A NOTE ON THE TRANSMISSION OF SHOCKS TO INTERNATIONAL FOOD AND ENERGY COMMODITY PRICES ON FOOD INFLATION IN LATIN AMERICA

Fructuoso Borrallo, Lucía Cuadro-Sáez, Águeda Gras-Miralles, Javier J. Pérez
International Economics and Euro Area Department
DG Economics and Statistics

Emerging Markets Workshop
28 November 2023
FOOD INFLATION IN LATINAMERICA HAS BEEN HIGHER THAN IN OTHER AREAS

FOOD PRICE INFLATION: INTERNATIONAL COMPARISON

THE RECENT SHOCK HAS BEEN STRONG AND WIDESPREAD AMONG COUNTRIES

FOOD INFLATION PEAKS

INTERNATIONAL FOOD PRICES IS TRANSMITTED DOWN THE VALUE CHAIN WITH A LAG

• There are several papers that analyse the pass-through of food commodity prices to food inflation: Ferrucci et al (2012), Ianchovichina et al (2014) and Rigobon (2010), among others.

• Other papers analyse the pass-through from energy prices to food inflation: Peersman (2022), de Winne and Peersman (2016) and Roeger and Leibtag (2011). among others.

• Yang (2015) finds that low-income countries have a food commodity pass-through twice larger than high-income countries.

• Rigobon (2010) shows that emerging markets suffer a significant pass-through from oil prices to food consumer prices, while the effect on advanced economies food inflation is small or null

• Our paper tries to study both types of shocks on food inflation in Latin America
<table>
<thead>
<tr>
<th>COMMODITY PRICES</th>
<th>FOOD COMMODITY AND ENERGY PRICES COME FROM WORLD BANK. WE CONVERT THEM TO LOCAL CURRENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOOD PPI AND CPI</td>
<td>COLLECTED FROM NATIONAL SOURCES</td>
</tr>
<tr>
<td>COUNTRIES</td>
<td>BRAZIL, CHILE, COLOMBIA, MEXICO AND PERU</td>
</tr>
<tr>
<td>LATAM AGGREGATES</td>
<td>WE AGGREGATE EACH COUNTRY PRICES BY TWO WAYS: SIMPLE AVERAGE AND GDP-WEIGHTED</td>
</tr>
<tr>
<td>SAMPLE SIZE</td>
<td>JANUARY 2006 TO APRIL 2023</td>
</tr>
</tbody>
</table>
The pass-through from international food commodity prices and oil is analyzed through a VARX model.

Commodity price pass-through from a value chain perspective: \(y = (\text{Int com food}; \text{PPI food}; \text{HICP food}), p=(\text{Int oil}) \)

\[
y_t = c + \sum_{i=1}^{I} A_i y_{t-i} + \sum_{i=0}^{J} \beta_i p_{t-i} + \epsilon_t
\]

We have added current and 6 lags for oil prices, whereas I=1 was selected through Hannan-Quinn criteria.

The system is identified recursively by applying Cholesky decomposition.

The model takes into account the value chain: food commodity prices are ordered first, then the producer food prices and, last, the food consumer prices.

The model is estimated in log-changes, reflecting monthly price changes.
One question that arises is that pass-through from both commodities to food consumer prices may be asymmetric.

In order to account for possible non-linearities, we transform our previous model on the basis of Kilian and Vigfusson (2011):

\[
y_t = c + \sum_{i=1}^{I} A_i y_{t-i} + A_0 y_t + \sum_{i=0}^{J} \beta_i p_{t-i} + \sum_{i=0}^{K} B_i x_t^* + \sum_{i=0}^{L} C_i p_t^* + \epsilon_t
\]

Non-linearities are captured through Net-12, as defined by Hamilton (1996):

\[
x_t^* = \max(0, \log(cmmt) - \max((\log(cmmt_{-1}), \log(cmmt_{-2}), ..., \log(cmmt_{-12})))
\]

\[
p_t^* = \max(0, \log(fuel_t) - \max((\log(fuel_{t-1}), \log(fuel_{t-2}), ..., \log(fuel_{t-12})))
\]

The model is recursive so it can be estimated through OLS.
NET12 CAPTURES “PURE” PRICE INCREASES, THAT IS, THAT ARE NOT A CORRECTION OF A PREVIOUS DECLINE

LEVEL OF FOOD COMMODITY PRICE

MONTHLY GROWTH OF FOOD COMMODITY PRICE

NET 12
FOOD COMMODITY PRICE SHOCK (10 PP)

Note: Linear model
OIL PRICE SHOCK (10 PP)

Note: Linear model
LOOKING AT HISTORICAL SHOCKS IN PERSPECTIVE

HISTORICAL DECOMPOSITION, SIMPLE AVERAGE

% year on year, percentage points

-10 -5 0 5 10 15

OIL SHOCKS

FOOD COMMODITY PRICE SHOCKS

FOOD PRODUCER PRICE SHOCKS

CONSUMER FOOD PRICE SHOCKS

DEVIATION OF FOOD INFLATION FROM ITS LONG TERM TREND
ASYMMETRIES IN THE PASS-THROUGH OF FOOD COMMODITY PRICE SHOCKS (10 PP): EVIDENCE OF ASYMMETRY

Note: Asymmetric model. Negative shocks are inverted.
ASYMMETRIES IN THE PASS-THROUGH OF OIL PRICE SHOCKS (10 PP): VERY PRELIMINARY RESULTS

Note: Asymmetric model. Negative shocks are inverted
USING THE MODEL TO FORECAST CPI FOOD INFLATION DEVELOPMENTS: NON-LINEARITIES IN PRACTICE

LATAM WEIGHTED AVERAGE: PROJECTIONS OF FOOD INFLATION CONDITIONED ON FUTURES FROM NOV-2023

% year on year

2022 2023 2024

SYMmetric ASSYMetric OBSERVED
• Food inflation in Latin America is higher than in other parts of the world. This, along the relatively high weight of this component in the area, make the topic relevant

• There is a pass-through from both international food commodity prices and energy prices on food inflation

• Also, we find evidence of an asymmetric transmission of food commodity prices to food inflation

• Our models predict that food inflation in Latin America will be higher than 4% in 2024
THANK YOU FOR YOUR ATTENTION