
simulated system. Rules here mean the way a system reacts to specific events
occurring during a simulation. Each payment system can have its own set of rules
according to which it reacts to different events occurring in a settlement process.

The events recognized by the simulator’s default event handler are the following:
- Introduction of a new transaction

- Bilateral limit change

- Intraday Credit limit change

- Receipt reactive period start

- Receipt reactive period end

- Reaching the from time of a payment (PROCTYPE)

- Expiry of till time (PROCTYP2)

-End of day

The event handler contains also some common routines like the booking routine.
Thus it contains the logics that follow “booking events”.

BoF-PSS3 User Manual 604

The I algorithm is optional and if one is defined it will override the default
behaviour.

Algorithms may also introduce new types of events, which will require new
processing logics which can be introduced using I algorithms.

6.6 Time estimation algorithms (TEA)

Time estimation algorithms are used to estimate the time, a specific process or
algorithm would have used in the real world. To do so, the time estimation
algorithms can use variables such as the amount of transactions, amount of
iterations, used CPU time and lot of other possible variables related to a specific
process for which time estimation is required.

The variables and parameters according to which a TEA —algorithm can calculate
a time estimate will only depend on the properties and the implementation of the
algorithm. Also the calling parent algorithm must be able to provide the required
dynamic parameters to the TEA-algorithm. The parameters used to estimate time
usage are the following:

e Dynamic parameters are the parameters the parent algorithm will provide to
the TEA-algorithm. Dynamic parameter values are defined during
simulation runs.

e Fixed parameters are defined in the system definition before the simulation,
and they are coefficients of the estimation function.

To be able to attach a time estimation algorithm to a parent algorithm, all the
dynamic parameters of the TEA-algorithm must be supported by the parent
algorithm. The parent algorithm can support more dynamic parameters than the
TEA-algorithm.

The following time estimation algorithmis are provided:

Type Name Parameters Description

Dynamic parameters:

X = transaction Time estimation function:

TEA ITEALGOI1 count in the parent bl (a0 + al x + a2y + a3 z + a4 x* +
algorithm a5y?+abz2+a7x y+a8 yz+adxz)
y = account

(participant) count in

BoF-PSS3 User Manual 65

Type Name Parameters Description

the parent algorithm
(e.g. in netting
solution)

z = actually used CPU
time in milliseconds
(varies, set relevant
coefficients as 0 for
environment
independent results)

Fixed parameters:
a9, a8, a7, ab, a5, a4,
a3, a2, al, a0, bl

New TEA algorithms can be introduced as user modules similarly as any other
algorithms.

6.7 Agent based modelling (ABM) algorithms

Note!

The GUI of the Beta version of PSS3 does not support importing or definening
ABM simulations well. Users would need to define setups directly into the DB.
Even then the functioning is only partly tested with promising results though.

The ABM algorithms contain proactive decision making rules for actors or agents
included in a simulation. Their main function is to incorporate behavioural rules for
entities involved in the simulations.

We understand ABM as a computer modelling or simulation technique in which we
replicate algorithmically the behaviour of some actors and allow them to interact in
computer simulations as independent agents. ABM is essentially a computer
simulation modelling technique which affects the architecture and structuring of the
simulation software and code allowing Al logics to interact in the simulation world.

ABM’s can be seen as micromodels in which macro level inference is made out of
the outcome of micro agent’s interactions. The fact that ABMs are implemented at
microlevel, ABMs are also likely to bring in more realism.

For more on Agent based modelling in general, please refer to other sources, there
are many of them. As a hint be careful with the sources related to economics and
favour articles of some other fields. It seems that in some economic papers ABM is
slightly misunderstood to simply mean the incorporation of behavioural rules into

BoF-PSS3 User Manual 66

https://en.wikipedia.org/wiki/Agent-based_model#targetText=An%20agent%2Dbased%20model%20(ABM,the%20system%20as%20a%20whole.

traditional economic analytical models. The application of ABM into economics is
still at its dawn.

6.7.1 Basic functioning

With the ABM configuration file, accounts are associated with a specific bank logic
(or agent implementation). These agent logics, in programming terms, extend a
class called Bank which contains some basic implementations of some basic
features. The available basic implementations are called cautiousBank and
CustomerDiscriminatingBank in addition to the ExampleBank. Human readable code for
all of these can be found in the modules directory and it includes extensive
comments that explains the functioning and the structure. Studying the code is
highly recommended before using the ABM algorithms.

When an agent implementation is configured and connected to an account in a
simulation, this is done by giving the agent implementation full control of the
payments where this account is the sender. The payments are no longer submitted
to the simulations’ payment system directly but instead they are moved into a
separate transaction queue owned and handled by the ABM agent implementation.

The agent implementation can decide whether and when to send payments to the
payment system just like in the real world and also create new events or transactions
in the simulation based on the triggers in the data and status of the simulation. How
complex the Al inside the agent is depends on the algorithm implementation.

6.7.2 When and how are agents activated?

Agents are activated with agent wakeup events. These wake-up events are stored in
the simulations basic event queue with all other events like introduction of (non
ABM) transactions, credit limit change, end of day etc. Wakeup events are used in
different situations as described below.

When the agents are activated, they can schedule and create wake up events for
themselves for any future time. If the agent is aware of the account of another agent,
it is able to schedule a wake-up event also to another agent. The bank interface
includes methods for placing the created wakeup events to the systems event queue.

BoF-PSS3 User Manual 67

6.7.2.1 Simulation initialisation

When the transactions of an account with agent code are separated into the agents
own queue, a wakeup event is generated for each transaction to the simulation’s
general event queue. These wakeups include a reference to the related transaction
and have the same time label as the given transaction.

In the initialization in the beginning of the simulation, the possibility to create new
events can be used to establish fixed times known in advance when the agent needs
to be active.

6.7.2.2 Processing of a wake-up event

A wake-up event triggers a call of the agent instance, which is related to that given
event and allows it to perform actions or decisions based on the situation in the
simulation. The processing of the wake-up event can be separated based on system
event types. Default options available for the ABM related event types include
AGENT_WAKEUP, AGENT ALERT END OF DAY,
AGENT _END OF DAY and AGENT TRANSCATION HAS SETTLED.
Users can define also own event types if needed. These should not overlap with the
values already defined in the SystemEvent class.

If the wake-up event is related to a transaction, this is the moment when the
transaction was originally sent to the settlement system in production. The agent
can decide what action it performs on the given transaction. Note however, that
ABM code can decide to submit transactions which are mandated to it also during
any other wake up call. Thus, transactions can be submitted later or earlier than
what was their original submission time in the input data. For transaction
submission see ch 6.7.2.3.

Agents can also schedule themselves new wakeup events. The agent can create a
wake up event for itself with method addToQueue e.g.:

SystemEvent event = createWakeupEvent(long currentSimulationDate, long time);
addToQueue(event);

6.7.2.3 Sending a payment for settlement

When an agent is activated, it can decide to send payments for settlement. For this
purpose, 3 methods are available:

sendPaymentForSettlement(transaction)

BoF-PSS3 User Manual 68

This method removes the transaction from the agent’s own queue and puts it on the
top of the simulations submission queue from where the transaction will be sent to
the payment system. The system sets the submission time of the transaction to be
equal to the current simulation time. If there is a linked wakeup event for that
transaction, it is removed from the simulations event queue.

sendPaymentForSettlement(transaction, boolean)

Otherwise same as above with the exception that by setting the Boolean parameter
to false, the method will leave a possible linked weakup event in the simulation’s
event queue.

sendPaymentsForSettlement(SystemEvent, String)

This method is used when the agent wants to send all the rest of its payments from
its local transaction queue for settlement. A typical time to invoke this method
would be when the agent receives the SystemEvent.AGENT_ALERT_END_OF_DAY Or
SystemEvent.AGENT_END_OF_DAY system event. The SystemEvent parameter is only
used for logging purposes. The String parameter defines the submission origin of
the payment that is stored in TEST statistics.

6.7.2.4 Transaction booking

When transactions are booked and a SCM (Settlement Confirmation Messenger)
algorithm is defined in the system setup, agent wakeup calls will be added to the
simulation’s event queue according to the algorithmic rules of the selected SCM
algorithm.

The basic implementation, called SECOMSGR, will add agent wake up events to
the simulations’ event queue for both the credit and debit accounts of each settled
transaction in case both credit and debit accounts have a agent configured. The wake
up calls are scheduled for the settlement time of the settled transaction.

The bank agent will receive the settlement wake up events in its process method’s
switch case structure hooked for system event type

SystemEvent.AGENT_TRANSACTION_HAS_SETTLED.

See the example ABM code in the annex.

6.7.2.5 End of day calls

Separate wake up event is sent to the agents when the simulated day ends. In
addition, the bank agent can invoke a system event to itself as an alert when the

BoF-PSS3 User Manual 69

business day is about to end. The timing of these is controlled by system definition
and the agent parameter values.

It is noted that as a default, the simulated days are treated completely separately in
the ABM thus an agent cannot send a system event to some other business day.

If the agent needs to pass on any information from one day to another, then the user
must implement this transfer e.g. via file and make sure that the simulation is
executed in a sequential mode for the simulated days.

6.7.3 Account management Al algorithms

Below is listed the parameters of cautiousBank and CustomerDiscriminatingBank
agents:

Name Parameters Description

Agent switches from
normal state to cautious
if the balance falls below
“onPercentage”
parameter value. There is
possibility to define
hysteresis, where
returning to normal
requires higher balance
(offPercentage) than the

triggering of cautious
alertsSecondsBeforeEndOfDayEvent |;1,ode.

¢ in seconds When the agent is
onPercentage: cautious, transaction
decimal classes listed in the
CautiousBank offPercentage: “delayTypes” parameter
decimal . . are postponed and not
delayTypes.. list of transaction types submitted to the system
separated with a blank .
logEvents: until the agent returns to

true or false normal state. Postponed
transactions are stored in
a separate internal queue,
which has priority FIFO
order.

'When the end of day
approaches
(alertSeconds...) and
when it arrives all
payments from the
internal queue are
submitted.

BoF-PSS3 User Manual 70

Name Parameters Description
The agent represents

latestTimeToPostponePayments: direct participant which
in microseconds may postpone the pass
alertsSecondsBeforeEndOfDayEvent: through of payments

in seconds . e q:
delayMaxNormal: coming frorp its indirect
in microseconds counterparties.
delayMinNormal: These payments are

in microseconds identified based on
ligl.owNormal: Usercode 1 field. It

decimal number
ligHighNormal:
decimal number

should contain a value
where the first 8

priorityThresholdUrgent: characters differ from the
urgency values like 1 to 9 depending on |direct participants ID for
the data used a payment to become
delayMaxUrgent: delayed. This serves as a
in microseconds . .
delayMinUrgent: proxy ‘for implying the
... lin microseconds behaviour only on a
CustomerDiscrimin | . . .
. ligLowUrgent: counterparties which are
atingBank A -]
in microseconds not in the same banking
ligHighUrgent:

group.

decimal number .. .
Minimum and maximum

priorityThresholdHighlyUrgent:

decimal number delay can be defined
delayMaxHighlyUrgent: separately for payments
in microseconds above different priority
delayMinHighlyUrgent: thresholds. Also the

in microseconds .. .
liqLowHighlyUrgent: liquidity levels, which
decimal number trigger delaying are
ligHighHighlyUrgent: defined separately for
decimal number different priority groups.
defaultDelay:

The delay is varied

in microseconds b h
createWakeUpEventsOnMaxDelay: etween the extreme

true, false values in inverse linear

logEvents: manner based on the

true, false; liquidity position of the
account.

Is activated when a settlement
system books a transaction.
Agent wake up calls are
added to the simulation’s

MSC: event queue for the debit and
SettlementConfirm credit accounts of all
ationMessenger transactions settled through

the booking process.

The algorithm can be
modified to trigger other sorts
of reactions.

The name of the algorithms in the ABM simulation configuration file reflect the
actual Java implementation class names. The above parameter names are defined

BoF-PSS3 User Manual 71

and used inside the ABM algorithms. Users can modify the set of parameters
available in a given ABM algorithm by introducing new parameters or discarding
the ones which are unnecessary for their implementation.

The configuration file used to set up ABM simulations follow the syntax presented
in the ANNEX 2. The property file allows the user to define which ABM algorithms
are in use by which participant and with which parameters.

With the property file tag agents= it is possible to declare which ABM algorithms
are in use. The syntax is the following for declaring the algorithms i.e. your ABM
agent modules.

In below example seting we’ll setup the CautiousBank and
CustomerDiscriminatingBank algorithms:
agents=CautiousBank;CustomerDiscriminatingBank

The semicolon is used to separate the algorithms.

To declare common global parameters for participants using the same ABM logics
the following syntax is used:

[agent class name]Settings= \

[parameter 1]=[parameter value]; \

[parameter 2]=[parameter value]; \

fparameter 3]=[parameter value];
Here the first row indicates for which ABM algorithm the common parameters are
defined.

Please notice that the characters \ at end of a line means that the line is continuing
to the next line.

Example of an algorithm specific setting:
CautiousBankSettings= \
alertsSecondsBeforeEndOfDayEvent=1800; \
onPercentage=0.2; \

offPercentage=0.4; \

delayTypes=1.1 1.2; \

logEvents=true;

To associate participants to use a specific ABM logic, the following syntax is used:
ABMclassfilenamexParticipants= \

[system id]-[participant id]-[account id]; \

[system id]-[participant id]-[account id]

The system id is defined in your simulator database part table.

BoF-PSS3 User Manual 72

You can use the below query to help finding out the your system-participat-account
candidates you can use as values in above setting.
SELECT DISTINCT
CONCAT(t1.system_id,
CONCAT('-* ,
CONCAT(t1.from_particid,
CONCAT('-" , tl.from_accounid))))
FROM tran_view_all t1;

Below is an example of a algorithm specific participants setting:
CautiousBankParticipants= \

1-NDEAF IHH-NDEAF IHHO0000000000000001 ; \

1-DABAF IHH-DABAF IHHO@000000000000001 ;

Participant specific agent parameters are defined by first declaring the algorithm
and account identifiers and then after the parameters on their own rows in the
following way:

ABMclassfilenamexSystemID-participant-id-account_id= \

parameternamel= wanted value; \

6.7.4 ABM Object model

In below diagram the ExampleBank class is an implementation of a bank agent which
you can use as a reference as you start to create your own ABM bank agent
implementation.

ABM bank agent implementations are created as java classes that extend the Bank
class which in turn implements the BankAgent interface.

BoF-PSS3 User Manual 73

class Simple Abm Model .~

«interface»

ABM agent
configuration The bank implementation class
receives wake up events that
enables process method
decides wetheror not to send a
transaction from the bank

init(): void
\ + process(): void

1 + isSettleable(): void
Load the parameters from

“ﬂU.W)' configuration file. agent owned transactions to be
submitted to simulation.
Parameter
1
D_*i_*_— Bank
SimulationQueueAccessor
transactionQueue: TransactionQueue
+ add(Transaction): void
+ sendPaymentForSettlement(Transaction): void A + add(SystemEvent): void
+ sendPaymentForSettlement{Transaction, boolean): void «Lse» + add(SystemEvent, boolean): vod
1+ sendPaymentsForSettlement(SystemEvent, char): void + remove(SystemEvent): void
TransactionQueue + addToQueue(SystemEvent, boolean): void :
+ createWakeupEvent(Transaction): void
+ createWakeupEvent(long, long): void
+ createEndOfDayAlertEvent(long): void Enables to send transactions

and system events fo
A submission algorithm.

Each Bank implementation has 1

.) This is the usercreated bank
it's copy of it's own transactions . . o .
where the agent is the debitor ExampleBank agent implementation cioss.

- Implements the methods from

on each transaction. - . .
+ init(): void BankAgent interface class
+ process{): void and inherits the methods from
+ isSettlable(): vad Bank class.

Please notice that all the other classes are existing simulator classes. At least in
simple ABM implementations all the logic can be written to the new Bank child
class. The methods listed for the Bank class are intended to be used when the derived
bank agent class needs to communicate with the simulator’s settlement process.

The sendPayment[s]Forsettlement methods are used as the agent decides to release
one or more transactions from its own queue of transactions.

The addToQueue(Systemevent) method enables the agent to send a system event to
simulator’s event queue to be invoked at given time of business day.

You can create wake up system events with the createwakeupEvent and
createEndOfDayAlertEvent methods.

For more details see the ExampleBank implementation in annex.

6.8 User module interface

Disclamer!

The PSS3 Beta version GUI does not support importing of user modules. It is
possible to define user modules by entering appropriate information into the
database directly.

Adding user modules gives you the possibility to create your own settlement
algorithms and processing conventions. See User module development guide for

BoF-PSS3 User Manual 74

details. The easiest way to develop user modules is by copying relevant parts from
an existing algorithm and inserting the desired modifications.

6.8.1 Adding a user module

Before you can add a user module to the simulator, you first need to compile it from
the Java code file (.java) with a Java compiler to a class file (.class). You can
accomplish this with Oracle’s javac compiling the class against simulator’s JAR-
file simulator.jar.

1. The algorithm must be in package modules
2. The algorithm must extend from abstact class Algorithm
3. the algorithm must implement an interface depending which type of an algo
is being created
- typically the methods to be implemented are:
- init()
- process(Transaction item)
- pr‘ocess(AccountData item)
- pr‘ocess(SystemData item)
- but there can be others too
4. compile the algo against simulator.jar file that is included in the simulator
deployment zip file.
5. Include the algo to the simulator-api.war file
- the war file can be found from simulator installation folder which is by
default c: \BoF-PSS\PROGRAM
- rename the simulator-api.war file's extension to simulator-api.zip
- open the zip file with Windows Explorer or 7Zip-Manager if available
- include your algo class file into the zip file
- drag and drop your algo class file into simulator-api.war\WEB-
INF\classes\modules\ folder within the war file

close the zip tool

rename the simulator-api.zip file's extension back to simulator-api.war

7 Data content and databases

7.1 File directory structure

The simulator has a file directory structure that is partly built by the setup program
and partly by the application based on users’ project specifications.

BoF-PSS3 User Manual 75

The setup program creates the following directories:

— MODULES (contains built-in modules’ / algorithms’ code files),

— PROGRAM (contains sub-directory JDK for Java Run Environment, necessary
script files and the simulator simulator-api.war file),

— USERMODULES (for user defined modules), and

— EXAMPLES (The file ex# description.txt contains information about the
specific simulation example).

The application creates the directory pss2 systemdb (for the system database)
when the first project is defined. It also creates a directory in the BoF-PSS directory
for each project using its name preceded by “P_* and the following sub-directories:

— ERRORLIST (for error lists)

— INPUT (for input files)

— OUTPUT (for output files)

— OUTPUT_REPORTS (for output reports)

— NETWORKS (for generated networks)

— NETWORK REPORTS (for network analysis results)

— TEMP for temporary storage (all files in TEMP can be destroyed when the
simulator is not in use)

If you are going to make a large number of simulations analysing different aspects,
it can be good to organise them in separate projects

Here is an example of a directory structure:
:\BoF-PSS\EXAMPLES
:\BOF-PSS\EXAMPLES\DECIMAL_ POINT

: \BoF -PSS\PROGRAM

:\BoF -PSS\PROGRAM\filters

: \BoF -PSS\PROGRAM\ JDK

:\BoF -PSS\PROGRAM\1log
:\BoF-PSS\P_proj1\ERRORLIST
:\BoF-PSS\P_proj1\INPUT
:\BoF-PSS\P_proj1\NETWORKS
:\BOF-PSS\P_proj1\NETWORK_REPORTS
:\BoF-PSS\P_proj1\OUTPUT
:\BOF-PSS\P_proj1\0UTPUT_REPORTS

aNaNoNaNaNaNaNaNaNaNaNe!

BoF-PSS3 User Manual 76

7.2 Database files and locations

There are 2 types of databases: one system database and project specific databases.
The simulator has a common system database, which is created during the first
session with the program. With some database versions the database files have to
be saved into the database’s data folder. For MariaDB versions the simulator
doesn’t allow the user to define freely the saving location. Otherwise, the program
creates the directory pss2_systemdb in the installation directory. Project databases
are created automatically for each project defined by the user.

C:\BoF-Pss is the default directory for the simulator, see Figure 2.

C:
1
BOF-PSS2
1
P8S2_SYSTEMDB
FRM, MYI and MYD
files for each data table
Figure 2.

The simulator uses the MyISAM storage engine. With this setup, each database has
three separate files for each database table. They are:

— data dictionary information (.FRM files)
— 1ndex information (MY files), and

— data files (MYD files).

MariaDB 10 stores all databases into the same data folder which is [database
installation folder]\data folder of the database engine.

The name of the project directory by default is identical with the project name with
p_ prefix.

7.3 Data sets

One input database can store many data sets for each type of input data. The
different data sets are stored in the same physical database table and are

BoF-PSS3 User Manual 77

distinguished by their data set ID. The user defines the data set ID separately for
each data table; it has no internal database relation with any other data set ID of
other database tables.

In the simulation execution phase, the user defines which specific data sets are to
be used in a specific simulation as described in the Figure 3. These are cross-
checked to see that the information is coherent, e.g. all accounts or participants can
be found for the transactions, and all systems are specified the account or participant
to which the transaction data refer.

To manage a large number of parallel data sets, a consistent naming convention is
a good idea.

Data tables in the input database
Systems Participants Daily Balances Credit limits Transactions

© 1 1 1 1 1
= 2 =] 2 2 2
= 3 3 3 3 3
e 4 4 4 4 4
g 5 | 5 5 5
= 3 3 | 5 [&
ﬁ 7 7 7
g 3 8 8

9 g 9
= 10 10 10

: = Data sets selected for one simulation

Figure 3.

7.4 About MariaDB

MariaDB is a popular and efficient open-source database product with good
documentation and a good reputation. Information about MariaDB can be found on
website https://mariadb.org. An online reference manual is available, and it can also

be downloaded from the site. Advanced simulator users can make their own
database retrieval procedures directly to the databases as SQL queries. Also, Java
and C++ connectors are available, as well as a general ODBC connector that can be
used with e.g. MS Access or Visual Basic.

There are free and easy to use tools available with graphical user interface for
browsing and monitoring the database structure and viewing data contents of the
tables with simple queries. These tools can also be used to make small manual
editions or deletions in the database that can be helpful in advanced use of the
simulator. Examples of such operations include deletions of unnecessary templates,

BoF-PSS3 User Manual 78

https://mariadb.org/

user modules or projects. Because user friendly tools are available for this, no
special user interfaces have been included in the simulator.

Below two practical tools for direct use of database are presented: HeidiSQL
database browser (7.4.1) and MyODBC (7.4.2). Under separate topic (7.4.3) there
are instructions how these tools can be utilized.

7.4.1 HeidiSQL database browser

HeidiSQL database browser is a free visual tool, which can be used to browse the
structure of a database and its data contents, and build and execute SQL queries.
Queries can also be generated graphically, and contents of the databases can be
modified manually if necessary.

Video tutorials are recommended as a quick start reference. For example, the Edit
queries —tutorial shows how to make manual changes in table contents, which can
be necessary as simulator database maintenance work. Instructions for these are
given in chapter 7.4.3.

The first time HeidiSQL is used you need to identify the database you are
connecting to:
In the start-up window of database Browser, use

o “localhost” as server host value

o 3306 as port value

o “root” as username

o Or other settings according to your own hardware setup (contact

your local IT personnel if proposed settings don’t work)

Database browser can be used to build and execute SQL queries e.g. to export data
from simulator databases into files. Below some example queries are given.

Exporting database tables are executed by the SELECT INTO OUTFILE
command.

For example, to export a database table to a CSV file:
SELECT * INTO OUTFILE ‘c/temp/partfile.csv’ FIELDS TERMINATED
BY ‘;>” FROM PART WHERE P_DATSETID="ds1’;

Similarly, a query can be built in database Browser, and the result set can be
exported with menu functions after right clicking the result set.

BoF-PSS3 User Manual 79

7.4.2 ODBC interface

ODBC is a standard interface, which enables connections to a database from an
analysis software working on Microsoft Windows platform and using large data
sets. Examples of applications that can be connected are Access, Excel and SAS.

After installing an ODBC driver for MariaDB, new data sources are defined from
Windows control panel / Administrative tools / Data sources. Own data source
name needs to be defined for each database, which is to be accessed from the third-
party software.

https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-
parameters,

7.4.3 Direct modifications of simulator database

All features that a simulator user might want to have are not included in the
simulator’s graphical user interface. Some of these tasks can be performed by
directly accessing the database. These are mainly deletions of instances that can be
created in the simulator but not removed if they turn out to be useless such as user
modules or import templates. Below are listed some possible maintenance tasks and
how to perform them with database browser tool.

Caution is always needed when direct modifications are made in the database.
Backup copies and use of graphical tool, such as database browser, which shows
visually the changes and allows undoing are recommended.

Task How to do in Query Browser | Notes
Delete unused | - Open system database and Example of Query
import or output | TEMP table browser view is shown
templates - Click “edit” from bottom below.
toolbar Table contains also the
- Right click the row with the built in ALL- and
template to be deleted. First EMPTY -templates

column contains the template
names.

- Select “delete row” from the
menu

- Click “Apply changes” from
bottom toolbar

BoF-PSS3 User Manual 80

https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-parameters
https://mariadb.com/kb/en/about-mariadb-connector-odbc/#connection-parameters

Delete user - Open system db and ALDE User modules are in the
modules table end of the table. Don’t
- Select and delete the line with | delete the references to
name of the unused module in | built in algorithms.

the first column as was
explained above.

Delete an - Open System database and Do not delete project that
unnecessary PROJ table. was active when simulator
project - Select and delete the line with | was last time running.
name of the unnecessary project | If this is done,
in the first column as was SD PROJEID field in
explained above. DEFA-table of system
-The project folder has to be database has to be also
deleted manually. manually altered before

simulator can start again.

8 Description of database tables

The simulator uses to types of databases. A simulator installation has one system
database and one separate project database for each project. All the database tables
are listed under with descriptions of all of their fields. The first column indicates
the variable name of the field. The second column indicates the type of field. The
third column indicates whether the field is a foreign (F) key, a primary (P) key or
just a key (K). The fourth column gives the detailed name of the field. The fifth
column describes the field. The last column indicates if the data is optional (O) or
mandatory (M).

As the database has been heavily rationalised for the version 800, there are a lot of
changes compared to old database tables. To help old and new users, views have
been created to combine information that used to be in one table before. An example
is the test view all that combines information form TRAN,
tran_generated by simulation and the result table TEST. Prio to version 800, the
test table used to have all the same information as the TRAN table as duplicate.
Now same information is not any more copied to output tables, but they need to be
combined in the SQL-queries. The new view tables named like xxx_view_all do
that.

Another example is the account and participant data. Basic participant and account
information is not anymore duplicated to all tables but is stores only to the PART
table. Other tables refer to account information only with technical id’s anymore.

BoF-PSS3 User Manual 81

8.1 System database

8.1.1 Defaults [DEFA]

Contains default information for projects.

Field name Data type Key |Description
SD_DEFAUID |CHAR(1) P |Value = 1, just to introduce the mandatory key. M
SD PROJEID [CHAR(S8) Current project ID. M
SD_SEPARAT |CHAR(1) Separator used between data fields in CSV files. M
SD DECIMAL |CHAR(1) Decimal point format. M
SD_TIMEFOR |CHAR(15) Time format. M
SD DATEFOR |[CHAR(10) Date format. M
SD TRAVALU [CHAR(S) +/-HH:MM value to change input time
8.1.2 Project [PROJ]
Contains data of all projects.
Field name Data type Key |Description
id INT P |Primary id M
SP_PROJEID |CHAR(30) P |Identifier for the project. M
SP DATABAS |VARCHAR(255) Directory of the project’s database. M
E
SP ICSVDIR [VARCHAR(255) Directory for input file. M
SP_ OCSVDIR |VARCHAR(255) Directory for output file. M
SP_ERRORDIR [VARCHAR(255) Directory for error list. M
SP OREPDIR |VARCHAR(255) Directory for output reports. M
SP_NETDIR VARCHAR(255 Default location for created networks M
SP NETREPOR |VARCHAR(255 Default location for generated network reports M
TS
created TIMESTAMP
modified TIMESTAMP
8.1.3 Algorithm definition [ALDE)]
Contains information of user modules and algorithms.
Field name Data type Key |Description
SA ALGORID [CHAR(8) P |Unique identifier of the algorithm. M
SA MODFILE [VARCHAR(255) Name of module file. M
SA MODTYPE |CHAR(3) Type of module. M
SA_PARAMET |TEXT Enumerated list of parameters and checking rules used by | O
algorithm.
SA_SYSCODE |TINYINT(4) Describes in which system the algorithm is available. M

Values are additive 8=RTGS, 4= CNS and 2=DNS e.g.
12 indicates availability in RTGS and CNS systems.

BoF-PSS3 User Manual

82

8.1.4 Template [TEMP]

Contains template data of input files.

Field name Data type Key |Description
ST TEMPLID |[CHAR(8) P |Unique identifier of the template. M
ST TABTYPE |[CHAR(4) P |Refers to specific data set table. M
ST SKPROWB [SMALLINT Number of rows to skip in the beginning. O
3)
ST SKPROWE [SMALLINT Number of rows to skip in the end. O
3)
ST TEMPLAT |TEXT Enumerated list of column numbers, which describes M
the column structure of the CSV file.
Value in form:
DB-Columnl match column in CSV file, DB-Column2
match column in CSV file ,...

8.1.5 Database version [db_version]

The table contains information on the simulator version by whitch it has been

created.
Field name Data type Key |Description
db_name VARCHAR(64) Unique identifier of the project. M
version VARCHAR(4) Unique identifier of acceptable system. M
detected DATETIME Date and time, when the version of the databse has
been identified

8.1.6 Acceptable system Ids [ASID]

Note! Not in use.
Field name Data type Key |Description
SY PROJEID |CHAR(®) P |Unique identifier of the project. M
SY SYSIDTB |[CHAR(8) P |Unique identifier of acceptable system. M

8.2 Project’s input data tables

To minimize the size of the database, the storing of duplicate information is
avoided. The information used in results already present in the input data is no

longer copied to the output tables.

In practice participant’s account information is written only once in to the
participant table. Also transactions basic information is only written once in the tran
table. Only new information created during simulations are written during

simulations.

BoF-PSS3 User Manual

When data is imported, it is anchored to a selected participant dataset. This dataset
acts as a reference dataset. During the import technical id’s are generated to make
the linking of data tables more efficient. More precisely, the technical account
reference is stored to the part id field of the PART table. All the other input and
output data use this id to reference the account information stored only in to the
PART table. The part id is not unique and must be referenced together with the
corresponding part dataset id stored either with the part id in the input tables like
TRAN, ICCL and DBAL or in the SIRI table containing the simulation definitions
for the simulation results. Take note that the technical autoincrement id of the
PART table is not used for the referencing.

The dataset table contains also the information on which datasets use the same or

compatible technical account referencing. Compatibility is indicated by the field
account _id_reference_group.

8.2.1 System [system]

Contains information on systems belonging to the project.

Field name Data type Key |Description
id INT P |Technical id of a system
Autoincrement
name TINYINT(3) Unique name of a system M
modified Timestamp Timing of last modification M

8.2.2 Dataset [dataset]

This table contains basic information of all imported and created datasets. This table
also defines which input dataset use the same technical account references and are
compatible from this perspective.

Field name Data type Key |Description
id INT P |Technical id of a dataset. In version 921 not yet used for | M
Autoincrement referencing
system_id TINYINT(3) Reference to id in SYSTEM table M
name VARCHAR(50) K |The user defined data set name. In the version 921, this M
field is still used for referencing
entity VARCHAR(50) Type of the dataset (0]
account_id_refer | TINYINT(4) An Id of a PART table dataset. This field tells which (6]
ence_group participant data set the data refers to. This means that the
account id’s used in the dataset are the same as in the here
defined participant dataset. When datasets have the same
account_id reference group value, they are compatible
between each other and use the same account id
references. Omitted when the data does not refer to
participant info

BoF-PSS3 User Manual

84

description VARCHAR(120) Description of dataset. (0]
created Timestamp Time of creation M
modified Timestamp Timing of last modification M

8.2.3 System setup dataset [SYCD]

Contains system specificationsfor a specific system, for example system ID, name,

type, and open hours. There can be many system datasets for one system.

Field name

Data type

K

Description

id

INT
Autoincrement

P

Technical id of a system.

system_id

TINYINT(3)

Reference to id in SYSTEM table

S _DATSETID

CHAR(8)

Unique identifier of the data set to distinguish the data set
from other parallel data sets used in simulations.

S_FULLNAME

VARCHAR(20)

Full name of system.

o X|E| B

S SHORTACR

CHAR(5)

Short acronym for system.

©)

S_DESCRIPT

VARCHAR(120)

Description of system.

©)

S SYSTTYPE

CHAR(4)

Possible system types are RTGS, CNS and DNS. CNS
and DNS systems typically settle their end-of day net-
positions. RTGS systems and sometimes CNS systems
may have intraday liquidity injections from an RTGS
system. The DNS system settles transactions at specified
settlement occasions on a batch net basis, while CNS
systems settle continuously at the transaction level.

This selection only affects the list of algorithms made
available in the GUI for algorithm selection. This does
not affect the simulations it selves...

Possible values:
RTGS

DNS

CNS

S NOCRELIM

TINYINT(4)

Gives the opportunity to specify that all participants or
accounts in a system have infinite credit limits. Mainly
used for DNS systems, but may also be used for RTGS
and CNS systems to determine maximum liquidity
requirements.

Possible values:

1: Credits according to limit table

2: No Credits available

3: Credits available without limits

S TRANSBAL

TINYINT(1)

Transfer of end-of-day balance to the next day. Mainly
used in RTGS systems.

Possible values:

0: Balaces are not transferred

1: Balances are transferred

S_TRANSTRA

TINYINT(4)

At the end of the day, there may be unprocessed
transactions in the RTGS and CNS queues. These can be
eliminated or transferred to the next day. In the DNS
system, the choice is to eliminate or transfer unprocessed
transactions to the next settlement occasion.

Possible values:

0: unsettled payments are not transferred

1: unsettled payments are transferred

BoF-PSS3 User Manual

85

S OPENTIME |INT Defines the time from which transactions will be M
submitted to the system in the beginning of the day.
Transactions that have an earlier submission time will
wait until the open time point is reached.

S _CLOSETIM [INT Transactions with submission times after the closing time | M
of the system will be submitted at the beginning of the
following day.

S_BILIMUSE |TINYINT(4) Values:

0 denotes that bilateral llimits are not in use
1 denotes that bilateral limits are in use
modified TIMESTAMP Last modified time stamp M

8.2.4 Participant data table [PART]

Contains participant data for a given system. Participants can be distinguished at
two levels. The participant ID can be 11 characters long and can contain, e.g. a
SWIFT BIC address. The account ID can be 34 characters long and can contain an
IBAN. Both fields can also be used for other identifiers, e.g. in securities settlement
systems, the account ID could be the ISIN code. The participant and account IDs
are mandatory.

Field name Data type Key (Description
id INT auto P |Primary id identifying uniquely p_datsetid, system_id, M
increment p_particid, p_accounid.

Technical account reference used from other tables to refer
to part table’s accounts. This id is generated during import
automatically. The import facilities can create a part dataset
from other input datasets if an existing part dataset is not
available.

part_id INT(10) K [Not in use.

Technical account reference used from other tables to refer
to part table’s accounts. 2 part datasets can have the same
references. This id is generated during import
automatically. It is possible to use an existing indexing with
the selection box in the import GUI. The import facilities
can create a part dataset from other input datasets if an
existing part dataset is not available.

system_id TINYINT(3) K |Reference to id in SYSTEM table
P DATSETID |CHAR(8) K |Unique data set identifier distinguishes this data set from M
other parallel data sets used in simulations. This is a
reference to the name field in the dataset table
P_PARTICID |CHAR(11) Textual identifier for the participant used in the initial M
input data.
P_ACCOUNID |VARCHAR(34) Textual identifier of account in which credits and debits are | M
made. The value is imported from input data files.
P_ACCOTYPE |VARCHAR(1) Used to distinguish different types of accounts. o
P_FULLNAME |VARCHAR(35) Full name of participant. o
P_SHORTACR |CHAR(5) Acronym for full name of participant. The acronym is used | O
in the run-time view of the simulator, if available.
P_ACCONAME |CHAR(10) Name of account, e.g. “Euro RTGS account.” o
P SETINSYS |[CHAR(8) For DNS or CNS systems, the ID of the system where o

proceedings are booked. May also be used in RTGS
systems for transferring end-of-day positions from sub-
systems or accounts to main systems or accounts.
P_SETONPAR |CHAR(11) For DNS or CNS systems, the ID of the participant to o
whom the end-of-day proceedings are booked. May also be

BoF-PSS3 User Manual 86

used in RTGS systems for transferring end-of-day positions
from sub-systems or accounts to main systems or accounts.

P_SETONACC |CHAR(34) For DNS or CNS systems, the ID of the account in which (¢}
the end-of-day proceedings are booked. May also be used
in RTGS systems for transferring end-of-day positions from
sub-systems or accounts to main systems or accounts.

P _LIQFRSYS |CHAR(8) For CNS systems, the ID of the system to and from which o
liquidity injections are booked. May also be used in RTGS
systems for transferring liquidity to and from sub-systems
or accounts from and to main systems or accounts.

P _LIQFRPAR |CHAR(11) For CNS systems, the ID of the participant to and from o
which liquidity injections are booked. May also be used in
RTGS systems for transferring liquidity to and from sub-
systems or accounts from and to main systems or accounts.

P _LIQFRACC |CHAR(34) For CNS systems, the ID of the account to and from which | O
liquidity injections are booked. May also be used in RTGS
systems for transferring liquidity to and from sub-systems
or accounts from and to main systems or accounts.

P _LIQINJVA |DECIMAL When specified, the injection value overrides any system- o

(20,2) level value.

P_USERCODI.. [VARCHAR(16) Five optional fields where user-defined information canbe | O

5 stored for use by user-defined algorithms during
simulations or in analysis of simulation output.

modified TIMESTAMP Last modified time stamp

8.2.5 Daily balances table [DBAL]

Contains daily opening balances for the participants in the PART table.

Field name Data type Key (Description

id INT Auto P |Primary id

increment

B _DATSETID |CHARC(S) K [Unique identifier of data set to distinguish this data set from
other parallel data sets used in simulations.

SYSTEMID TINYTINT K |Reference to id in SYSTEM table M

part dataset id |CHAR(8) K |Reference to the datset id of the correspondgin part dataset

PART _ID INT K |Reference to PART table field part_id. To be used M
togehther with the part dataset id

B DATEEFFE |INT K |Date opening balance is effective. M

B NEWVALUE |DECIMAL Value of opening balance. M

(20,2)

B USERCODI1 |VARCHAR(16) Five optional fields where user-defined information canbe | O

) stored for use by user-defined algorithms during
simulations or in analysis of simulation output.

modified TIMESTAMP Last modified time stamp

8.2.6 Intraday changes in credit limit [[CCL]

ICCL Intraday credit limits data
Contains information of original values and changes in intraday credit limits for
participants specified in the PART table.

Field name

Data type

Key

Description

id

INT(10)

P

Primary id

BoF-PSS3 User Manual

87

I DATSETID |CHAR(8) K |Unique identifier of data set to distinguish this data set from
other parallel data sets used in simulations.
system_id TINYINT(3) K |Identifier of system. M
part_dataset id |CHAR(8) K |Reference to the datset id of the correspondgin part dataset
part_id INT F |Reference to PART table field part_id. To be used M
togehther with the part dataset id
I DATEEFFE |INT (11) Date from which new credit limit is effective. o
I TIMEEFFE |BIGINT (20,2) Time from which new credit limit is effective. o
I NEWVALUE |DECIMAL Value of new credit limit. M
(20,2)
I USERCOD1 |VARCHAR(16) Five optional fields where user-defined information canbe | O
.5 stored for use by user-defined algorithms during
simulations or in analysis of simulation output.
business_day CHAR(8) Business day to which the limit value belongs to. This M
value is used to determine the ICCL events to be included
to the corresponding simulation day having the same
business day.
Transaction link |[VARCHAR(30) Id of the transaction linked to this credit limit order.
_id
order_type VARCHAR(10) o
entry date INTEGER Date when the order becomes visible to the system
entry_time BIGINT(12) Time when the order becomes visible to the system
revocation_date |INTEGER Day when the iccl order is revoked
revocation_time |BIGINT(12) Time when the iccl order is revoked
id BIGINT(20) Unique identifier of the iccl order. It acts as a link to the
output table.
modified TIMESTAMP Last modified time stamp

8.2.7 Bilateral limit table [BLIM]

Contains information of the original value and changes of bilateral limit values for

given pairs of accounts specified in PART table. BLIM table can also be used to
define multilateral limits i.e. limits for transactions between one participant and all

the others in simulated system.

[Field name Data type Key| Description

id ITN(10) P | Primary id

L DATSETID CHAR(8) K | Unique identifier of data set to distinguish this data set M
from other parallel data sets used in simulations.

L system id CHAR(8) K | Reference to id in SYSTEM table. Identifier of the
system this dataset belongs to.

from_part datas | CHAR(S) K | Reference to the datset id of the correspondgin part

et id dataset

from_part id INT(11) F | Reference to PART table field part id. To be used M
togehther with the part_dataset id. Identifier for the
account. This field is mandatory because it is a primary
key, but it has a default value of space character when the
Account ID level is not in use.

to_part dataset | CHAR(S) Reference to the datset id of the correspondgin part

id dataset

to_part id INT(11) F Reference to PART table field part id. To be used M
togehther with the part dataset_id. Identifier for the
receiving account. To define a multilimit this field is
given value 0.

L DATEEFFE INT(11) Date from which the new credit limit is effective. M

L TIMEEFFE BIGINT(12) Time from which the new credit limit is effective. M

BoF-PSS3 User Manual 88

L_ NEWVALU
E

DECIMAL
(20,2)

Value of the new lower limit for the bilateral balance (or
multilateral balance if counterparty is *MULTILIMIT).
The debit cap will constrain outgoing payments, if
resulting bilateral position would go below the limit.
The value can be positive or negative. A negative value is
the most common case. It indicates that net outflow of
liquidity is allowed while positive value indicates a
request for a reception surplus.

A value of .99 indicates that no limit is in force. It can be
used to remove limits that have been assigned earlier
during the day.

Defining the debit cap will start the recording of bilateral
position if no limits defined in BLIM data were in place
previously for the given pair of participants.

L DBCVALUE

DECIMAL
(20.2)

Credit cap. Value of the new upper limit for the bilateral
balance (or multilateral balance if counterparty is
*MULTILIMIT). The credit cap will constrain incoming
payments if the resulting bilateral balance would go
above the limit.

The value can be positive or negative. A positive value is
the most common case. It indicates that inflow of
liquidity is allowed while negative value would be a
request for a sending surplus.

A value of .99 indicates that no limit is in force. It can be
used to remove limits that have been assigned earlier
during the day.

Defining the credit cap will start the recording of bilateral
position if no limits defined in BLIM data were in place
previously for the given pair of participants.

In projects, which are created with version 3.1.0 or later
credit cap value can be imported either separately on an
own row of BLIM data or together in a row which also
has value for the debit cap with same time label. In older
database versions, values which have same time label
need to be always imported in one row.

L-
USERCODI...5

VARCHAR(1
6)

Five optional fields where user-defined information can
be stored for user-defined algorithms.

type

SET

"DELETE ALL" leads to the deletion of all limits for the account
in question.

“MULTILIM” indicates the limit is a multilimit value.
"DELETE LIMIT" refers to the removal of a single limit.

modified

TIMESTAMP

Last modified time stamp

8.2.8 Reservations table [RSRV]

Reservations are only supported by specific non-public algorithms

Field name

Data type

Key

Description

id

INT

P

Primary id

R_DATSETID

CHAR(8)

K

Unique identifier of data set to distinguish this
data set from other parallel data sets used in
simulations.

£

system id

TINYINT(3)

Identifier of system.

part_dataset id

CHAR(S)

Reference to the datset id of the correspondgin
part dataset

part_id

CHAR(11)

Reference to PART table field part_id. To be
used togehther with the part dataset id.

R_DATEEFFE

INT(11)

Date from which new reservation is effective.

R TIMEEFFE

BIGINT(12)

Time from which new reservation is effective.

I

BoF-PSS3 User Manual

89

R NEWVALUE DECIMAL Value of the new reservation
(20,2)
R _RESRVTYP CHAR(1) Type of the new reservation (H= highly urgent,
U=urgent). If both reservation types are changed
at the same time two update records are needed.
Only positive values or zero are accepted.
R_USERCODI... | VARCHAR(16) Five optional fields where user-defined (6]
5 information can be stored for user-defined
algorithms.
modified TIMESTAMP Last modified time stamp

8.2.9 Transaction data table [TRAN]

Contains transaction data sets. Accounts stored in the PART table are referenced
with technical id’s since version 800. the dataset table contains information on
compatibility between datasets in relation to the technical account ids. Transactions
generated by the simulator are stored in the tran_generated by simulation table. To
help usage a view called tran_view_all combines the input transaction information

from the different tables.

T LINKCODE. Not used.

Field name Data type Key (Description

id INT(10) P |Primary id

T DATSETID |CHARC(S) K |Unique identifier of data set to distinguish this data set from| M
other parallel data sets used in simulations.

system_id TINYINT F |Identifier of the system this dataset belongs to. M

T TRANSAID |CHAR(20) K |Unique identifier of transaction. From imported data. M

T INTRDATE |INT(11) K |Day of transaction. M

T INTRTIME |BIGINT(12) K |Time of transaction. M

T TRANVALU |DECIMAL Value of transaction. M

(20,2)

from part datas [CHAR(8) K |Reference to the datset id of the correspondgin part dataset

et id

from_part id INT(11) F |Account id from which payment is debited. Reference to M
PART table field part_id. To be used togehther with the
part_dataset id

from_part datas |CHAR(8) K |Reference to the datset id of the correspondgin part dataset

et id

to_part_id INT(11) F [Account to which payment is credited. Reference to PART | M
table field part_id. To be used togehther with the
part_dataset id

T TRANCLAS |VARCHAR(S8) Transaction class is used to categorize payments eg. o
interbank payments, customer payments,... . This
categorization can be used for variable purposes in specific
algorithms and some parts of the processes. The main
available algorithms do not use this information.

T TRANCLA2 |VARCHAR(S8) Transaction class 2 is used to categorize the transactions
same way as T TRANCLAS. For example it can be used to
direct payments to different queues or to be settled by
different algorithms. The main available algorithms do not
use this information.

T LINKCODE |VARCHAR(30) A code used recognize all transaction belonging to a group. | O
Linkcode can be used to link the different legs of e.g . DVP
or PVP transactions.

T_LINKSYST |CHAR(8) ID of system in which the other leg of the transaction is o
settled.

T LINKTRNN |INT(11) Count of the transaction linked by the same o

BoF-PSS3 User Manual

920

T_USERDEID

VARCHAR
(30)

User-defined transaction ID that allows transaction to be
compared in internal system runs.

T_DESCRIPT

VARCHAR(255
)

Text description of transaction.

T _ASSENAME

VARCHAR(20)

Name of transaction asset.

T _USERCODI
5

VARCHAR(16)

Five optional fields where user-defined information can be
stored for use by user-defined algorithms during
simulations or in analysis of simulation output.

T PRIORITY

TINYINT(4)

Value indicating importance of payment from 0-9, with 9
the highest priority. Used to order transactions in payment
queues.

T_PROCTYPE

TINYINT(4)

Gives the opportunity to introduce various delayed
processing options for transactions at a reference time.
Possible values:

0 — Not defined. Is set to 0 automatically during import if
null or empty.

1 — This transaction is settled exactly at the time described
in T-PROCTIME and T-PROCDATE attributes. (Not in
use)

2 — This transaction is not settled before the time described
in T-PROCTIME and T-PROCDATE attributes.

T PROCDATE

INT(11)

Day processing takes place as defined in T PROCTYPE.
Is set to -1(not defined) during the import process if the
T PROCTYPE is set to 0.

T_PROCTIME

BIGINT (12)

Time processing takes place as defined in T PROCTYPE.
Is set to -1(not defined) during the import process if the
T PROCTYPE is set to 0.

T PROCTYP2

TINYINT(4)

Gives the opportunity to introduce second set of control
variables to affect the settlement of the transaction. Feature
is not yet in use in general version 3.0.0.

Default value:

0 — Not defined. Is set to 0 automatically during import if
null or empty.

T PROCDAT2

INT(11)

Day processing takes place as defined in T-PROCTYPE.
Is set to -1(not defined) during the import process if the
T PROCTYP2 is set to 0.

T PROCTIM2

BIGINT (12)

Time processing takes place as defined in T-PROCTYPE.
Is set to -1(not defined) during the import process if the
T PROCTYP2 is set to 0.

T_ASBIC

CHAR(11)

Bic code of the ancillary system

business_day

CHAR(S)

Business day of the transaction. The field content is used to
deduct the business days of a simulation if the selection:
Business day deducted from transaction data is in force.

Tecl_link_id

VARCHAR(30)

Link to the Transaction_link id of the iccl table.

modified

TIMESTAMP

Last modified time stamp

8.2.10 Transactions generated by simulations
[tran generated by simulation]

The content of this table is very similar to the tran table. The content is only
generated by simulations. The table contains all the automatically generated

transactions.
Field name Data type Key |Description
id INT(10) P |Primary id

... Same fields as in Tran table...

BoF-PSS3 User Manual

t submorig CHAR (8) Submission origin of the transaction. This means the name
of the algorithm that created the transaction.
t subevent SMALLINT (8) Number of sub-event

modified TIMESTAMP Last modified time stamp

8.2.11 Simulation events [business day event]

The table is used to store the date and time of business day events. This table has
been available since version 4.0.0. The table is used to define individual sart and
end of day events for each business day. The table can be used to store other similar
timetable material but support for these will be dependent on the algorithms used.

Field name Data type Key (Description
id INT(10) P |Primary id
data_set_id CHAR(8) k |Unique identifier of data set to distinguish this data set from
other parallel data sets used in simulations.
system_id TINYINT(3) k |Identifier of system. M
business_day CHAR(8) P |Business day to which the event belongs to. This value is M
used to determine the events to be included to the
corresponding simulation day having the same business
day.
event_id SMALLINT(6) | P |Identifier for the event. The identifier is added during the
import process according to the mapping defined in the
PSS.properties files located within the BOF-PSS2.jar
package. The supported default values for the general part
are the following:
- 0=start day=0
- 4=end day
Note that the input file must have the readable string value.
The corresponding integer code will be stored to the
database.
name VARCHAR(20) name of the event M
date INT (11) Date when the event takes place M
time BIGINT (20,2) Time when the event takes place M
modified TIMESTAMP Last modified time stamp

8.2.12 System algorithms [SALG]

This table contains the algorithm selected for the different system setups. Also
parameter values of algorithms are stored in this table.

Field name Data type Key [Description
A DATSETID |CHAR(8) K, F |Same data set ID as in the SYCD table. M
system_id TINYINT K, F [(Identifier of system. M
A ALGORIID |CHAR(8) K, F |Unique identifier of algorithm. M
A _SYALGOID |INT K |Unique identifier of system algorithm in a system M
definition. Defines the order in which algorithms are
displayed on the system definition view’s algorithm table.
A ALGOTYPE |CHAR(3) Type of algorithm. M
A PARVALUE |TEXT Enumerated list of parameters values used by algorithm. o
Parameters in form:

BoF-PSS3 User Manual 92

parameter 1 ?value][parameter2?value2][...[parameterlast?v

alue
A _TEALGOID |CHAR(8) ID of the time estimation algorithm (TEA) algorithm o
A _TEALGPAR |TEXT parameters defined in the system definition for the selected | O
T—A -algorithm
A PARALPRO |TINYINT(4) Optional code for indicating whether the algorithm is | O

processed in parallel.

Possible values:

0 or empty: not processed in parallel
1: is processed in parallel

A ALGDEFID |INT(11) auto P, F |Unique identifier for algorithm definition M
increment
modified TIMESTAMP Last modified time stamp

8.2.13 Analysis [analysis]

The analysis table is used by the automated stress testing tool to store general
information regarding an analysis. Stores information is name of an analysis and
the benchmark simulation the analysis uses as source data.

Field name Data type Key (Description

id INT(10) P |Primary id M

sim_id INT(11)) Simulation ID of the simulation setup selected as M
benchmark or bases for the analysis. Reference to id in SIRI
table

simulation_run_i|VARCHAR(50) Name of the benchmark simulation defined by sim_id o

d

name VARCHAR(50) Name of the analysis M

type SMALLINT(6) Not in use yet

status VARCHAR(20) Not in use yet

description VARCHAR Description of the analysis

(250)

iccl_screen SMALLINT(6) Not in use yet

dbal screen SMALLINT(6) Not in use yet

modified TIMESTAMP Date and time when has been changed the last time

8.2.14 Analysis accounts [analysis account]

This table serves the automated stress tester and contains the selected accounts for
each analysis.The table is populated when the analysis is saved.

Field name Data type Key (Description

analysis_id BIGINT(20) K |Unique identifier for an analysis. Key to analysis table M

participant id |VARCHAR(11)

account_id VARCHAR(34) | K |Account ids present in the benchmark simulation’s M
participant data. Key to participant table’s id

BoF-PSS3 User Manual 93

8.2.15 Failing accounts [failing_account]

Contains all the account id’s that are affected in each scenario run under the
automated stress tester. All the accounts in the table will be affected according to
the account selections made in the stress tester. See the query base used for the
scenario generation for more details. The table is updated when an analysis is saved.

Field name Data type Key (Description
scenario_id BIGINT(20) P |Unique identifier for an analysis. Key to scenario table M
account_id VARCHAR(34) | P |Account ids present in the benchmark simulation’s M

participant data. Reference to PART table field
P_ACCOUNID. Used in the query filters of the stress
tester.

8.2.16 Scenario data[scenario]

The table is updated when an analysis is saved under the automated stress tester.
Contains scenario specific data generated according to the selected accounts and
treatment rule (all selected/by participant/by account).

Field name Data type Key (Description

id BIGINT(20) P |Unique identifier for an analysis scenario. M
analysis_id BIGINT(20)) F |Analysis ID of the analysis to which the scenario belongs. M
simulation run._ |[VARCHAR(30) | F |Simulation id of the scenario M
id

first round_effe |BIGINT(20)) NOT in USE

ct number

first_round effe |Decimal(20,2) NOT in USE

ct value

iccl_cutter BIGINT(20) Not in use yet

dbal_cutter BIGINT(20) Not in use yet

modified TIMESTAMP Date and time when has been changed the last time

8.3 Project’s output tables
After each simulation, the result data is stored in dedicated tables.

Output tables contain simulation results and additional technical information such
as simulation logs and batch run information. A unique simulation run identifier
identifies the information belonging to the same simulation run. All tables are
optional, i.e. the user must define the necessary output to be recorded for each
simulation run. Sometimes only a small output sample is is sufficient.

BoF-PSS3 User Manual 94

8.3.1 System level statistics [SYLS]

Field name Data type Key |Description
id INT(10) P |Primary id
sim_id INT(11) F |ID of associated simulation
system_id TINYINT(3) F |ID of system.
business_day CHAR(8) Date of the Business day(format YYYYMMDD).
Y SYSTNAME |CHAR(20) Name of system.
Y VALUDATA |DECIMAL Total value of transactions in day’s transaction data.
(22.2)

Y VALUCARR |DECIMAL Total value of transactions carried over from previous day(s).
(22,2)

Y VALUSUBM |DECIMAL Total value of transactions submitted to system by submission
(22,2) algorithm.

Y VALUSETT |DECIMAL Total value of transactions settled by settlement algorithms.
(22.2)

Y VALUUNST |DECIMAL Total value of transactions remaining unsettled during the day [Y-
(22,2) VALUDATA] + {VALUCARR] - [Y-VALUESETT].
Y NUMBDATA [INT(11) Total number of transactions in day’s transaction data.
Y NUMBCARR |INT(11) Total number of transactions carried over from previous day(s).
Y NUMBSUBM |INT(11) Total number of payments submitted to the system by submission
algorithm.
Y NUMBSETT |INT(11) Total number of transactions settled by settlement algorithms.
Y NUMBUNST [INT(11) Total number of transactions remaining unsettled during the day [Y-
NUMBDATA] + {NUMBCARR] — [Y-NUMBSETT].
Y BODBALAN |DECIMAL The sum of the day’s initial balances of the participants/accounts.
(22.2)

Y EODBALAN |DECIMAL The sum of the day’s ending balances of the participants/accounts.
(22,2)

Y AVGCRLIM |DECIMAL The time weighted average of the available credit limits of the
(22,2) participants/accounts at system level.

Y LIQAVAIL DECIMAL The sum of the beginning of day balances and the time weighted
(22,2) average intraday credit available to the participants/accounts during

the day, i.e. Y BODBALAN +Y AVGCRLIM.
Y ABSCLUSA |DECIMAL The sum of average overdrafts (negative balances) for the
(22,2) participants/accounts during the day.

Y RELCLUSA |DECIMAL The average overdraft divided by the average credit limit for the
(22,2) participants/accounts during the day.

Y TOTLIQAV |DECIMAL Total liquidity available across all participants during the day.
(22,2)

Y LOWBOUND [DECIMAL The sum of net liquidity requirement for the participants/accounts in
(22,2) the system (see Annex 1).

Y MAXQUEVA [DECIMAL Maximum (peak) queue value during the day.
(22,2)

Y AVEQUEVA |DECIMAL Average queue value during the day (the average time weighted
(22,2) value of queue balance).

Y AVEQUELE |BIGINT(20) Average queue duration for queued payments i.e. the sum of
queuing time of queued payments divided by the total number of
queued payments. Directly settled payments are not taken into
account. With the system setup “Delete unsettled transactions
(exclude from statistics), Unsettled transactions are not included in
the average.

(format hhhhmmss000, where 000 denotes milliseconds).
Y QUENUMBE [INT(11) Number of queued transactions per day.
Y _QUETOTVA |DECIMAL Total value of queued transactions per day.
(22.2)
Y QUESTTIM |BIGINT(20) Total time during the day that outgoing transactions were queued

and the process was blocked due to insufficient liquidity for the
participants i.e. the sum of the individual participant level queue

BoF-PSS3 User Manual

95

stop times (format hhhhmmss000 where 000 denotes milliseconds).
If many participants have long queues this value can be longer that
the open hours.

Y AVERTISE BIGINT(20) Simple average of queuing times of all payments. Note that also
payments that are always settled directly by definition and that
cannot be queued will also affect the average. With the system setup
“Delete unsettled transactions (exclude from statistics), Unsettled
transactions are not included in the average.

(The database storing and export format is hhhhmmss000, the value
is calculated with hhhmmss precision)

Y LIQUSAGC |DECIMAL Liquidity usage indicator based on consumed liquidity i.e.

(22,2) consumed overdrafts and reserve deposits compared with submitted
volume. Calculation explained in document Annex 1.
Y LIQUSAGR |DECIMAL Liquidity usage indicator based on available liquidity (rigid credit
(22,2) limits) i.e. total credit limits compared with submitted volumes.
Calculation explained in Annex 1.
Y SETDELAY |DECIMAL Indicator of settlement delay i.e. actual delay compared to theoretic
(22,2) maximum delay at end of day. Calculation explained in Annex 1.
Y _SETTINGS TEXT Reserved for future needs.
Y MAXCRUSG |DECIMAL Peak value of credit used during the simulation.
(22,2)
modified TIMESTAMP Date and time when has been changed the last time

8.3.2 Account statistics [ACST]

Field name Data type Key (Description
id P |Primary id
sim_id INT(11) F |ID of simulation
part_id INT(11) K |ID of account. Reference to part table’s field “part_id”. Also
the SIRI table’s part datset id is used in combination to link the
account and participant information form the PART table.
business_day CHAR(8) Date of the business day (format YYYYMMDD)
A _LIQINJVA DECIMAL When specified, the injection value overrides any system-level
(22,2) value
A VALUDATA |DECIMAL
(22.2)
A VALUCARR |DECIMAL
(222)
A_VALUSUBM |DECIMAL
(22,2)
A VALUSETT |DECIMAL
(22.2)
A VALUUNST |DECIMAL
(222)
A_VALURECE |DECIMAL
(22,2)
A NUMBDATA [INT(11)
A _NUMBCARR | INT(11)
A NUMBSUBM (INT(11)
A _NUMBSETT |INT(11)
A NUMBUNST [INT(11)
A NUMBRECE [INT(11)
A_BODBALAN |DECIMAL The day’s initial balance.
(222)
A_EODBALAN |DECIMAL The day’s ending balance.
(22.2)
A_AVEBALAN |DECIMAL Average balance during the day.
(22.2)

BoF-PSS3 User Manual

96

A _MINBALAN |DECIMAL Minimum balance during the day.
(22,2)
A MAXBALAN |DECIMAL Maximum balance during the day.
(22,2)
A AVGCRLIM |DECIMAL Weighted (time) average credit limits. In case of extending
(22,2) credits without restrictions, the automatically granted limit is
assumed to be in force until the end-of-day or until more credit
is extended.
A AVELIQAV |DECIMAL Average liquidity available during the day, i.e. average balance
(22,2) plus relevant credit limit.
A CREDUSAG |DECIMAL Average overdraft during the day, i.e. average of the negative
(22,2) balances of the day.
A CREDUSAP |DECIMAL Average overdraft percentage during the day, i.e. average of the
(22,2) negative balances of the day compared to relevant total credit
limit.
A LOWBOUND |DECIMAL See Annex 1.
(22,2)
A UPPBOUND |DECIMAL Upper bound of liquidity is defined as the amount of liquidity
(22,2) need for immediate settlement of all transactions (i.e. no
queues). This is not calculated in the simulation, because it
requires a special simulation run in which there are no limits on
intraday credit. This field is reserved if the user wants to
include this information in the table.
A MAXQUEVA |DECIMAL Maximum queue value during the day.
(22,2)
A AVEQUEVA |DECIMAL Average queue value during the day (average time weighted
(22,2) value of queue balance).

A _AVEQUELE [BIGINT(20) Average queue duration for queued payments i.e. the sum of
queuing time of queued payments divided by the total number
of queued payments. Directly settled payments are not taken
into account. With the system setup “Delete unsettled
transactions (exclude from statistics), Unsettled transactions are
not included in the average. (format hhhhmmss000000, where
000000 denotes microseconds).

A _QUENUMBE [INT(11) Number of queued transactions per day.

A QUETOTVA |DECIMAL Total value of queued transactions per day.

(22,2)

A QUESTTIM |BIGINT(20) Total time during the day that outgoing transactions were
queued and the process was blocked due to insufficient
liquidity for this account (format hhhhmmss000, where 000
denotes milliseconds).

A AVERTISE BIGINT(20) Simple average of queuing times of all payments. Note that also
such payments that are settled directly by definition and that
cannot be queued will also affect the average. With the system
setup “Delete unsettled transactions (exclude from statistics),
Unsettled transactions are not included in the average.

(format hhhhmmss000000, where 000000 denotes
microseconds. The calculation precision is in seconds)

A LIQUSAGC DECIMAL Liquidity usage indicator based on consumed liquidity i.e.

(22,2) consumed overdrafts and reserve deposits compared with
submitted volume. Calculation explained in document Annex 1.
A LIQUSAGR |DECIMAL Liquidity usage indicator based on available liquidity (rigid
(22,2) credit limits) i.e. total credit limits compared with submitted
volumes. Calculation explained in Annex 1.
A SETDELAY |DECIMAL Indicator of settlement delay i.e. actual delay compared to
(22,2) theoretic maximum delay at end of day. Calculation explained
in Annex 1.
eod_credit_limit |DECIMAL End-of-day credit limit. Last credit limit in force during the
(22,2) day.

For setups without creditlimits and the selection credits
available without limits, the credit limit will be set to the value
allowing immediate settlement of all transactions at
intdroduction. Thus it will be equal to the minimum negative
position during the day eg same as upper bound of liquidity.

BoF-PSS3 User Manual

97

modified

TIMESTAMP

Date and time when has been changed the last time

8.3.3 Bilateral statistics table [BIST]

Field name Data type Key |Description

id INT(10) P [Primary id

sim_id INT(11) F |ID of simulation run

from_part id INT(11)) F |ID of account

business_day CHAR(B) Date of business day (format YYYYMMDD)

to_part_id INT(11) F |ID of receiving account

D EODBALAN |DECIMAL The day’s ending bilateral balance (a sending surplus is a
(22,2) negative balance)

modified TIMESTAMP Date and time when has been changed the last time

8.3.4 Transaction event statistics [TEST]

This table contains additional simulation specific information related to

transactions. The basic non-variable information can be retrieved from the tran and

tran_generated by simulation tables. To help usage, the view called test view_all

combines the transaction

information from the table test to the views
TRAN view all and TRAN GENERATED BY SIMULATION view all. The
us eof the view makes it easier to access the data.

If performance becomes an issue it might be needed to acces the data directly from
the tables with tailored queries without redundant information.

Field name Data type Key |Description

tran_id INT(11) P |Reference to id in TRAN OR in
TRAN_GENERATED_BY_SIMULATION table. This field is
not necessarily unique.

sim_id INT(11) F |ID of simulation

E SUBMDATE [INT(11) Date transaction was submitted for settlement.

E SUBMTIME [INT(12) Time transaction was submitted for settlement.

E SETTDATE INT(11) Date transaction was settled.

E SETTTIME INT(12) Time transaction was settled.

E SUBMORIG |CHAR(8) ID of algorithm generating an internal transaction, or 0 if from
the transaction data.

E SETTALGO CHAR(8) The ID of algorithm that settled the transaction.

E SENDACBA |DECIMAL Sending account balance after settlement.

(22.2)
E RECEACBA |DECIMAL Receiving account balance after settlement.
(22.2)

E SETTSTAT TINYINT(4) Value indicating if transaction was settled:
-5 =Removed
-4 = Rejected for inconsistency reasons
-3 = unsettled because introduction after end of day
-2 =unsettled directly at entry
-1=unsettled because of defined latest debit time,
O=unsettled

BoF-PSS3 User Manual

98

I=settled directly

2=settled via queue

3=forced end of day settlement).

4=payment replaced due to process reasons and recorded for
reference.

5= technical payment excluded from statistics

6= settled partially

code for liquidity repatriation?

E_BILABALA

DECIMAL
(22,2)

Bilateral balance seen from the sending account after the
transaction has been settled

E ENTRDATE

INT(11)

Date when transaction is finally entered into clearing process in
the simulated system. The time label can be different from
submission time due to delays caused by simulated parallel
processing or TEA time estimation. All statistics are based on
submission time, not on entry time.

E_ENTRTIME

BIGINT(12)

Time when transaction is finally entered into clearing process
in the simulated system. The time label can be different from
submission time due to delays caused by simulated parallel
processing or TEA time estimation. All statistics are based on
submission time, not on entry time.

generated

TINYINT(4)

If value is 1 the transaction’s basic information can be found in
tran generated by simulation table.

8.3.5 Intraday credit limit order execution statistics
[iccl order execution_statistics]

Field name Data type Key |Description

id BIGINT(20) P |Id of the icl order acting as a link to the input database

Iccl id BIGINT(20) Link to the original icl order in the iccl table of the input db
simulation_id VARCHAR(20) Link to the simulation

dataset id VARCHAR(20) Dataset id to which the order belongs

system_id CHAR(8) ID of associated system

business_day CHAR(8) Business day the order belongs to

execution_status

INTEGER

-3 =removed at cut off bank

0 = rejected,

1 = executed directly,

2 = executed after being queued,

400 In queue. Indicates that the order is queued. At the end of
day the status should be set to -3 or similar.

650 = pending credit line decrease replaced by new order,

651 = pending delta order replaced by fixed order

entry date INTEGER

entry_time BIGINT(12)

Resolution _date |INTEGER Date when order was either removed from queue or executed
Resolution_time |BIGINT(12) Time when order was either removed from queue or executed
modified TIMESTAMP Date and time when has been changed the last time

8.3.6 Netting event statistics [NEST]

Field name Data type Key |Description
id INT(10) P |Primary id
sim_id INT(11) F |Reference to id in SIRI table

BoF-PSS3 User Manual

929

system_id TINYINT(3) K |ID of associated system

N_ALGORIID |CHAR(8) K |ID of netting algorithm

N_NETTDATE |INTEGER Date netting (e.g. gridlock resolution) was executed

N_NETTTIME |BIGINT(12) Time netting (e.g. gridlock resolution) was executed

N_NETTINID |CHAR(8) ID of associated net settlement

N_TRANSVAL |DECIMAL Value of additional transactions generated by the netting
(22,2) algorithm

N_TRANSVOL |[INT Number of additional transactions generated by the netting

algorithm

N_SETTLVAL |DECIMAL Value of original transactions settled by the netting algorithm
(222)

N_SETTLVOL |DECIMAL Number of original transactions settled by the netting algorithm
(222)

N_TOTALVAL |[DECIMAL Value of all transactions subject to netting
(22,2)

N_TOTALVOL |DECIMAL Volume of all transactions subject to netting
(22,2)

modified TIMESTAMP Date and time when has been changed the last time

8.3.7 Account violation statistics [AVST]

Field name Data type Key |Description

id INT(10) P |Primary id

sim_id INT(11) F |Reference to id in SIRI table

part_id INT(11) F |ID of account in which violation occurred. Reference to part_id
field in the PART table. Also the SIRI table’s part datset id is
used in combination to link the account and participant
information form the PART table.

V_EVENDATE |INT(11) Date violation occurred

V_EVENTIME |BIGINT(12) Time violation occurred

V_VIOLCAUS |VARCHAR (12) Reason for violation. Typically, forced end-of-day settlement or
credit limit reduction. Value ICCL when depends on new lower
credit limit, ANCSETTL when depends on ancillary system
settlements and the value equal a transaction ID when the
violation is caused by a forced end-of-day settlement.

V_VIOLVALU |DECIMAL Value of violation

(222)
business_day CHAR(8) Date of the business day
modified TIMESTAMP Date and time when has been changed the last time

8.3.8 Queue reason information [QURE]

Contains the reasons why a payment has been put to queue. The table also contains
an entry for the removal time of the transaction. This means every transaction can

have 2 rows in this table.

Field name Data type Key | Description

id INT(10) P | Primary id

sim_id INT(11) F | Reference to id in SIRI table
system_id TINYIN F | Reference to id in SYSTEM table

K TRANSAID CHAR(20) P | Identifier of transaction

R _DATEMODI INT(11) P | Date when change in queuing reason

BoF-PSS3 User Manual

100

R _TIMEMODI BIGINT(12) P | Time when change in queuing reason
R_QURECODE TINYINT(4) The queue reason code can take following values:

0 = queued due to process reasons. e.g. deferred system or

payment is always settled via queue

1 = not enough liquidity on the account,

2 = bilateral limit exhausted and

3 = multilateral limit exhausted, when transactions are

placed in queue.

4 = bilateral credit cap is limiting

5= multilateral credit cap is limiting

9 = Transaction is cleared or removed from queue

10 = bilateral credit cap exhausted

11 = multilateral credit cap exhausted

12 = FIFO, blocking payment in queue

100 = Removed Because Settled

101 = Removed because of end of day

103 = Removed because of forced end of day settlement

111 = Removed because of end of day trade phase 1

112 = Removed because of end of day trade phase 2

113 = Removed because of end of AS6 cycle

114 = Removed because of Latest Debit Time

115 = Removed because replaced by new ICCL order
modified TIMESTAMP Date and time when has been changed the last time

8.3.9 Analysis indicators [analysis_indicator]

The table is only populated by the stress tester. It is recalculated each time the “Run
report” button is pressed.

irect

Field name Data type Key (Description

id BIGINT(20) P |Technical id

simrunid VARCHAR(30) F |key to the simulation run id

systemid CHAR(8) * |Id of the system

failing_accounid |VARCHAR(34) * | Affected account id or participant of the scenario

business_day CHAR(8) * | Business day

is_bench TINYINT(1) * |Identifier for whether the row belongs to the benchmark of the
analysis

bench eod balanc [DECIMAL(22,2) end of day balance of the benchmark simulation

e

bench unst value |DECIMAL(22,2) Value of unsettled transactions in the benchmark.

sent unst value |DECIMAL(22,2) Value of unsettled transactions

sent_unst_count |BIGINT(20) Count of unsettled transactions

sent_unst_value d |DECIMAL(22,2) Value of transactions removed from the input data for the

scenario

sent_unst_count d
irect

BIGINT(20)

Count of transactions removed from the input data for the
scenario

received payment
s

DECIMAL(22.2)

Sum of the value of received transactions

received _unst val
ue

DECIMAL(22,2)

Value of transactions not received in scenario simulation

received_unst_cou
nt

BIGINT(20)

Count of transactions not received in scenario simulation

received unst_val
ue direct

DECIMAL(22,2)

Value of transactions not received due to input data
manipulations. Transactions removed due to scenario

received_unst_cou [BIGINT(20) Count of transactions not received due to input data
nt_direct manipulations. Transactions removed due to scenario
lower_bound DECIMAL(22,2) Lower bound of liquidity. Net liquidity need to allow full

settlement.

BoF-PSS3 User Manual

101

max_upper_bound |DECIMAL(22,2) Maximum value of the upper bound of initial liquidity to allow
direct settlement at entry of all transactions. Same as gross
outflow.

bench_setdelay DECIMAL(22,2) Settlement delay observed in the benchmark

weighted avg rec |BIGINT(20) Value weighted average receiving time in the scenario

eiving time

weighted avg rec |BIGINT(20) Value weighted average receiving time in the benchmark

eiving time bench

weighted avg sen [BIGINT(20) Value weighted average sending time in the scenario

ding time

weighted avg sen |BIGINT(20) Value weighted average sending time in the benchmark

ding time bench

8.4 Technical tables

There are some technical tables that relat to the definition of simulations and
logging of events.

8.4.1 Batch run information [BARI]

This table is used to store information on which simulations are run in a batch.
This information is used by the simulation execution user interface.

Field name Data type Key |[Description
R _SIMBATID CHAR(8) P |Name of simulation batch.
R_NROFRUNS |[SMALLINT Number of simulation runs in batch.

(6)
R _PROCTIME |BIGINT(12) Total processing time for simulation batch.
R _SIMRUNID |TEXT The IDs of simulation included in batch.

8.4.2 Simulation run information [SIRI]

This table contains 2 types of information related to a simulation. When defining a
simulation, the definition and configuration information of a simulation is stored
into this table. When running a simulation also the information of selected output
tables and some basic information related to the running os a simulation such as
time and duration are stored here. Note when a simulation is rerun, the old
information is overwiten.

Field name Data type Key (Description

id INT(10) P |Primary id

parent_id INT(11) Reference to id in SIRI table

M _SIMRUNID |CHAR(8) Textual simulation id

M_SIMUNAME |(VARCHAR(20) Name of the simulation

M SIMDESCR |VARCHAR(120) Description of the simulation

M_PROCDATE [INT(11) Processing date for simulation run (format YYYYMMDD).

M_PROCTIME |BIGINT(12) Processing time for simulation run (format hhmmss000 where
000 stands for milliseconds).

BoF-PSS3 User Manual 102

M_DURATION [INT(11) Duration of simulation run (format hhmmsss000 where 000
stands for milliseconds, where the milliseconds can also have
specific values).

M_SYSTEMID |TEXT System IDs belonging to the simulation.

Values in form: system1,system?2,...

M_OUTPTABL |TEXT Output data selected for the simulation.
Values in form: SYLS,ACST,...

M _SYCDDSID |TEXT Data set IDs of systems belonging to the simulation.
Values in form: dataset1,dataset2,...

M _PARTDSID |TEXT Data set IDs of participants belonging to the simulation.
Values in form: dataset],dataset2,...

M DBALDSID |TEXT Data set IDs of balances belonging to the simulation.
Values in form: dataset1,dataset2,...

M_ICCLDSID TEXT Data set IDs of credit limits belonging to the simulation.
Values in form: dataset1,dataset2,...

M _TRANDSID |TEXT Data set IDs of transactions belonging to the simulation.
Values in form: dataset],dataset2,...

M_BUSDESID |TEXT Data set Ids indicating the events data set to be used in the
simulation.

M NUMBSYST [SMALLINT(6) Number of systems belonging to the simulation.

M_NUMBPART |MEDIUMINT(9) Number of participants belonging to the simulation.

M_NUMBTRAN [INT(11) Number of transactions belonging to the simulation.

M_SUBALGID |CHAR() Identifier of submission algorithm.

M_ALGOTYPE |CHAR() Type of algorithm, value ‘SUB’.

M_SUBPARAM |TEXT Enumerated list of parameters.

M_BLIMDSID TEXT Data set IDs of bilateral limits belonging to the simulation.
Values in form: dataset],dataset2,...

M_RSRVDSID |TEXT Data set Ids of reservation data used in the simulation.
Values in form: dataset],dataset2,...

modified TIMESTAMP Date and time when has been changed the last time

8.4.3 Applicationruns [Applicationruns] (Not in use)

Field name Data type Key [Description

D INT(10) P M
SetupID CHAR(1) M
SetupName CHAR(1) M
Runlnfo TEXT M
StartTime TEXT M
EndTime TEXT M
USERCOD 1...5

8.4.4 Process log [Processlog]

This table is used to log information on algorithm runs during simulations. All
algorithms do not support this. also this feature needs to be enabled from property
files and is mainly used for testing purposes.

BoF-PSS3 User Manual 103

Field name Data type Key |Description

1D INT(10) P |Technical ID for entry used as unique key

ApplicationRunID [VARCHAR(8) F |Link to Application run ID

ProcessRunID BIGINT(12) All log rows associated to one algorithm run are
stored with the same ProcessRunID

ProcessName VARCHAR (30) Name of Algorithm or process

Event VARCHAR (30) Start of algorithm

Start of algorithm postponed
End of algorithm execution

Description VARCHAR (255) Field for additional information. Content can be
dynamically formed by the algorithm running to
mediate information to the user. This can be
used for debugging and validating the
functioning of some features..

Date INT(11) Current date when the row is logged
Time BIGINT(12) Time when the row is logged
SimDate INT(11) Day in simulation

SimTime BIGINT(12) Time in simulation

Info VARCHAR(512)

USERCOD 1..5 |VARCHAR (16)

9 Miscellaneous

9.1 Date format

The supported date format is: yyyymmdd

9.2 Time format

The supported time format is: hhmmss. ssssss

9.3 File template

A file template describes which columns in the CSV file correspond to particular
fields in the database table. For example, if you want to import a CSV file with
participant data to the PART table and the CSV file’s first column contains
participant ID and the second column the name of the participant, you define in the
import template "1" in the first row (P_PARTICID) and "2" in the third row
(P_FULLNAME). The other rows stay empty, if these are the only fields to import.

Templates are saved in the TEMP (template) table in the SYSTEM database. The
input data tables PART (participant), DBAL (daily balances), ICCL (intraday credit
limits) and TRAN (transaction) have all their own templates.

BoF-PSS3 User Manual 104

Ready-made templates are provided in the simulator for all output database tables
for exporting all data fields. The names of these templates are the table name
followed by —ALL e.g. TEST-ALL.

Templates are updated when you change the information in them. If you want to
remove templates, you have to modify the database directly. For instructions see
7.4.3.

9.4 About using Microsoft Excel with the simulator

Microsoft Excel is a handy tool for editing simulator data, analysing simulation
output and creating reports and graphs.

The following facts are worth noting if you plan to use Excel with the BoF-PSS2
simulator:

— Old Excel versions have a limit of 65,536 rows per worksheet. Excel 2007 can
handle 1,048,576 rows.

— Excel may produce additional rows and columns when saving a table as CSV
file (all rows and columns that have been active in the table during Excel
calculations will be saved in the CSV file, even though they are empty at the
time of saving).

— Large values may be distorted (less accuracy).

— Check that delimiters (decimal and data separators) and presentation formats
(date and time) are identical with simulator specifications.

— The actual content of CSV files stored by Excel can be checked with Notepad
or some other text editor.

The output reports and output CSV-files have not been edited. The idea is that
everyone can edit them according to own desires using Excel or other reporting
tools. When some reports are used frequently it is a good idea to read the output
CSV-files into a predefined Excel table.

9.5 Error list

When errors are found, an error list is generated. The name of the file is
errorlist_date time and the file type is plain text / comma separated values (.csv).
The list contains:

‘ Row ‘ Description

BoF-PSS3 User Manual 105

1 The heading “Errors.”

2 Informs where errors have arisen. Values “simulation execution”, “import input data” or
“cross-check input data.”

3 Empty row.

4 In this underlined row is stated

in case of import input date the faulty data type (corresponds to input data
tables), the data set ID and the system ID

- in case of cross-check input data simulation ID, system ID, data set ID and data
type

- in case of simulation execution simulation batch 1D, simulation ID, system ID,
data set ID

Empty row.

Faulty row in input file or in database table.

Error code and description of the error.

R0 [Q [\ |[n

- If the same data type, simulation ID, system ID and data set ID have more errors, they are
listed as rows 5, 6 and 7. If the data type, simulation ID, system ID or data set ID change,
rows 3 and 4 are written before rows 5, 6 and 7.

These rows are written until all errors have been listed.

9.6 CSV and Excel files

The program creates CSV files from reports and export data. Data are moved to
files from the saved database tables. Data in the CSV files are separated from each
other by a separator, which the user can select. The extension is .csv for the CSV
file. If the user has defined it, the first row in the file consists of field headings.

10 Technical documentation

The following documents on BoF-PSS3 are available via the internet-site
https://www.suomenpankki.fi/simulator:

— This user manual
— Simulator presentation and basic information

11 Troubleshooting guide

This chapter is designed to help users to find and eliminate problems when
employing the simulator.

BoF-PSS3 User Manual 106

https://www.suomenpankki.fi/simulator

It is a list of frequently encountered problems by the users. This list will be updated
based on user experiences. Please send you experiences to the email address:

bof-pss@bof.fi

The updated guide will be posted on the web-site
https://www.suomenpankki.fi/simulator and will be distributed with any new

version of the simulator. If you have used your version already for some time, it
might be good to check for the updated trouble shooting guide on the internet.

Simulator service does not start up
In case after starting the Simulator service it is not responding to the user initiated
service request from the browser, check the following.

Check the Simulator server is running

By default Simulator service listens on local machine TCP/IP port 8080, make sure
there is no other service or application already using the port 8080.

The symptom shows as the Simulator service does not start and an error message is
prompted in the Windows terminal.

B e

APPLICATION FAILED TO START
s P e

Description:

Web server failed to start. Port 8080 was already in use.

Action:

Identify and stop the process that's listening on port 8080 or configure this application to listen on another port.

In case the port 8080 is reserved by another application the simulator can be
configured to use some other port that is free to use.
Change the configuration by editing the startServer.cmd file located in \BoF-

pss\PROGRAM folder and change the port number on a row containing setting like:
set pssParams=--server.port=8080

Check that the MariaDB windows service is running

By default MariaDB listens on local machine TCP/IP port 3306, make sure there is
no other service or application already using the port 3306.

In case the port 3306 is already occupied, another listen port must be configured by
re-installing the MariaDB package or by changing the port number in my.ini file’s
[mysqld] section. Where the my.ini file is located can be discovered from the
MariaDB Windows service properties. Start the Windows Services application by
pressing the windows-key and type “serv’” and click the Services app that appeared to
list of matching applications. In order to find the MariaDb service from the services
list, click on the Name field of the first service on the list and then type “m” character
to find the MariaDB service. Click the MariaDB service with the other mouse ear

BoF-PSS3 User Manual 107

https://www.suomenpankki.fi/simulator

and select Properties option. The path to the my.ini is stated in the default-file

setting property.

The user has no privileges to run the MariaDB service

Typically the MariaDB service is configures to start automatically as the end-user

logs in to Windows. In exceptional cases the MariaDB service has failed to start

automatically thus the user has no way to start the service manually due to lack of

privileges. Below the service is running but the user has no privileges to start or

stop the service.

i Services

File Action View Help

MariaDB database server .
£} MessagingSer

& Microsoft (R)

& Microsoft Acc
£ Microsoft App
& Microsoft Clo
‘£ Microsoft Def
‘£ Microsoft Def
£ Microsoft Edg
£ Microsoft Edg
£ Microsoft Edg

5 Microsoft IntL. _

Stop
Pause
Resume

Restart

All Tasks
Refresh
Properties

Help

Funa o mocesenin

n.

Running

Manual

Manual (Trig...

Manual

Manual (Trig...

Disabled
Manual
Manual
Manual

Manual

Automatic (...
Manual (Trig...
Automatic (...

e | EEc:z HEl > oo
= Services (Local) . Services (Local)
MariaDB Mame - Description Status Startup Type Log On As
o A\ ari " .. Running Automatic NT SERVIC...
Description: &), MepManagen Start

Local Syste...
Local Syste...
Local Syste...
Local Syste...
Local Syste...
Metwork 5...
Local Service
Local Syste...
Local Syste...
Local Syste...
Local Syste...
Local Syste...

On both cases contact your organisation’s IT support to resolve the problem

No data sets to configure in the simulation configuration screen

You must Define system data in the Input Generation Subsystem before the

configuration screen can offer you data sets for the systems to simulate.

No settled transactions although simulations was run successfully
The system could be lacking liquidity. Check that you have granted enough
liquidity via initial balances or intraday credit limits (tables of free usage).

The liquidity could also be lacking due to date and/or time errors. Check via
View data sets that the date and time data for transactions, initial balances and

intraday credit limits are correct. Check also that the open hours of the system

is correctly specified (hhmm in 24 hour format) in the Define system data
screen. Be especially cautious if you have been using Excel for editing the data,

because Excel is often changing the date and time formats when writing to CSV

files. Check for instance with Notepad that the formats are in the correct format

in the input CSV files.

No transactions found and simulation terminated/done immediately
The simulator and MySQL perform well with most regional settings. However,

with some special regional settings control characters seem to be converted and

thereby corrupted. Please, try using some common regional setting alternative

BoF-PSS3 User Manual

108

(e.g. English UK or USA). Regional settings are changed in the control panel
section of Windows.

11.1 Database table repairs

If the Simulator and MySQL are closed by the user while the software is writing
into some database table, the database can become corrupted. Typically this can
happen if the simulator seems to be stuck and the user closes it with "end task" in
Windows task manager.

As a result of corrupted database table the simulator won't start and in the start up
window, e.g. following error message can be presented "Can't open file:
‘tablename.MYI'. <errno:144>"

This can be fixed by repair table command using e.g. database browser or in
command-line console if the previous is not available. For more information see
https://mariadb.com/kb/en/repair-table/ For console view, run

[MariaDB installation folder]\bin\mysql.exe. This will open the database server

console view.

Assuming that input database table "TRAN" is corrupted in project "examplel",
following commands are required.

use i_examplel; (+ Enter)

repair table tran; (+ Enter)

For more details see the manual matching the installed database product.

12 Acknowledgements

We would like to acknowledge the contribution made by the following developers
and contributors who have assisted in creating the BoF-PSS2 Payment and
Settlement Simulator

Developers/Contributors at Bank of Finland

The BoF-PSS2 simulator is the second payment and settlement simulator built by
the Bank of Finland. The first one was originally developed for internal use only,
but it expanded well outside the Finnish borders. The new version has been built
based on experience gathered from the first, but designed for international and
independent usage and includes more features than its predecessor did. BoF-PSS2

BoF-PSS3 User Manual 109

https://mariadb.com/kb/en/repair-table/

also has a technical design that is more efficient for large simulations.
Acknowledgement is also given to the persons from the Bank of Finland who were
involved in the first version, because without the first version there would not have

been a second one.

Currently involved:

Kasperi Korpinen

Project manager/designer/specifyer/tester/support of the BoF-PSS2 simulator

from version 2.4.0 co-author of the reference manual and other user documents

Tatu Laine

Project manager/designer/specifyer/tester/support of the BoF-PSS2 simulator

from version 3.0.0 co-author of the reference manual and other user documents

Previously involved:

Virpi Andersson
Tester of user interfaces and simulations of BoF-PSS2

Matti Hellqvist

Designer/developer/support of the BoF-PSS2 simulator from version 1.0.0 till

3.1.0
Co-author of the reference manual and other user documents

Co-athor of first ABM algorithms for the simulator, later incorporated to the

version 9.2.1 by the simulator development team.

Risto Koponen
Project manager for the BoF-PSS1 simulation project

Hannu Lampela
Technical advisor for BoF-PSS2

Harry Leinonen
Adviser/designer of the BoF-PSS1 simulator
Project manager for the BoF-PSS2 project
Designer/developer of the BoF-PSS2 simulator
Co-author of the reference manual and other user documents

Markus Penttila
Designer / developer of the BoF-PSS2 simulator for the version 2.4.0
Co-author of the reference manual and other user documents

BoF-PSS3 User Manual

110

Kati Salminen
Testing and distribution of BoF-PSS2

Kimmo Soramaki
Designer/developer/programmer of the BoF-PSS1 simulator

Kirsti Tanila
Tester and user of BoF-PSS1 simulator

Eero Tol6
Designer / developer of the BoF-PSS2 simulator for the version 3.2.0

Co-author of the reference manual and other user documents

Petri Uusitalo
Distribution design and organisation

Contributors at Fujitsu Finland

Fujitsu was choosen as new development partner starting from Autumn 2012
replacing MSG Oy.

Harri Engblom
Lead developer / designer

Kalle Saarela
Developer / designer

Maarit Aalto
Documenting / Tester

Cotributors at MSG Software Oy

The development of the BoF-PSS2 simulator was contracted to MSG Software Oy
based on the specifications developed by the Bank of Finland until mid 2013.
The last version MSG contributed was 4.0.0.

Maritta Halonen
User interface design
Co-author of reference manual and data dictionary
Testing

BoF-PSS3 User Manual 111

Markku Kilvio
Project manager, developer

Timo Koistinen
Developer data import, export and statistical analysis/reports

Riku Peltokorpi
Developer user interfaces and system data imports

Kai Rauha
Developer output reports

Ville Ruoppi
Lead developer, simulator engine and algorithms
System design
Technical and algorithm documents

Leena Tyni
Project manager
System/user interface design
Testing
Co-author of user documents

Developers/Contributors at the European Central Bank (ECB)

Special acknowledgement is given to the ECB for assigning resources for the
development of BoF-PSS2.

Argyris Kahros
Co-author of first ABM liquidity management algorithms (Version 9.2.1)

Kimmo Soraméki (early versions)
Specifications and design
Testing of BoF-PSS2 simulator with the BoF-PSS1 simulator
Co-author of user documents
Alpha and beta testing

Sponsorship contributors

BoF-PSS3 User Manual 112

Special acknowledgement is given to Bank of Canada, the Bank of England and the
Federal Reserve Bank of New York for their sponsorship in developing version
2.0.0 of the BoF-PSS2 simulator, which include such- new features as bilateral
limits, improved efficiency, enhanced database options and time transposition
possibility.

For version 2.1.0 of the simulator, special acknowledgement is given to Federal
Reserve Bank of New York. New features introduced in this version include the
RRGS algorithms.

For version 3.1.0 of the simulator, special acknowledgement is given to EBA
Clearing S.A.S. New features developed in co-operation with them include credit

cap functionalities of BoF-PSS2.

The sponsorship and cooperation of these contributors has made it possible to
distribute these features to the whole user community.

We are indebted to the following persons in the above mentioned organisations

Bank of Canada: Neville Arjani, Devin Ball, Lorraine Charbonneau, Allan
Crawford, Alejandro Garcia, Dinah Maclean, Darcey McVanel and Jeffrey Smith.

The Bank of England: Stephen Millard and George Speight

The Federal Reserve Bank (NY): Morten Bech, Kurt Johnson, James J. McAndrews

Alpha/Beta testing and development contributors

The early BoF-PSS2 simulator version was distributed to other central banks as an
alpha and beta version. Important contributions in the form of new ideas, testing,
bug-finding etc have been received from following persons involved in alpha and
beta testing. Contribution to further development and bug fixes of the production
version is also acknowledged.

Bank of England: Paul Bedford, Stephen Millard and Jing Yang

Bank of Slovenia: Simon Anko

Bank of Thailand: Tanai Khiaonarong

Central Bank of Iceland: Rafn Arnason

BoF-PSS3 User Manual 113

Central Bank of the Republic of Turkey: Pinar Akan
European Central Bank: Peter Galos
Nationalbanken, Danmark: Kasper Sylvest Olsen
Singapore Monetary Authority: Wai Leong Lee
Sveriges Riksbank: Johan Pettersson

Bank of Canada: Darcey McVanel, Alejandro Garcia, Neville Arjani, Devin Ball,
Jeffrey Smith

De Nederlandsche Bank: Elisabeth Ledrut, Ronald Heijmans

BoF-PSS3 User Manual 114

ANNEXES

I. Calculation of specific indicators

Trough this annex text following notations are used.

neN Number of participants (or accounts) in the system.
1€ {1,...,71} Index number pointing to one particular participant.
de N Total number of payments send in the system over the
course of business day.

d, Number of payments sent by bank i.

ik Pair of index numbers pointing to one particular

payment k of participant i. Here k € {1,...,62' l.}

Lower bound liquidity demand Y_LOWBOUND and A LOWBOUND

On the low extreme all banks might have just enough liquidity to settle all the day's
payments before the end of the day by using multilateral net settlement to solve
gridlock situations. We shall refer to this amount of liquidity as the lower bound of
liquidity LB. The lower bound of liquidity [A_ LOWBOUND] for the ith
participant/account LB; can be written as

d; n 4
LB, = max O,Zai’k —ZZaM
k=1

j=1 k=1

(r,,=i) |, where

a;, € R, = the value of payment k& of participant ;.

i € {l,...,j -1 +1,...,n} = the receiver of payment.

The first sum is the value of payments send and the second sum is the value of the
payments received over the course of the business day by bank i.

If the value of payments received during the day is larger than the value of payments
sent, a participant/account only needs to use the liquidity it receives in the form of
incoming payments for settling its own payments and thus the lower bound equals
zero. If the value of payments sent exceeds the value of payments received, the
difference has to be available at least at the end of the day.

Lower bound of liquidity in the system level [Y LOWBOUND] is simply the sum
of lower bounds of individual participants/accounts.

Settlement delay Y_SETDELAY and A_SETDELAY

The delay indicator is a relative indicator ranging from 0 to 1. If not transactions
are queued the value is 0 if all transactions are queued the maximum time ie to the

BoF-PSS3 User Manual 115

end of the day the value is 1. The value is calculated as the time weight queuing
value for each queued transaction (transaction value times the time in queue)
divided by the time weighted value if all payments were delayed to the end of the
day (the transaction value times the time from submission to the end of the day).
The values are calculated for each participant/account.

n d
*
E E, dir ~ Qix

Settlementdelay = = where

*
> ZS @
i=1

g = queing time for each payment

s = maximum settlement delay ie time difference between submission and end-of-
day.

The values of unsettled transactions are included in both factors.

Consumed liquidity Y_LIQUSAGC and A_LIQUSAGC

The consumed liquidity indicator measures to which extent overdrafts (ie negative
balances) and reserve deposits have been used for settling payments ie the
difference between the beginning of day and minimum balance during the day
divided by volume of submitted transactions. It measures the consumed liquidity
compared with the throughput volume or inversely to which extent the liquidity of
received payments have not been able to cover the liquidity needs of outgoing

payments.
T
2L
Consumed liquidity = —=*—— where
22V
t=0 i=0

L = the difference between daily opening and minimum balance

J? = the average transaction volume

Rigid liquidity indicator Y_LIQUSAGR and A_LIQUSAGR

The rigid liquidity indicator gives the relation between the total available credit
limit compared to the transaction volume to be settled ie the sum of transactions to
be sent. It measures the credits allocated compared to the throughput volume.

T
2 L
Rigid liquidity indicator = —="— where

T t

[0)
PDINS
t=0 i=0

L? = the average credit limit available during the day

BoF-PSS3 User Manual 116

II.

ID

#001
#002
#003

#004
#005

#006

#007
#008
#009
#042
#100
#101
#102
#103
#104
#105
#106
#107
#108
#117
#119
#111
#116
#118
#120
#121

#122
#123
#124
#125
#126
#201
#400
#401

#402
#403
#404

List of cross-check messages

Exhaustive list of messages associated with cross-checks.Sometimes the same
message can be used in several checks performed to different dataset types.

Description

Participant/Account not definedin PART-table

System name used in TRAN data can not be found

Participant/account in PART data is defined to settle in system which can not be found
Participant/account in PART data is defined to settle on participant/account that can
not be found

Incomplete PART definition: 'Settle on participant' is missing

Participant/account in PART data is defined to inject liquidity from system which can
not be found

Participant/account in PART data is defined to inject liquidity from participant/account
which can not be found

Incomplete PART definition: 'Liquidity from participant' is missing

Either bilateral limit, credit cap or both must be defined in BLIM data

Same transaction id is used multiple times

Time value in ICCL data outside the open hours of the system

Date value is outside business days

Date is before 1.1.1900

Date value in TRAN data is negative

Time value in TRAN data is negative

Too many different introduction days found from TRAN data

End of Day event in EVNT data does not occur after Start of Day event

EVNT data is missing start of day event for business day

EVNT data is missing end of day event for business day

EVNT data is missing event for business day

Error in resolving dates and times for business day

No business day event found in EVNT data for business day of transaction

No transactions found for business day defined in EVNT data

Transactions introduced after the business day

Special transaction class 2 code defined, but ASBIC is missing

Special transaction class 2 code defined, but LINKCODE is missing

Transaction is linked, but ASBIC is not equal to other transactions with the same
linkcode

Date time value is before the start of the business day

Date time value is after the open hours of the business day

No linked Transaction found for ICCL order

No linked ICCL order found for Transaction

Linked system defined for transaction with link code can not be found

Transaction earliest debit time in Procdate and Proctime is before introduction time
Transaction latest debit time in Procdat2 and Proctim2 is before introduction time
Transaction latest debit time in Procdat2 and Proctim2 is before earliest debit time in
Procdate and Proctime

Both accounts of transaction are MCA accounts

Neither account of transaction is MCA account

BoF-PSS3 User Manual 117

#127
#600
#601
#602
#603
#604
#605
#606
#607
#608
#609
#610
#611
#612
#613
#614
#615
#616

Duplicate link IDs found

Missing or invalid value in associated_system_name
Missing or invalid value in associated_participant_id
Missing or invalid value in associated_account_id
Missing associated account reference

Account is associated to itself

No association rules for business day

Business day is out of simulation business days

Date is before 1.1.1900

Missing threshold value for association type Floor
Missing target value for association type Floor

Floor target value must be greater or equal than threshold value

Missing threshold value for association type Ceiling
Missing target value for association type Ceiling

Ceiling target value must be less or equal than threshold value
Threshold value for association type Alto is not required

Target value for association type Alto is not required
Association of type Alto cannot not be set for RTGS

BoF-PSS3 User Manual

118

III. ABM property file example

##

Simulator agent configuration property file

#

NOTE!

With any property setting you can split it to multiple rows

by appending a blank following a backslash [\] to the end of each row
excluding the last row of the setting

##

Common properties to all agents

List of transaction class types that are processed from transaction queue
and not sent to bank agent queues

nonProcessableTranClassTypes=

nonProcessableTranClass2Types=

nonProcessableTranPriorities=

##

List of all agent implementations

NOTE!

The name must match with the Java class name
agents=CautiousBank;CustomerDiscriminatingBank

##

Common CautiousBank agent specific parameters.

This setting contains the full list of parameters that can be applied to the
agent

delimited by semicolon

NOTE!

The property name follows the agent's Java class name having string
[Settings] appended to the end

delayTypes:

may contain zero or multiple type values separated by blank and

it refers to value in TRAN table t_tranclas column
CautiousBankSettings= \

alertsSecondsBeforeEndOfDayEvent=1800; \

onPercentage=0.2; \

offPercentage=0.4; \

delayTypes=1.1 1.2; \

logEvents=true;

List below the participants having an agent as a list of participant keys.
Each participant key is in format

[system id]-[participant id]-[account id]

delimited by semicolon

NOTE!

The property name follows the agent's Java class name having string
[Participants] appended to the end

CautiousBankParticipants= \

1-FRSDFR2S001-FRFRSDFR2500100000000000000001 ;

#1-SDMFFAPA®S5 - FASDMFFAPARSS ;

R R

##

Participant specific agent parameters.

If provided it overloads the common agent parameters

thus you can specify below just the ones that differ from common agent
parameters

NOTE!

The property name follows the agent's Java class name having string

[Settings][participant key] appended to the end
CautiousBankSettings1-FRSDFR25S001-FRFRSDFR2S00100000000000000001= \
onPercentage=0.1; \

BoF-PSS3 User Manual 119

offPercentage=0.5;

##

Common CustomerDiscriminatingBank agent specific parameters.
This setting contains the full list of parameters that can be applied to the
agent

NOTE!

The property name follows the agent's Java class name having string
[Settings] appended to the end
CustomerDiscriminatingBankSettings= \
latestTimeToPostponePayments=163000000000; \
alertsSecondsBeforeEndOfDayEvent=1800; \
delayMaxNormal=1000000000; \

delayMinNormal=1000000; \

liqgLowNormal=100; \

ligHighNormal=1000; \

priorityThresholdUrgent=4; \

delayMaxUrgent=200000000; \

delayMinUrgent=0; \

ligLowUrgent=0; \

ligHighUrgent=500; \

priorityThresholdHighlyUrgent=7; \

delayMaxHighlyUrgent=0; \

delayMinHighlyUrgent=0; \

ligLowHighlyUrgent=0; \

ligHighHighlyUrgent=0; \

defaultDelay=1000000000; \

createWakeUpEventsOnMaxDelay=true; \

logEvents=false;

##

List below the participants having an agent as a list of participant keys.
[system id]-[participant id]-[account id] delimited by semicolon

NOTE!

The property name follows the agent's Java class name having string

[Participants] appended to the end
CustomerDiscriminatingBankParticipants=

##

Participant specific agent parameters.

The ones provided below overload the common agent parameters

thus you can specify below just the ones that differ from common agent
parameters

NOTE!

The property name follows the agent's Java class name having string

[Settings][participant key] appended to the end
CustomerDiscriminatingBankSettings= \

#[keyl]; [key2];...

##

You can use the below query to help setting up the list of agent participant
keys

SELECT

DISTINCT CONCAT(tl.system_id, CONCAT('-' , CONCAT(tl.from_ particid, CONCAT('-'
, tl.from_accounid))))

FROM tran_view_all t1

WHERE t_datsetid = 'RawAP' AND tl1.from_accounid IN
('FRFRSDFR2S00100000000000000001 ', 'FASDMFFAPAGS55")

#;

BoF-PSS3 User Manual 120

IV. Example ABM bank agent implementation

Below is a simplified example bank agent implementation that highlights the
methods it must contain, how it gains it’s turn to execute its own logic and the
methods it can use to send it’s own transactions to the settlement process.

package modules;

import java.math.BigDecimal;
import java.util.Arraylist;
import java.util.List;

import com.bof.pss2.common.AccountData;
import com.bof.pss2.common.SystemEvent;
import com.bof.pss2.common.Transaction;
import com.bof.pss2.common.TransactionQueue;
import com.bof.simulator.util.DateTime;

/**

This algorithm is allowed to be modified by holders of the BOF-PSS2 Simulator
license. For further details please refer to the BOF-PSS2 User license
conditions.

This is a simplified example implementation of a bank agent to clarify the
basic behaviour and the methods to use in communicating with the simulation
process.

In case you need a parameter(s) that controls you logic e.g.:
beActivaAfterTime that keeps the bank agent passive until the time set in
parameter is passed. What to do:

<pre>

1. define the parameter in configuaration file
<code>beActivaAfterTime=120000</code>

2. define a member variable to this class
<code>private long beActivaAfterTime;</code>

3. introduce the parameter with default value in class construtor
<code>addParameter("beActivaAfterTime", "120000");</code>

4. in init() set the parameter value to the member variable
<code>beActivaAfterTime =
getParameterLongValue("beActivaAfterTime");</code>

& NOTE! the default value is set

¥ K X X X X X X X X X K ¥ ¥ ¥ X X ¥ ¥ ¥ *

& if the value is not defined or set in configuration file
* </pre>
*/

public class ExampleBank extends Bank {
// Introduce parameters that controls you logic e.g.:
// beActivaAfterTime that keeps the bank agent passive until the time set in
// parameter is passed.
private long beActivaAfterTime;

public ExampleBank() {
// You may introduce you own parameter in the ABM configuration file
// and setup the default values for those using appParameter() methods.

// Set up parameters with default values
addParameter("beActivaAfterTime", "120000");
addParameter("alertsSecondsBeforeEndOfDayEvent",
String.valueOf(alertsSecondsBeforeEndOfDayEventDefault), true);
addParameter("logEvents", String.valueOf(isLogEvents()), true);

BoF-PSS3 User Manual 121

/**
* In init you can initialize variable(s) required by your bank agent.
*/
@Override
public void init() {
// logEvents parameter value defines wether or not to log the events
// to log file.
setLogEvents(getParameterBooleanValue("logEvents"));

beActivaAfterTime = getParameterLongValue("beActivaAfterTime");
String info = String.format("Part %s parameters: %s=%s, %s=%s, ",
getAccount().getParticipantID(),
"beActivaAfterTime", getParameterLongValue("beActivaAfterTime"),
"logEvents", getParameterStringValue("logEvents"));
logEvent("init", info);

// Create an AGENT_ALERT_END_OF DAY system event based on given

// alertsSecondsBeforeEndOfDayEvent parameter

Long value = getParameterLongValue("alertsSecondsBeforeEndOfDayEvent");
getSimulationQueueAccessor().add(createEndOfDayAlertEvent(value), true);

}
/**
* In process method's switch case structure you can write your logic how
* this bank agent reacts on different wakeup calls. In each of them
* you can study the bank agent's (account's) position at the moment
* by inspecting
*
* <pre>
* 1. the time of the simulation
& <code>DateTime simulationDateTime = systemEvent.getDateTime();</code>
* 2. the bank agent's account information
& <code>AccountData myAccount = getAccount();</code>
* 3. the list of non-sent transactions owned by bank agent
& <code>TransactionQueue myTransactions = getTransactionQueue();</code>
* </pre>
X
* and decide wether or not to send agent's transaction(s)
* to the settlement process.
*/
@Override

public void process(SystemEvent systemEvent) {
// System event typically has a transaction attached
Transaction transaction = getTransaction(systemEvent);
logEvent(systemEvent, transaction);

if (systemEvent.getDateTime().getTime() < beActivaAfterTime) {
// Be passive, do nothing yet
return;

}

switch (systemEvent.getType()) {
case SystemEvent.AGENT_WAKEUP:
// The system sends a wake up call based on bank agents
// transactions' when those are supposed to be processed thus
// this agent has the opportunity to react or do nothing on
// that moment.
// Other wake up calls may occur in case created by this
// or other agents but the name of the game is the same:
// react or not.
if (getTransactionQueue().isEmpty()) {
// Nothing to process
break;

BoF-PSS3 User Manual 122

if (transaction == null) {
// NOTE!
// No transaction attached, this might be user defined
// wake up event.
// For now just log a warning:
logger.warn(String.format("Received agent wake up event at"

+ " %s-%s with no transaction attached.",
systemEvent.getDate(), systemEvent.getTime()));
} else {
//

if (isSettleable(systemEvent, transaction)) {
// Log release
logEvent(systemEvent, "Release",
String.format("Release tranld %d for settlement",
transaction.getId()));
sendPaymentForSettlement(transaction);
}
}

break;
case SystemEvent.AGENT_TRANSACTION_HAS SETTLED:
// The settlement confirmation messenger algorithm
// sends these system events after a transaction has been booked
// for the account having the settled transaction attached
// i.e. the attribute transaction is set.
// At this point the account's position has changed and again
// the agent may or may not react.
break;
case SystemEvent.AGENT_ALERT_END_OF_DAY:
// This is an alert message on approaching end-of-day event
// upon which the agent may or may not react.
// This implementation decides to send all its non-sent transactions
// to the settlement process.
sendPaymentsForSettlement(systemEvent,
String.valueOf(systemEvent.getType()));
break;
case SystemEvent.AGENT_END_OF_DAY:
// On end-of-day event the agent may send its' transactions
// to system which will depending on system setup
// 1. add the transactions to statistics or
// 2. move the transaction to next day for further processing.

break;
default:
// The execution should never fall here.
break;
}
¥
Vit

* Determine here whether the transaction is to be released or
* suspended by the bank agent
*/
@Override
public boolean isSettleable(SystemEvent systemEvent,
Transaction transaction) {
// This is a simple example of logics to determine
// wether or not to send a transaction to be settled.
if (getAccount().getBalance() > transaction.getValue()) {
return true;
}

return false;

BoF-PSS3 User Manual 123

V. HTTP API examples

In below HTTP API examples the commands contain the following parts:

Part Value Mandatory
/
Optional
HTTP method GET, POST PUT DELETE M
Request path Example: M

/projects/{name}/simulations
where path parameters are identified
with surrounding curly braces {}

Request body O
HTTP response 200 - OK M
201 - Created
202 - Accepted
400 - Bad Request
Application response | Typically a JSON object M

For a full and uptodate API description use the the swagger tool:

1. Template methods

Templates are used in importing data from CSV files to Simulator database. The
possible template types for data input are: PART, TRAN, DBAL, ICCL, BLIM,
RSRV, EVNT. After running the Simulator the first time Simulator creates a set of
default Templates to the database table "pss2 systemdb.temp".

GET /templates
List all existing templates.

Path parameters: NA
Request body: NA
HTTP response: 200
Response: JSON object

Example:
{
"id": o,
"created": null,
"modified": null,
"templateId": "ACST-ALL",
"type": "ACST",
"skipFirstNRows": O,
"skipLastNRows": @,
"templateSetting": " , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

BoF-PSS3 User Manual 124

http://localhost:8080/swagger-ui/index.html?configUrl=/api-docs/swagger-config#/

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49",
"templateFields": null

"id": o,

"created": null,
"modified": null,
"templateId": "ACST-EMP",
"type": "ACST",
"skipFirstNRows": @,
"skipLastNRows": O,

"templatESEtting": E I e e I I I R D R D I R I B R I |

2) oy 3) 3

"templateFields": null

)y 2y) oy 3) o 3) 3 3)y 2 3

"id": o,
"created": null,
"modified": null,
"templateId": "AVST-ALL",
"type": "AVST",
"skipFirstNRows": @,
"skipLastNRows": @,
"templateSetting": " , 1, 2, 3, 4, 5, 6, 7, 8",
"templateFields": null

s

]

GET .../templates/type/TRAN
List all existing templates of type TRAN.

Parameters: NA
Request body: NA
HTTP response: 200
Response: JSON object

Example:

[

{
"id": o,
"created": null,
"modified": null,
"templateId": "ccpData",
"type": "TRAN",
"skipFirstNRows": 2,
"skipLastNRows": @,
"templateSetting": ", , 1, 2, 3, 14, , 4, 5, , 6, 7, , , ,

E I R I | 9) 16) 11: 8) 12: I A I I I] 13: ")

"templateFields": null

s

{
"id": o,
"created": null,
"modified": null,
"templateId": "example",
"type": "TRAN",
"skipFirstNRows": 2,
"skipLastNRows": @,
"templateSetting": ", , 1, 2, 3, 4, , 5, 6, , 7, 8, 9, , ,

EIE I I R R R R I R I I R D I D I R) 10;'3

"templateFields": null

s

BoF-PSS3 User Manual 125

POST /templates
Adds a template to the system database. The example under is for adding a PART
template.

Path parameters: NA
Request body: JSON

{
"templateId": "src-1",
"type": "PART",
"skipFirstNRows": 2,
"skipLastNRows": @,
} "templatesetting": " 3 3 1) 2) 3 3) 3 3 3 3 3 3 3 3 3 3 3 3 3 "J

HTTP response: 201
Response: JSON object

Example:
{
"id": o,
"created": null,
"modified": null,
"templateId": "src-1",
"type": "PART",
"skipFirstNRows": 2,
"skipLastNRows": @,

"templatesetting": ")) 1) 2)) 3)) 3) 2 2) 2) 2 ")
"templateFields": [

{

"name": "P_PARTICID",

"description”: "Participant ID",

"inputFieldIndex": 1,
"mandatory": true

¥

{

"name": "P_ACCOUNID",
"description”: "Account ID",

"inputFieldIndex": 2,
"mandatory": true

¥

{

"name": "P_ACCOTYPE",
"description": "Account type",

"inputFieldIndex": @,
"mandatory": false

¥

{

"name": "P_FULLNAME",
"description”: "Full name",

"inputFieldIndex": 3,
"mandatory": false

1

{

"name": "P_SHORTACR",
"description”: "Short acronym",

"inputFieldIndex": @,
"mandatory": false

¥

{

BoF-PSS3 User Manual 126

injection value",

"name": "P_ACCONAME",
"description": "Account name",
"inputFieldIndex": 0,
"mandatory": false

1

{

"name": "P_SETINSYS",
"description"”: "Settles in system",

"inputFieldIndex": 0,
"mandatory": false
1

{
"name": "P_SETONPAR",

"description": "Settles on participant”,

"inputFieldIndex": 0,
"mandatory": false

¥

{

"name": "P_SETONACC",

"description": "Settles on account",

"inputFieldIndex": 0,
"mandatory": false

¥

{

"name": "P_LIQFRSYS",
"description": "Liquidity injection

"inputFieldIndex": @,
"mandatory": false

¥

{

"name": "P_LIQFRPAR",
"description”: "Liquidity injection

"inputFieldIndex": @,
"mandatory": false

¥

{

"name": "P_LIQFRACC",
"description": "Liquidity injection

"inputFieldIndex": 0,
"mandatory": false

¥

{

"name": "P_LIQINJVA",
"description": "Participant/account

"inputFieldIndex": @,
"mandatory": false
¥

{
"name": "P_USERCOD1",

"description”: "User defined code 1"

"inputFieldIndex": O,
"mandatory": false
¥

{
"name": "P_USERCOD2",

"description"”: "User defined code 2"

"inputFieldIndex": @,
"mandatory": false
¥

{
"name": "P_USERCOD3",

"description”: "User defined code 3"

"inputFieldIndex": O,
"mandatory": false

from system",

from participant”,

from account",

specific liquidity

3

B

3

BoF-PSS3 User Manual

127

¥
{
"name": "P_USERCOD4",

"description": "User defined code 4",
"inputFieldIndex": 0,
"mandatory": false

}s

{

"name": "P_USERCOD5",

"description”: "User defined code 5",

"inputFieldIndex": 0,
"mandatory": false

}

2. Project methods

After installation the Simulator database has no content and the first step is to create
a project. Basically a project is container that holds data for a specific study. A
project is a nice way to isolate different studies in that the data of a project is
independent from another.

POST /projects

Creates a new project to the Simulator. It adds a new project schema to the database.
In other terms it creates a new project specific database. The method returns the
created project data. Please notice that to create a project, it is enough to provide
only the project name attribute in the JSON object.

Path parameters: NA
Request body: JSON object
Example:
{

"name": "myproj"

}

HTTP response: 200
Response: JSON object

Example:
{
"id": o,
"created": "2020-12-02T14:36:05",
"modified": "2020-12-02T14:36:05",
"name": "myproj",
"databaselLocation": "C:/Program Files/MariaDB 1@.2/data/myproj",
"inputFolder": "C:/BoF-PSS/P_myproj/INPUT/",
"outputFolder": "C:/BoF-PSS/P_myproj/OUTPUT/",
"errorFolder": "C:/BoF-PSS/P_myproj/ERRORLIST/",
"outputReportFolder": "C:/BoF-PSS2/P_myproj/OUTPUT_REPORTS/",
"networkFolder": "C:/BoF-PSS/P_myproj/NETWORKS/",
"networkReportFolder": "C:/BoF-PSS2/P_myproj/NETWORK_REPORTS/",
"location": "C:/BoF-PSS/P_myproj",
"size": null,
"default": true

BoF-PSS3 User Manual 128

GET /projects
Returns a list of all projects found in the Simulator database in JSON format.

Path parameters: NA
Request body: NA
HTTP response 200
Response: JSON object

Example:

[

{

"id": o,

"created": "2020-12-02T14:36:05",

"modified": "2020-12-02T14:36:05",

"name": "myproj",

"databaselLocation": "C:/Program Files/MariaDB 10.2/data/myproj",
"inputFolder": "C:/BoF-PSS/P_myproj/INPUT/",

"outputFolder": "C:/BoF-PSS/P_myproj/OUTPUT/",

"errorFolder": "C:/BoF-PSS/P_myproj/ERRORLIST/",
"outputReportFolder": "C:/BoF-PSS2/P_myproj/OUTPUT_REPORTS/",
"networkFolder": "C:/BoF-PSS/P_myproj/NETWORKS/",
"networkReportFolder": "C:/BoF-PSS2/P_myproj/NETWORK_REPORTS/",
"location": "C:/BoF-PSS/P_myproj",

"size": 255634,

"default": true

}
]

DELETE /projects/{name}
Removes the named project and all its contents from the database.
Path parameters:
name: Project name (like"myproject”)
Request body: NA
HTTP response: 200
Response: text
Example:
"SUCCESS"

3. System methods

Systems belong to projects. These operations will require a project to exist.

POST /projects/{name}/systems
Path parameters:
name: Project name
Example: "mysystem" or "sys1"
Request body: JSON object
Example:

BoF-PSS3 User Manual 129

{
"name": "sysl"

}
HTTP response: 201

Response: JSON object

Example:
"id":1,
"created":null,
"modified":"2020-12-03T10:39:16",
"name":"sys1",
"datasets":null}

4. System dataset methods

A system in a project must have at least one system data set.

POST /projects/{name}/systemdatasets
This method creates a system dataset for the system.
Path parameters:
name: Project name
Example: "myproj"
Request body: JSON object
Example:

"systemId": 1,
"datasetId": "ds",
"name": "sysDs",
"description"”: "System data set",
"creditAvailability": "ACCORDING_TABLE",
"transferBalances": false,
"bilateralLimitUse": false,
"transferTransactions": "TRANSFER_TO_NEXTDAY",
"openingTime": 70000,
"closingTime": 180000,
"systemAlgorithms": [
{
"algorithmName": "ENBASIC1",
"type": "ENT",
"parameters": "is entry settlement enabled?41][is
enabled?41"
¥
{
"algorithmName": "SEBASIC1",
"type": "SET",
"parameters":
¥
{
"algorithmName": "ENDRTGS1",
"type": "END",
"parameters":

}
1,

"editable": true
)
HTTP response: 201

Response: JSON object

nn

nn

FIFO

BoF-PSS3 User Manual

130

Example:

enabled?41",

{

"id": 1,

"created": null,

"modified": "2020-12-03T11:41:48",
"systemId": 1,

"datasetId": "ds",

"name": "sysDs",
"systemName": "sys1",
"description": "System data set",

"type": "RTGS",
"creditAvailability": "ACCORDING_TABLE",
"transferBalances": false,
"bilaterallLimitUse": false,
"transferTransactions"”: "TRANSFER_TO_NEXTDAY",
"openingDate": O,
"openingTime": 70000,
"closingDate": 0,
"closingTime": 180000,
"systemAlgorithms": [
{
"id": 9,
"created": null,
"modified": "2020-12-03T11:41:48",
"systemId": 1,
"datasetId": "ds",
"algorithmName": "ENDRTGS1",
"systemAlgorithmId": @,
"type": "END",
"parameters": null,
"teaAlgorithmId": null,
"teaAlgorithmParameters”: null,
"parallelProcessingIndicator": 0,
"algorithmParameters”: null,
"selected": true

¥

{

"id": 8,

"created": null,

"modified": "2020-12-03T11:41:48",
"systemId": 1,

"datasetId": "ds",
"algorithmName": "SEBASIC1",
"systemAlgorithmId": @,

"type": "SET",

"parameters": null,
"teaAlgorithmId": null,
"teaAlgorithmParameters": null,
"parallelProcessingIndicator": o,
"algorithmParameters”: null,
"selected": true

¥

{

"id": 7,

"created": null,

"modified": "2020-12-03T11:41:48",
"systemId": 1,

"datasetId": "ds",
"algorithmName": "ENBASIC1",
"systemAlgorithmId": @,

"type": "ENT",

"parameters": "is entry settlement enabled?41][is

"teaAlgorithmId": null,

FIFO

BoF-PSS3 User Manual

131

"teaAlgorithmParameters": null,
"parallelProcessingIndicator": o,
"algorithmParameters”: null,
"selected": true

}
1,

"editable": true,
"transferTransactionsTypes": [
"TRANSFER_TO_NEXTDAY",
"DELETE_INCLUDE_STATS",
"DELETE_EXCLUDE_STATS",

"FORCE_SETTLEMENT_ON_EOD"

1,

"creditAvailabilityTypes": [
"ACCORDING_TABLE",
"NO_AVAILABLE",
"AVAILABLE_WITHOUT_ LIMITS"

1,

"systemTypes": [
"DNS",
"CNS",
"RTGS"

]

}

5. File methods

Next the input data CSV files are uploaded to the project folder on application
server before importing the file content to database.

POST /projects/{name}/files/upload
This method creates a system dataset for the system.

Path parameters:
name: project name
Example: "myproj"
Request body: multipart/form-data

HTTP response: 200
Response: JSON object

Example:

{
"fileName": "part.csv",
"fileDownloadUri":

"http://localhost:8080/downloadFile/part.csv"”,
"fileType": "application/octet-stream",
"size": 212365,
"message": null,
"status": null
}

NOTE!

In chapter Error! Reference source not found., among examples there is a
example how to upload files using CURL command.

BoF-PSS3 User Manual 132

6. Dataset methods

Next import the necessary input data sets to the corresponding database table.

Please notice that in this phase the file upload commads are expected beeing run
thus the files are waiting to be imported in project's folder on application server
side.

POST /projects/{name}/datasets/import/{isWaitToComplete}

This method creates a system dataset for the system.
This command can be run for each required input type:
PART, TRAN, DBAL, ICCL, BLIM, RSRV, EVNT

Parameters:
name: Project name. Example: "myproj"
isWaitToComplete: Use value true to wait and receive the result of the
method With value false, the methods returns without waiting the import method
to complete. Example: "true"
Request body: JSON object

Example:

{

"systemId": 1,
"entityType": "PART",
"templateName": "example",
"filename": "part.csv",
"datasetName": "ds",
"mapToPartDataset"”: null

}
HTTP response:

200 - isWaitToComplete parameter is set to true
202 - isWaitToComplete parameter is set to false
Response:
text
Example:
true

7. Stmulation methods

After all needed data sets are in place in database a simulation can be created.

POST /projects/{name}/simulations
This method creates a simulation.

Parameters:
name: Project name
Example: "myproj"
Request body: JSON object

BoF-PSS3 User Manual 133

Example:

"parentId": O,

"simRunId": "siml",

"name": "simulation one",
"description"”: "Enter description...",
"outputTables": "true,true,true,false,false,false,false,false",
"systemIDs": "t2",
"systemDatasetSelection": "ds",
"partDatasetSelection": "ds",
"tranDatasetSelection": "ds",
"dbalDatasetSelection": "null",
"icclDatasetSelection": "null",
"blimDatasetSelection": "null",
"rsrvDatasetSelection": "null",
"evntDatasetSelection": "null",
"agentConfigurationFilePath": "",

"submissionAlgorithmId": "SUFIFOPR",
"algorithmType": "SUB",
"parametersValues": null,

}
HTTP response: 201

Response: JSON object

Example:
{
"id": 1,
"created": null,
"modified": "2020-12-03T15:53:13",
"runningMode": "EXECUTE",
"parentId": 0o,
"simRunId": "siml",
"name": "simulation one",
"description"”: "Enter description...",
"processDate": 0,
"processTime": 0,
"duration": o,

"outputTables": "true,true,false,false,false,false,false,false",
"systemIDs": "sysl",

"systemDatasetSelection": "ds",

"partDatasetSelection": "ds",

"tranDatasetSelection": "ds",

"dbalDatasetSelection": "null",

"icclDatasetSelection": "null",

"blimDatasetSelection": "null",

"rsrvDatasetSelection”: "null",

"evntDatasetSelection": "null",

"agentConfigurationFilePath": null,
"numberOfSystems": 0,
"numberOfAccounts": 9,
"numberOfTransactions”: 9,
"submissionAlgorithmId": "SUFIFOPR",
"algorithmType": "SUB",
"parametersValues": null,
"run": null,
"selectedOutTables": [

"true",

"true",

"true",

"false",

"false",

"false",

"false",

"false"

BoF-PSS3 User Manual 134

1,
"selectedSystemIds": [

"sysl"
1,
"selectedSystemDatasets": [

[

"ds",

"ds",

"ds",

"")

""J

""J

Bl

1
1,
"crossCheckDone": false
)

GET /projects/{name}/simulations/run/{id}/{isWaitToComplete}
This method runs the simulation indicated by the id.

Parameters:
name: Project name
Example: "myproj"
id: simulation id
Example: "1"
isWaitToComplete: Use value true to wait and receive the result of the
method With value false then methods return without waiting the method
to complete. Example: "true"
Request body: NA
HTTP response:
200 - isWaitToComplete parameter is set to true
202 - isWaitToComplete parameter is set to false
Response:
JSON object

Example:

{

"id": 1,

"created": null,

"modified": "2020-12-04T12:18:33",
"runningMode": "EXECUTE",
"parentId": 0o,

"simRunId": "siml",

"name": "simulation one",
"description”: "Enter description...",
"processDate": 20201204,
"processTime": 121833430000,
"duration": 443,

"outputTables": "true,true,true,false,false,false,false,true”,
"systemIDs": "sysl",

"systemDatasetSelection": "ds",

"partDatasetSelection": "ds",

"tranDatasetSelection": "ds",

"dbalDatasetSelection": "null",

"icclDatasetSelection": "null",

"blimDatasetSelection": "null",

BoF-PSS3 User Manual 135

"rsrvDatasetSelection":
"evntDatasetSelection":

"null",
"null",

"agentConfigurationFilePath": null,

"numberOfSystems": @,
"numberOfAccounts"”: 0,

"numberOfTransactions”: 9,
"submissionAlgorithmId": "SUFIFOPR",
"algorithmType": "SUB",
"parametersValues": null,

"run": "2020-12-04T712:18:33",

"selectedOutTables": [
"true",
"true",
"true",
"false",
"false",
"false",
"false",
"true"
1,
"selectedSystemIds": [
"sys1"
1,

"selectedSystemDatasets":

[

ey
Ty
Y

nn
nn
nn

nn

LV

]
1,

"crossCheckDone": false

}

Path parameters:
name: Project name
Example: "myproj"
simld: simulation id
Example: "1"
Request body:
HTTP response: 200
Response: JSON object

Example:

[

{
"id": o,
"systemId": 1,
"simulationId": 1,
"modified": null,
"key": null,

[

GET /projects/{name}/simulations/data/syls/{simId}

The following method call lists the SYLS output data for the given simulation id.
The output data for ACST, TEST, QURE, AVST and BIST tables can be retrieved
in similar manner.

BoF-PSS3 User Manual

136

"businessDay": "20030512",
"systemName": "dsEx",

"valueInData": 7.7626218987E9,
"valueCarriedOver": 0.0,
"valueSubmitted": 7.7626218987E9,
"valueSettled": 4.6236442517E8,
"valueUnsettled": 7.30025747353E9,
"numberInData": 778,
"numberCarriedOver": 0,
"numberSubmitted": 778,
"numberSettled": 122,
"numberUnsettled": 656,
"beginningOfDayBalance": 0.0,
"endOfDayBalance": 0.0,
"averageCreditlLimit": 5.453449056E7,
"liquidityAvailable": 5.453449056E7,
"absoluteCreditLimitUsage": 1.702447774E7,
"relativeCreditLimitUsage": 0.02,
"totallLiquidityAvailable": 9.8162083003E8,
"lowerBoundOfLiquidity": 4.110843018E8,
"maxQueueValue": 7.30025747353E9,
"avgQueueValue": 2.0759429298E8,
"avgQueuelLength": @,
"numberOfQueuedTransactions": 656,
"totValOfQueuedTransactions": 7.30025747353E9,
"queueStopTime": O,
"avgTimeOfSettlement": 0O,
"ligUsageIndicCollateral”: 0.06,
"ligUsageIndicRepo": 0.13,
"settlementDelay": 0.0,

"settings": "",

"maxCreditUsage": 0.0

8. Analysis methods

Analysis requires a simulation that will be used as a benchmark to be defined.

POST /projects/{name}/analysis

This method creates an analysis.
Parameters:
name: Project name
Example: "myproj"
Request body: JSON object

Example:
"name": "a1",
"simId": 1,
"simRunId": "siml",
"description": "al",

"rule": "FAIL_BY_ PARTICIPANT",
"accounts": [
{
"participantId": "13",
"accountId": "13"

BoF-PSS3 User Manual 137

¥
{
"participantId": "17",
"accountId": "17"
¥
]
}

HTTP response: 201
Response: JSON object

Example:
{
"id": 1,
"created": null,
"modified": "2020-12-04T14:57:04",

"name": "al",
"simId": 1,
"simRunId": "siml",
"type": 0,

"status": "INITIAL",
"description”: "al",

"rule": "FAIL_BY_PARTICIPANT",
"fileFilterName": null,
"icclScreen": 0,
"dbalScreen": 0,
"accounts": [
{
"id": o,
"created": null,
"modified": null,
"analysisId": 1,
"participantId": "13",
"accountId": "13"
s
{
"id": o,
"created": null,
"modified": null,
"analysisId": 1,
"participantId": "17",
"accountId": "17"

}

—

GET /projects/{name}/analysis/run/{id}/{isWaitToComplete}
This method runs the analysis of provided id.

Parameters:
name: Project name
Example: "myproj"
1d: analysis id
Example: "1"
1sWaitToComplete: Use value true to wait and receive the result of the
method. With value false then methods return without waiting the method
to complete. Example: "true".
Request body: NA
HTTP response:

BoF-PSS3 User Manual 138

200 - isWaitToComplete parameter is set to true
202 - isWaitToComplete parameter is set to false
Response: JSON object

Example:
{
"id": 1,
"created": null,
"modified": "2020-12-04T14:57:04",
"name": "al",
"simId": 1,
"simRunId": "siml",
"type": 0,
"status": "RUN",
"description”: "al",
"rule": "FAIL_BY_ PARTICIPANT",
"fileFilterName": null,
"icclScreen": 0,
"dbalScreen": 9,
"accounts": [

{

"id": o,

"created": null,
"modified": null,
"analysisId": 1,
"participantId": "13",
"accountId": "13"

s

{

"id": o,

"created": null,
"modified": null,
"analysisId": 1,
"participantId": "17",
"accountId": "17"

}
]
}
GET /projects/{name}/analysis/runReport/{id}/{isWaitToComplete}

This method runs the analysis report for the provided analysis id. The report is
stored as two files:
a. in CSV format that contains the report data,
b. in XLSM format that contains the Excel macro that on file open phase
reads the CSV data and loads it to a pivot table and thus it's
capable to show Excel diagrams.

Parameters:
name: Project name
Example: "myproj"
id: analysis id
Example: "1"
isWaitToComplete: Use value true to wait and receive the result of the
method. With value false then methods return without waiting the method
to complete. Example: "true"
Request body:

BoF-PSS3 User Manual 139

HTTP response:
200 - isWaitToComplete parameter is set to true
202 - isWaitToComplete parameter is set to false
Response: JSON object

Example:

{

"id": 1,

"created": null,

"modified": "2020-12-04T15:43:02",

"name": "al",
"simId": 1,
"simRunId": "siml",
"type": 0,

"status": "REPORTED",
"description”: "al",

"rule": "FAIL_BY_PARTICIPANT",
"fileFilterName": null,
"icclScreen": 0,
"dbalScreen": 0,
"accounts": [
{
"id": o,
"created": null,
"modified": null,
"analysisId": 1,
"participantId": "13",
"accountId": "13"
s
{
"id": o,
"created": null,
"modified": null,
"analysisId": 1,
"participantId": "17",
"accountId": "17"

}

—

GET /projects/{name}/analysis/download/{id}/{type}

This method is used to download the analysis report files. Download the CSV file
first and then only the macro file. After both files have been downloaded you can
open the .xlsm file.

Parameters:
name: Project name
Example: "myproj"
id: analysis id
Example: "1"
type: Must be either csv or xIsm
Example: "csv"
Request body:
HTTP response: NA
Response: Textual CSV data or Excel xlsm format (XML)
Example:

BoF-PSS3 User Manual 140

BenchScenario;SimId;SimRunld;SystemId;failingParty;ParticipantId;AccountId;Busin
essDay;BoDBalance;EoDBalance;MinBalance;EoDCreditLimit;CreditLimitMaxUsage;Settl
edCount;SettledValue;SentUnstCountDirect;SentUnstValueDirect;SentUnstSystemicEff
ectCount;SentUnstSystemicEffectValue;ReceivedPaymentsCount;ReceivedPaymentsValue
;ReceivedUnstCountDirect;ReceivedUnstValueDirect;ReceivedUnstSystemicEffectCount
;ReceivedUnstSystemicEffectValue;ReceivedPaymentsDiffValue;LB;LBDiff;UB;MaxUpper
Bound;MinLiquidityDeterioration;MaxLiquidityDeterioration;SettlementDelay;Settle
mentDelayDiff;WeightedAvgReceivingTime;WeightedAvgReceivingTimeDiff;WeightedAvgS
endingTime;WeightedAvgSendingTimeDiff

Bench;1;siml;1;;1;1;20030512;0;370379.4;0;0;0;5,444037;;;47;75145110.7;5,814416.
4;;:29;64854605.8;0;0;0;62487362.4;75589147.7;;;0;0;00:05:13;00:00:00;00:02:28;0
0:00:00

Bench;1;siml;1;;10;10;20030512;0;264063.2; -
105983.4;201802;52.5;3;105983.4;;;13;15034115.6;3,370046.6;;;12;14971854.3,0,0;,0
;12356069.4;15140098.9;;;0;0;00:10:09;00:00:00;00:02:57;00:00:00

9. CURL API example

Here is a CURL example with which everything is performed from project creation
to the running of an analysis. The commands of the example can be used with
Windows command prompt using the CURL utility.

Performed operations in the CURL example:

create a project

create a system to the project

create a system data set

upload part and tran CSV files

Import the files to the project as data sets
create a simulation based on above data
run the simulation

creates an analysis

run the analysis

e e Aol S

The contents of the needed JSON files for each CURL command are displayed
after the CURL commands.
Please note that in order to perform the example:
a. The CURL executable is set to your Windows path.
b. The below example lines expect that the json files referred as @[file
name].[file extension] are found on current run folder.

c. Similarly the below part.csv and tran.cvs files are found on current run
folder.

The used CSV files are from the example 1 distributed and included within the
Simulator installation.

--- Start of Windows CMD script >>> ---
set pssDomain=localhost:8080
set pssProj=myProj

BoF-PSS3 User Manual 141

:: Delete project in case it exists
curl -X DELETE -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%

:: Create project
curl -X POST -H "Content-Type: application/json" http://%pssDomain%/projects
-d @project.json

¢ Create system
curl -X POST -H "Content-Type: application/json" http://%pssDomain%/projects
-d @system.json

: Create system data set
curl -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/systemdatasets -d @systemDataset.json
:: Upload file
curl -i -X POST -H "Content-Type: multipart/form-data"
http://%pssDomain%/projects/%pssProj%/files/upload -F "file=@part.csv"
curl -i -X POST -H "Content-Type: multipart/form-data"
http://%pssDomain%/projects/%pssProj%/files/upload -F "file=@tran.csv"

: Import uploaded file's data to database with wait for completion set to
true
curl -i -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/datasets/import/true -d
@importPartData.json
curl -i -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/datasets/import/true -d
@importTranData.json

:: Create simulation

curl -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/simulations -d @simulation.json
:: Run simulation

curl http://%pssDomain%/projects/%pssProj%/simulations/run/1/true

:: Get simulation SYLS output data

curl http://%pssDomain%/projects/%pssProj%/simulations/data/syls/1

:: Create analysis
curl -i -X POST -H "Content-Type: application/json"
http://%pssDomain%/projects/%pssProj%/analysis -d @data/analysis.json
:: Run analysis
curl http://%pssDomain%/projects/%pssProj%/analysis/run/1/true
:: Run analysis report
curl http://%pssDomain%/projects/%pssProj%/analysis/runReport/1/true
:: Download the report in CSV format
curl http://%pssDomain%/projects/%pssProj%/analysis/download/1/csv >
analysis.csv
curl http://%pssDomain%/projects/%pssProj%/analysis/download/1/x1sm >
analysis.xlsm

--- <<< Windows CMD script end ---

CURL example JSON files

Here are the JSON file contents used in the example above.

project.json
{
"name": "myProj",
¥

BoF-PSS3 User Manual 142

system.json

"name" : "sysl"

}

systemDataset.json

Below the system id must correspond to existing system.

{
"systemId": 1,
"datasetId": "dsEx",
"name": "dsEx",
"description"”: "System data set",
"creditAvailability": "ACCORDING_TABLE",
"transferBalances": false,
"bilateralLimitUse": false,
"transferTransactions": "DELETE_INCLUDE_STATS",
"openingTime": 70000,
"closingTime": 190000,
"systemAlgorithms": [
{
"algorithmName": "ENBASIC1",
"type": "ENT",
"parameters”: "is entry settlement enabled?41][is FIFO enabled?41"
s
{
"algorithmName": "SEBASIC1",

"type": "SET",
"parameters":
s

{

"algorithmName": "ENDRTGS1",
"type": "END",
"parameters":

¥
15

"editable": true

}

nn

importPartData.json

Below the system id must correspond to existing system and
the template name must correspond the input CSV file data structure
of given file name.

"systemId": 1,
"entityType": "PART",
"templateName": "example",
"filename": "part.csv",
"datasetName": "dsEx",
"mapToPartDataset": null

}

BoF-PSS3 User Manual 143

importTranData.json

Below the system id must correspond to existing system and the template name
must correspond the input CSV file data structure of given file name. The
mapToPartDataset refers above part data set.

"systemId": 1,
"entityType": "TRAN",
"templateName": "example",
"filename": "tran.csv",
"datasetName": "dsEx",
"mapToPartDataset": "dsEx"

}

importlcclData.json

Below the system id must correspond to existing system and the template name
must correspond the input CSV file data structure of given file name. The
mapToPartDataset refers above part data set.

"systemId": 1,
"entityType": "ICCL",
"templateName": "example",
"filename": "iccl.csv",
"datasetName": "dsEx",
"mapToPartDataset": "dsEx"

}

simulation.json
Below the system ids and data set names must correspond to existing entities in

database. If a data set selection has no existing data set the data set selection is set
with value "null".

{
"parentId": o,

"simRunId": "siml",

"name": "simulation one",
"description": "Enter description...",
"outputTables": "true,true,true,false,false,false,false,false",
"systemIDs": "sys1",
"systemDatasetSelection": "dsEx",
"partDatasetSelection”: "dsEx",
"tranDatasetSelection": "dsEx",
"dbalDatasetSelection”: "null",
"icclDatasetSelection": "dsEx",
"blimDatasetSelection”: "null",
"rsrvDatasetSelection": "null",
"evntDatasetSelection": "null",

nn

"agentConfigurationFilePath":
"submissionAlgorithmId": "SUFIFOPR",
"algorithmType": "SUB",
"parametersValues": null

BoF-PSS3 User Manual 144

analysis.json

Below the simulation ids must correspond to existing entities in database.
If a data set selection has no existing data set
the data set selection is set with value "null".

{

"name": "al",
"simId": 1,
"simRunId": "siml",
"description”: "al",

"rule": "FAIL_BY_PARTICIPANT",
"accounts": [
{
"participantId": "13",
"accountId": "13"
3
{
"participantId": "17",
"accountId": "17"

}

BoF-PSS3 User Manual 145

