

CAN QUANTUM COMPUTING IMPROVE THE EFFICIENCY OF THE PAYMENTS SYSTEM?

GOODLABS INTELLIENCE ENGINEERING

Classic

Quantum

RESEARCH & ENGINEERING TEAM

OUANTUM

CHRIS MCMAHON DIRECTOR A.I & EMERGING. PHD, QUANTUM

DONALD MCGILLIVRAY QUANTUM+A.I. PHD, QUANTUM

JEAN-PAUL LAM ML+DL, FINANCE PHD, ECONOMICS

LANGUAGE

RAFIK RHOUMA HEAD, LANGUAGE A.I. POSTDOC, NLP

HASSAN MASOOD CONVERSATION A.I. PHD CANDIDATE, NLP

GENERATIVE & A.I. ENGINEERING

PETER BERRINGTON **DIRECTOR, A.I. ENGINEERING BSC, COMPUTER SCIENCE**

SAFIA KANWAL LANGUAGE A.I. IN MOBILE PHD, NLP

MEDICINE

FRAUD

HUSSAIN JABER DIRECTOR FRAUD & FINANCIAL CRIME

HIEU NGO REFORMED FRAUDSTER ADVISOR

CHRIS SMITH DIRECTOR, MEDICAL A.I. PHD, BIOMED PHYSICS

AMIR MEMAR RISK PHD, QUANTITATIVE FINANCE

ALEX OSTROVSKY A.I. ENGINEERING BSC, COMPUTER SCIENCE

COLLABORATION PROJECT

IMPROVING THE EFFICIENCY OF PAYMENTS SYSTEMS USING Quantum Computing*

Christopher M^cMahon GoodLabs Studio, University of Waterloo **Donald McGillivray** GoodLabs Studio

Ajit Desai‡ Bank of Canada

Jean-Paul Lam[‡] GoodLabs Studio, University of Waterloo

Thomas Lo GoodLabs Studio **Danica Marsden** Bank of Canada

arxiv.org/abs/2209.15392

Francisco Rivadeneyra Bank of Canada

> **Vladimir Skavysh** Bank of Canada

THE CHALLENGE

HIGH VALUE PAYMENT SYSTEMS

PAYMENTS CANADA LYNX

Financial Institutions Daily Payment Requests Daily

Dollar Volume

OUR SOLUTION

A PAYMENT PREPROCESSOR

CENTRAL BANK

INITIAL LIQUIDITY

PAYMENTS OPTIMIZED ORDER

NET DEBIT POSITIONS

HIGH VALUE PAYMENTS SYSTEM

A PAYMENT PREPROCESSOR

QUANTUM COMPUTING

QUANTUM COMPUTING

IBM/Google

Xanadu

D-Wave

QUANTUM ANNEALING

- VERY SPECIALIZED HARDWARE
- CAN ONLY SOLVE DISCRETE **OPTIMIZATIONS**
- MAPS THE PROBLEM ONTO A PHYSICAL SYSTEM AND THEN "ANNEALS" TO FIND GROUND STATE
- TAKES ADVANTAGE OF QUANTUM **EFFECTS TO OUTPERFORM** CLASSICAL

Classical Path

D-WAVE QUANTUM ANNEALER

Constrained Quadratic Model Solver (CQM) 5,000 Qubits 1,000,000 Variables 100,000 Constraints

700 Maximum Payment Requests

Each Payment Settled Only Once

Optimize Liquidity Utilization

REORDERING SAVES \$MM Original Queue - \$73M

Quantum Queue - \$55M

REAL-TIME CONSIDERATIONS

Collection Time

Batch Size

Compile and Solve Time

Batch Size

HOW BIG CAN QUANTUM GO?

Batch Size

Number of Feasible Solutions

Less feasible solutions Less liquidity savings

POWER OF QUANTUM

PAYMENTS BATCH SIZE

PROBLEM SIZE

EXECUTION TIME

NUMBER OF PERMUTATIONS

QUANTUM SAVINGS BY BILLION

*Meepo has a classical pre-processing algorithm to enhance the efficiency of the quantum algorithm

\$ Billions

Time of Day

Aggregated Maximum Net Debit Position

n-first-out tch COM	
atch CQM	
ееро	
1eepo	
18	

FIFO \$19.740 billion Quantum 70 \$19.707 billion Quantum 140 \$19.347 billion *Meepo 70 \$19.294 billion *Meepo 140 \$18.793 billion

CLASSIC ALGO HORSERACE

DAILY SAVINGS RESULTS Avg Daily Max Daily Liquidity Savings Liquidity Savings 1.4% (\$239M \$1.26B 2.0% (\$332M 2.3%(3387M)Meepo 140 3.0% (\$506M) \$1.56B

Quantum 70

Meepo 70

Sliding Bucket

WHAT WE HAVE ACHIEVED Reduce liquidity usage >\$500M daily while

- minimizing settlement risk
- Runs in real-time
- Quantum annealing can provide real value today!
- Payment reordering method can provide significant liquidity reductions

WHAT'S NEXT?

- Perform trial of quantum-powered optimization algo with live production data from an RTGS
- Optimize our hybrid algorithm to make better use of quantum advantages
- Apply our strategy to "single agent" problems
- Create AI models to predict future payments and handle edge-cases

QUESTIONS & ANSWERS meepo@goodlabs.studio

A Presentation Crafted by GoodLabs Studio

GoodLabs was founded by serial tech entrepreneurs with a singular belief: Business first software engineering delivers exceptional digital experience.

GoodLabs Studio is an advanced software innovation studio specialized in creating best-of-breed digital products and services. Our teams of passionate product designers, architects, and software engineers bring strong domain and technical expertise to walk alongside on your digital journey.

Visit us at https://www.goodlabs.studio or email us at hello@goodlabs.studio