Carbon Pricing, Border Adjustment and Renewable Energy Investment: a Network approach

Mar Delgado-Téllez* Javier Quintana[§]

Daniel Santabárbara§

* ECB § Banco de España

The views expressed in this presentation are those of the authors and do **not** necessarily represent the views of the Bank of Spain, the ECB and the Eurosystem.

In this paper

- □ What is the effect of a €100 carbon tax per CO₂ equivalent tonne emitted in the EU?
- \rightarrow What is the reduction of CO₂ emissions?
 - ▷ How much is due to fall in production, change in consumption or change in inputs?
- $\rightarrow\,$ Is there import-related carbon leakage?
 - ▷ Could a carbon border adjustment mechanism avoid it?
- $\rightarrow\,$ How much does the carbon tax incentive green energy investments?
 - Does it drive an electrification process?
 - □ We use a dynamic multi-sector model with production and investment networks and a renewable energy sector.

Related Literature

- Carbon pricing desired features (IMF, 2019): wide-ranging coverage of emissions; alignment of carbon prices with mitigation objectives; predictable steady increase over time of carbon prices; and efficient use of the fiscal funds generated.
- □ Effects of different carbon pricing strategies and carbon leakage:
 - Ex-post. Econometric models using historical data find limited carbon leakage (perhaps due to low carbon pricing).
 - Ex-ante. Model simulations calibrated with empirical data. Böhringer et al. (2022); Felbermayr et al. (2020); Zachmann and McWilliams (2020), and Yu et al. (2021): carbon leakage depends on: stringency of carbon pricing, geographical scope or magnitude of trade and fossil fuel supply elasticities.

Literature Review

Carbon border adjustment

- Reduces leakages but depends on sectoral coverage, reference emissions, number of countries implementing, and trade elasticities (Böhringer et al., 2022; Antimiani et al., 2016; Fouré et al., 2016; Schinko et al., 2014; Burniaux et al., 2013).
- ▷ or little leakage reduction (Zachmann and McWilliams, 2020). Ernst et al. (2022) it can benefit 'dirty' domestic sectors (cost of imports increases → shift towards domestic demand). Weitzel et al. (2012) it could strategically used when 'dirty' domestic sectors are cleaner than abroad.
- Ernst et al. (2022) with a environmental multi-sector dynamic general equilibrium model, with three regions, assess alternative designs of carbon pricing and CBAM, but without retaliatory measures and renewables investment.
- □ **Endogenous energy transition**: O'Ryan et al. (2020) analyses the impact of four alternative energy mix scenarios for Chile for 2030 in a CGE model environment.

Multi-sector, multi-country dynamic model

 $\hfill\square$ Firms use labor, capital, energy and other intermediate inputs.

▷ Intermediate input and investment networks.

 \Rightarrow Increasing costs, lower production and import substitution.

□ Energy sector with endogenous renewable investment.

- ▷ Calibrate the relative value of green and brown electricity.
- \Rightarrow Carbon tax increases eneregy prices: incentives for renewable capacity.
- \Rightarrow Attenuates increase of energy costs (capture price)
- $\hfill\square$ EU sets a carbon tax to the use of polluting inputs.

Multi-sector, multi-country dynamic model

Firms use labor, capital, energy and other intermediate inputs.
 Intermediate input and investment networks.

 \Rightarrow Increasing costs, lower production and import substitution.

- □ Energy sector with endogenous renewable investment.
 - ▷ Calibrate the relative value of green and brown electricity.
- \Rightarrow Carbon tax increases eneregy prices: incentives for renewable capacity.
- \Rightarrow Attenuates increase of energy costs (capture price)
- $\hfill\square$ EU sets a carbon tax to the use of polluting inputs.

Multi-sector, multi-country dynamic model

Firms use labor, capital, energy and other intermediate inputs.
 Intermediate input and investment networks.

 \Rightarrow Increasing costs, lower production and import substitution.

□ Energy sector with endogenous renewable investment.

▷ Calibrate the relative value of green and brown electricity.

 \Rightarrow Carbon tax increases energy prices: incentives for renewable capacity.

 \Rightarrow Attenuates increase of energy costs (capture price)

 $\hfill\square$ EU sets a carbon tax to the use of polluting inputs.

Multi-sector, multi-country dynamic model

Firms use labor, capital, energy and other intermediate inputs.
 Intermediate input and investment networks.

 \Rightarrow Increasing costs, lower production and import substitution.

- □ Energy sector with endogenous renewable investment.
 - ▷ Calibrate the relative value of green and brown electricity.
- \Rightarrow Carbon tax increases energy prices: incentives for renewable capacity.
- \Rightarrow Attenuates increase of energy costs (capture price)
 - $\hfill\square$ EU sets a carbon tax to the use of polluting inputs.

Firms produce with ((KL)E)MS) structure.

Energy - VA complementarity

Firms produce with ((KL)E)MS) structure.

Energy - VA complementarity

- Firms produce with ((KL)E)MS) structure.
- Y_{i} 1. Value added: $\eta_{KL_i} + \eta_{E_i}$ η_{M_i} $CES(\theta)$ H_i M_i Capital and labor (in-house production) (materials and services) η_{E_i} η_{KL_i} 2. Energy $CES (\theta_{KLE})$ E_i A_i (energy) (value added) Material and services from other firms 3 $1 - \alpha$. α_i $CES(\gamma)$ \tilde{K}_i Ĺ Aggregated under CES (labor) (capital)
- □ Energy VA complementarity

- □ Firms combine output from other sectors to produce:
- 1. Investment bundle, K_i
- 2. Intermediate Inputs bundle, M_i
 - Weight matrices, Ω_i^K and Ω_i^M
 - CES with elasticities, σ^K and σ^M
- □ Firms combine different local varieties of each sector:

Importance of each local variety, $\Lambda_{i,j}^K$ and $\Lambda_{i,j}^M$

- □ Firms combine output from other sectors to produce:
- 1. Investment bundle, K_i
- 2. Intermediate Inputs bundle, M_i
 - Weight matrices, Ω_i^K and Ω_i^M
 - CES with elasticities, σ^K and σ^M
- □ Firms combine different local varieties of each sector:

Importance of each local variety, $\Lambda^K_{i,j}$ and $\Lambda^M_{i,j}$

- □ Firms combine output from other sectors to produce:
- 1. Investment bundle, K_i
- 2. Intermediate Inputs bundle, M_i

Weight matrices, Ω_i^K and Ω_i^M

CES with elasticities, σ^K and σ^M

Firms combine different local varieties of each sector:

Importance of each local variety, $\Lambda^K_{i,j}$ and $\Lambda^M_{i,j}$

- □ Firms combine output from other sectors to produce:
- 1. Investment bundle, K_i
- 2. Intermediate Inputs bundle, M_i

Weight matrices, Ω_i^K and Ω_i^M

CES with elasticities, σ^K and σ^M

Firms combine different local varieties of each sector:

Importance of each local variety, $\Lambda^K_{i,j}$ and $\Lambda^M_{i,j}$

The Carbon Tax in the Production Function

(capital good j varieties)

The Carbon Tax in the Production Function

(capital good j varieties)

The Carbon Tax in the Production Function

 $\hfill\square$ Electricity can be produced from fossil fuels (brown) or green sources.

Brown electricity

- Standard CES production
 - ▷ Intermediate inputs
 - ▷ Variable costs
 - Adjustable production
- Dispatchable supply
- \square CO₂ emissions

Green electricity

- \Box AK-type production function
 - ▷ Only capital
 - Zero marginal cost
 - Pre-set production
- Non dispatchable
- \square No CO_2 emissions

Market design:

- **1.** Electricity price equals to the marginal cost most expensive technology *(merit based order)*.
- \Rightarrow Complete pass-through of carbon tax to electricity prices.
- 2. Green producers *captures* only a fraction of average electricity price.
- \Rightarrow Capture price share decreases with percentage of green generation (cannibalization risk).
- \Rightarrow Renewables displace (more expensive) fossil fuels and reduce marginal costs.
- 3. Average electricity price as the average price of both sources.

Alternative interpretation:

What is the elasticity of substitution between brown and green for consumers?

- □ **Non constant** elasticity of substitution:
- \rightarrow Very large with a small share of green electricity: it crowds brown electricity.
 - $\,\triangleright\,$ 1 additional green MWh crowds out 1 brown MWh
- $\rightarrow\,$ Very ${\bf low}$ with high share of green generation
 - Brown electricity has been crowded out in the hours/days/months that green electricity is generated.

Our approach:

- Estimate relationship between wholesale electricity price and share of green generation using hourly data.
- 1. Compute residual of wholesale electricity prices from the expected price conditional on natural gas prices
- 2. Fit the residuals with respect to share of green generation.
- □ Project hourly prices to annual prices using the distribution of sun and wind hours.
- 3. Find the parameter ϱ for

$$P_{c,t}^{g} = P_{c,t}^{b} \cdot \left(1 - S_{c,t}^{\varrho}\right)$$
(1)

□ This gives us the implicit relative value between *green* and *brown* energy.

Bin scatter of hourly log price deviations with respect to expected price of electricity conditional on natural gas price and share of *inframarginal* generation.

Bin scatter of hourly log price deviations with respect to expected price of electricity conditional on natural gas price and $\ln(1-S^{2.5})$.

Electricity market and carbon pricing in our model

- 1. Carbon tax increases marginal cost of *brown* electricity sector.
- $\rightarrow\,$ Increases the price that electricity producers receive.
- 2. Incentives to invest in additional green generation.
- ightarrow Green electricity producers capture a lower share of average fossil-based electricity.
- $\rightarrow\,$ Green electricity attenuates the rise of average electricity price.

New equilibrium:

□ *Green* electricity producers capture a lower fraction (because of higher share) of a higher price of electricity.

Investment and Labor

 $\hfill\square$ Sectors invest in a bundle of goods produced by the other sectors of the economy:

$$\begin{split} K_{i,t+1} &= (1-\delta_i) \cdot K_{i,t} + I_{i,t} - \frac{\varsigma}{2} \left(\frac{K_{i,t+1}}{K_{i,t}} - 1\right)^2 \cdot K_{i,t} \\ I_i &= \left(\sum_{j=1}^S \Omega_{i,j}^K \cdot I_{i,j}^{\frac{\sigma_K - 1}{\sigma_K}}\right)^{\frac{\sigma_K}{\sigma_K - 1}} \text{ where } I_{ij} = \left(\sum_{h=1}^C \lambda_{ijh}^K I_{ijh}^{\frac{\xi_j - 1}{\xi_j}}\right)^{\frac{\xi_j}{\xi_j - 1}} \end{split}$$

 $\hfill\square$ Labor is imperfectly mobile across sectors with an elasticity $\upsilon.$

$$L_i = \omega_L \left(\frac{W_i}{W_c}\right)^{\upsilon} \cdot L_c$$

Households

Households' preferences are represented by the function

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \frac{L_t^{1+\frac{1}{\mu}}}{1+\frac{1}{\mu}} \right)$$
(2)

where μ is the Frisch elasticity of labor supply and β the discount factor.

$$C_{i} = \left(\sum_{j=1}^{S} \Omega_{i,j}^{C} C_{c,j}^{\frac{\sigma_{C}-1}{\sigma_{C}}}\right)^{\frac{\sigma_{C}}{\sigma_{C}-1}} \qquad C_{ij} = \left(\sum_{h=1}^{C} \lambda_{ijh}^{C} C_{ijh}^{\frac{\xi_{j}-1}{\xi_{j}}}\right)^{\frac{\xi_{j}}{\xi_{j}-1}} \tag{3}$$

Budget constraint:

$$P_c^C \cdot C_c + P_c^K \cdot I_c = W_c \cdot L_c + \Pi_c + \tau_c \tag{4}$$

Parameters

Variable		Value	Source
θ,	Input elasticities	.9	B&F (2021), Atalay (2017)
$\sigma_K, \sigma_M, \sigma_E$.2	
γ		.9	
σ_C		.9	
θ_{KLE}		.5	Bohringer and Rivers (2017)
É	Trade elasticity	2	Boehm et al. (2019)
$\hat{\Omega}, \lambda, \alpha, \eta$	Expenditure shares,		ICIO OECD
	and production parameters		
Ω^K , δ	Investment matrix and dep. rate		KLEMS, ICIO OECD
Q	Renewable price canibalisation	2.5	
5	Capital adjustment cost	.4	Vom Lehm & Winberry (2022)
η	Frisch elasticity	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\hat{\beta}$	Discount rate	.95	
v	Labor adjustment cost	1	Horvath (2000)

Carbon tax

EU firms and consumers pay additional au^{CT} for fossil fuel inputs.

Border adjustment

EU firms and consumers pay additional τ^{BT} for third countries goods according to CO_2 emissions.

Export subsidy

EU firms receive τ^{Subs} for exports equal to CT burden.

□ Retaliation

EU exports to third countries pay τ^{Ret} tariff. Equal aggregate amount than EU border adjustment paid by foreign firms.

Results

Carbon tax

- □ Impact of a $100 \in /CO_2$ tonne
- □ Assessment with and without endogenous renewable investment.

 Considering endogenous investment in renewable electricity reduces the economic impact of the carbon tax.

Main mechanism: additional investment in green electricity attenuates the increase in the cost of energy.

	European Union		
In percentage	w/o Renew.	w/ Renew	
Real GDP	-1.9	-0.7	
CPI	1.4	1.0	
Exports	-2.0	-1.8	
Exports (ex. Energy)	-1.5	-1.4	
Imports	-3.2	-3.0	
Imports (ex. Energy)	-1.1	-0.7	
Export price (ex. Energy)	1.4	1.1	
Import price (ex. Energy)	0.4	0.1	
Tax revenue	0.7	0.1	
CO ₂ emissions	-13.1	-15.7	
Electricity price	19.8	5.8	
Renewable change	0.0	11.4	

 \square Considering the incentives to invest in renewable energy cuts GDP by $\sim 2/3$

	European Union			European Union	
In percentage	w/o Renew.	w/ Renew	In percentage	w/o Renew.	w/ Renew
Real GDP	-1.9	-0.7	CO_2 emissions	-13.1	-15.7
CPI	1.4	1.0	Carbon footprint (prod.)	-11.7	-15.4
Exports	-2.0	-1.8	Carbon leakage (prod.)	1.4	0.3
Exports (ex. Energy)	-1.5	-1.4	CO_2 contribution		
Imports	-3.2	-3.0	due to production level	-1.9	-0.7
Imports (ex. Energy)	-1.1	-0.7	due to sectoral reassig.	-4.9	-4.8
Export price (ex. Energy)	1.4	1.1	due to inputs subst.	-2.2	-3.9
Import price (ex. Energy)	0.4	0.1	due to energy	-2.5	-2.4
Tax revenue	0.7	0.1	due to renewables	0	-3.8
CO ₂ emissions	-13.1	-15.7	Renewable change	0.0	11.4
Electricity price	19.8	5.8	$\overline{CO_2}$ emissions (RoW)	0.1	0.2
Renewable change	0.0	11.4	CO_2 emissions (World)	-0.9	-1.0

 Renewable energies reduce further emissions; but doing so through cleaner electricity instead of production fall.

	European Union			European Union	
In percentage	w/o Renew.	w/ Renew	In percentage	w/o Renew.	w/ Renew
Real GDP	-1.9	-0.7	CO_2 emissions	-13.1	-15.7
CPI	1.4	1.0	Carbon footprint (prod.)	-11.7	-15.4
Exports	-2.0	-1.8	Carbon leakage (prod.)	1.4	0.3
Exports (ex. Energy)	-1.5	-1.4	CO_2 contribution		
Imports	-3.2	-3.0	due to production level	-1.9	-0.7
Imports (ex. Energy)	-1.1	-0.7	due to sectoral reassig.	-4.9	-4.8
Export price (ex. Energy)	1.4	1.1	due to inputs subst.	-2.2	-3.9
Import price (ex. Energy)	0.4	0.1	due to energy	-2.5	-2.4
Tax revenue	0.7	0.1	due to renewables	0	-3.8
CO ₂ emissions	-13.1	-15.7	Renewable change	0.0	11.4
Electricity price	19.8	5.8	CO_2 emissions (RoW)	0.1	0.2
Renewable change	0.0	11.4	CO_2 emissions (World)	-0.9	-1.0

□ RoW emissions increase: lower fossil demand in EU lowers global prices.

Carbon Border Adjustment Mechanism

- Introduction of equivalent tariff to imports
- □ Impact on carbon leakage and trade patterns
- $\hfill\square$ Assessment with and without endogenous renewable investment.

Impact of Carbon Border Adjustment Mechanism (w/o Renewables).

....

	Europ	European Union		
In percentage	СТ	CT+CBAM		
Real GDP CPI	-1.9 1.4	$-2.3 \\ 1.7$		
Exports Exports (ex. Energy) Imports Imports (ex. Energy) Export price (ex. Energy) Import price (ex. Energy)	$-2.0 \\ -1.5 \\ -3.2 \\ -1.1 \\ 1.4 \\ 0.4$	$-2.7 \\ -2.2 \\ -4.6 \\ -2.5 \\ 1.7 \\ 1.5$		
Tax revenue	0.7	1.0		
CO ₂ emissions Electricity price Renewable change	$-13.1 \\ 19.8 \\ 0.0$	-14.2 21.1 0.0		

	Luropean Onion		
In percentage	СТ	CT+CBAM	
CO ₂ emissions	-13.1	-14.2	
Carbon footprint (prod.)	-11.7	-14.0	
Carbon leakage (prod.)	1.4	0.2	
CO ₂ reduction contribution			
due to production level	-1.9	-2.3	
due to sectoral reassignment	-4.9	-4.8	
due to inputs substitution	-2.2	-2.8	
due to energy	-2.5	-2.6	
due to renewables	0	0	
Renewable change	0.0	0.0	
CO_2 emissions (RoW)	0.1	0.0	
$\overline{CO_2}$ emissions (World)	-0.9	-1.1	

European Union

□ CBAM closes the carbon leakage, but it has an additional negative effect on GDP.

Impact of Carbon Border Adjustment Mechanism (w/o Renewables).

	Europ	pean Union		European Union	
In percentage	СТ	CT+CBAM	In percentage	СТ	CT+CBAM
Real GDP	-1.9	-2.3	CO ₂ emissions	-13.1	-14.2
CPI	1.4	1.7	Carbon footprint (prod.)	-11.7	-14.0
Exports	-2.0	-2.7	Carbon leakage (prod.)	1.4	0.2
Exports (ex. Energy)	-1.5	-2.2	CO ₂ reduction contribution		
Imports	-3.2	-4.6	due to production level	-1.9	-2.3
Imports (ex. Energy)	-1.1	-2.5	due to sectoral reassignment	-4.9	-4.8
Export price (ex. Energy)	1.4	1.7	due to inputs substitution	-2.2	-2.8
Import price (ex. Energy)	0.4	1.5	due to energy	-2.5	-2.6
Tax revenue	0.7	1.0	due to renewables	0	0
CO ₂ emissions	-13.1	-14.2	Renewable change	0.0	0.0
Electricity price	19.8	21.1	CO_2 emissions (RoW)	0.1	0.0
Renewable change	0.0	0.0	CO_2 emissions (World)	-0.9	-1.1

CBAM protects some local upstream industries (metal, plastics) but increases the cost of inputs for sectors with very integrated GVCs

Impact of Carbon Border Adjustment Mechanism (with Renewables).

	European Union			European Union	
In percentage	СТ	CT+CBAM	In percentage	СТ	CT+CBAM
Real GDP	-0.7	-1.1	CO_2 emissions	-15.7	-16.0
CPI	1.0	1.2	Carbon footprint (prod.)	-15.4	-15.9
Exports	-1.8	-2.5	Carbon leakage (prod.)	0.3	0.1
Exports (ex. Energy)	-1.4	-2.1	CO_2 reduction contribution		
Imports	-3.0	-4.3	due to production level	-0.7	-1.1
Imports (ex. Energy)	-0.7	-2.0	due to sectoral reassignment	-4.8	-4.7
Export price (ex. Energy)	1.1	1.3	due to inputs substitution	-3.9	-4.5
Import price (ex. Energy)	0.1	1.3	due to energy	-2.4	-2.9
Tax revenue	0.7	1.0	due to renewables	-3.8	-3.6
CO ₂ emissions	-15.7	-16.0	Renewable change	11.4	11.7
Electricity price	5.8	6.3	CO_2 emissions (RoW)	0.2	0.1
Renewable change	11.4	11.7	CO_2 emissions (World)	-1.0	-1.2

□ Environmental gains from CBAM are weaker in the case with endogenous renewable investment, but additional cost in GDP remains.

Conclusions

Conclusions

- $\hfill\square$ A carbon tax is a powerful instrument to reduce CO_2 emissions in the EU
 - Carbon footprint reduction mostly due to consumption and input demand reallocation, and partly to production fall.
 - ▷ Carbon leakage due to input sourcing diversion from third countries.
- Carbon border adjustment mechanism reduces carbon leakage but does not reverse economic losses
 - Carbon tax affects energy-intensive intermediate input producers like chemicals and metals.
 - ▷ Introduction of CBAM reverses losses in these sectors but increases costs for input importer sectors, like computer or vehicle manufacturing.
 - $\,\triangleright\,$ Overall, marginally negative effect on GDP but positive effect over carbon leakage.
- □ **Renewables** are key to achieve reduction costs and minimize transition costs
 - $\,\triangleright\,$ Carbon tax increases investment incentive for green electricity generation.
 - Green energy boosts investment demand in the short run and attenuates the hike of the price of electricity in the medium term.

Thank you!

Bibliography

- Antimiani, A., Costantini, V., Kuik, O., and Paglialunga, E. (2016). Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments. *Ecological Economics*, 128:246–259.
- Böhringer, C., Fischer, C., Rosendahl, K. E., and Rutherford, T. F. (2022). Potential impacts and challenges of border carbon adjustments. *Nature Climate Change*, 12(1):22–29.
- Burniaux, J.-M., Chateau, J., and Duval, R. (2013). Is there a case for carbon-based border tax adjustment? An applied general equilibrium analysis. *Applied Economics*, 45(16):2231–2240.
- Ernst, A., Hinterlang, N., Mahle, A., et al. (2022). Carbon pricing, border adjustment and climate clubs: An assessment with EMuse. *Deutsche Bundesbank Discussion Paper*.
- Felbermayr, G., Peterson, S., and Kiel, I. (2020). Economic assessment of carbon leakage and carbon border adjustment. *EPRS: European Parliamentary Research Service*.
- Fouré, J., Guimbard, H., and Monjon, S. (2016). Border carbon adjustment and trade retaliation: What would be the cost for the European Union? *Energy Economics*, 54:349–362.
- IMF (2019). Fiscal Policies for Paris Climate Strategies: From Principle to Practice. International Monetary Fund (IMF): Washington, DC, USA.
- O'Ryan, R., Nasirov, S., and Álvarez-Espinosa, A. (2020). Renewable energy expansion in the chilean power market: A dynamic general equilibrium modeling approach to determine co2 emission baselines. *Journal of Cleaner Production*, 247:119645.
- Schinko, T., Bednar-Friedl, B., Steininger, K. W., and Grossmann, W. D. (2014). Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment. *Energy Policy*, 67:818–831.
- Weitzel, M., Hübler, M., and Peterson, S. (2012). Fair, optimal or detrimental? Environmental vs. strategic use of border carbon adjustment. *Energy Economics*, 34:S198–S207.
- Yu, B., Zhao, Q., and Wei, Y.-M. (2021). Review of carbon leakage under regionally differentiated climate