Liquidity Coverage Ratio in a payments network

Richard Heuver and Ron Berndsen

De Nederlandsche Bank

15th Payment and Settlement System Simulation Seminar 31 August - 1 September, 2017

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Overview

Introduction

- Background
- Possible Research questions

2 Methodology

- Approach
- Generation of Cascades

③ First results

Preliminary conclusions

5 Further Work

Background

• The Liquidity Coverage Ratio (*LCR*) requirement of the Basel III framework is aimed at making banks more resilient against liquidity shocks;

A bank should be able to fulfill its payment obligations during a 30-day stress period (LCR = 1)

- Focus is on liquidity coverage of a single bank
- FMI data is granular and contains network dimension

Possible Research Questions

- Can data from the LVPS add a network dimension to LCR?
- What happens after a major participant becomes stressed (LCR < 1) ?
- What is the impact of the size of the shortage (1σ) ?
- How resilient are (the other) participants? How important is an additional buffer $(1 + \alpha)$?
- Which participants cause most damage?
- Which participants are most vulnerable?
- ullet What is the relationship with ECB and FSB lists of important institutions? 1
- What effects can be observed during consecutive rounds ρ ?
- What can be observed when generating a high frequency LCR?

• ...

¹ECB internal list of Critical Particiants; FSB published lists of global systemically important institutions (G-SIBs) and insurers (G-SIIs).+ (🚊 +) 🧕 🔊 🔿 🖓

Methodology

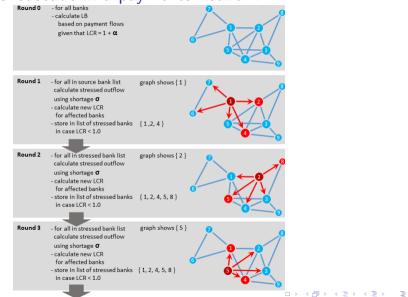
- Define 100 largest institutions (L100): ²
 - ECB list of Critical Participants $\mathbb C$
 - FSB list of Systemically Important Financial Institutions $\ensuremath{\mathbb{S}}$
 - complete L100 based on value of outgoing payments and centrality
- \bullet Define values for additional buffer α and shortage σ
- For all banks calculate initial liquidity Buffer, assuming their LCR equals $(1 + \alpha)$
- Stress each of the L100 participants individually, by lowering their LCR to (1σ)
- Start stress cascade for each bank, using payment network, applying decreased outflows
- Each round ho all other participants can also become stressed, in case (LCR < 1)
- Store cascade calculations
- Analyze results

 $^{^2}$ The terms 'institutions', 'participants' and 'banks' all refer to the institutions participating in TARGET2 aggregated to the level of institution. \ge > \ge > >

Calculation of initial Liquidity Buffers using Payment Flows

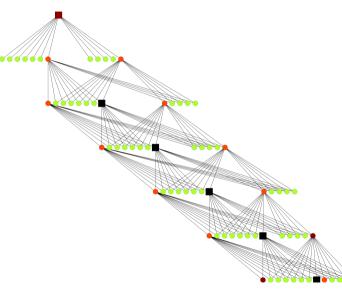
• The LCR requires a detailed runoff calculation using many balance sheet items

• $LCR = \frac{LiquidityBuffer}{NetOutflow} = \frac{LiquidityBuffer}{Outflow-Inflow} > 1$


- Important restriction;
 - Inflow may not exceed 0.75 of Outflow

• Rewrite to: $LCR = \frac{LiquidityBuffer}{(Outflow - 0.75Outflow)}$ LiquidityBuffer = LCR 0.25 Outflow

• Generate different Liquidity Buffers at LCR = 1 + α ,


e.g. $1\,+\,0.05$, $1\,+\,0.10$, $1\,+\,0.20$, \ldots

Generating a Stress Cascade in a payments network

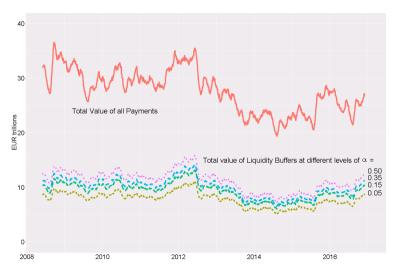
Richard Heuver and Ron Berndsen (DNB)

Example of an unfolding Stress Cascade

 Each level in the graph represents a round in the cascade,

starting at the top with level 0, and ending at the bottom with round $\rho=6$

- The stressed bank is represented by a square
- Darkening of colors of nodes reflects *LCR* deterioration^a
- Parameters: $\alpha=0.05$, $\sigma=0.50$, $\rho=6.$

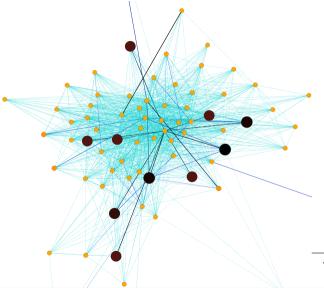

^aColors: green, orange, brown and black were assigned using LCR border values of 1.0, 0.70 and 0.50.

イロト イポト イヨト イヨト

Storage of Cascade Results

- Initially: day , bank , inflow , outflow , liquidity buffer
- Cascades: day , Source bank , round , Stressed bank , Affected bank Actual inflow , - outflow , - LCR
- Versions for levels of liquidity addition (α) and liquidity shortage (σ)
- Enables generation of several statistics
- Enables generation of a "Network of LCR Deterioration"

First results - Buffer size through time



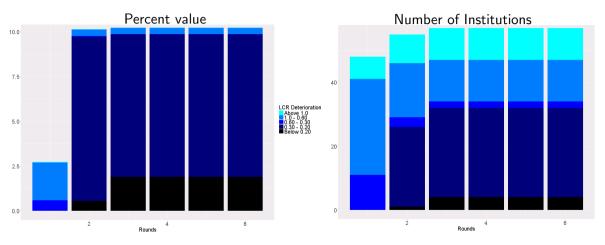
 Linear relationship between Total Value and calculated Buffers, which follows from

$$LCR = \frac{Buffer}{NetOutflow} \text{ i.e.}$$
$$LCR = \frac{Buffer}{(Outflow - 0.75Outflow)}$$
$$Buffer = LCR \ 0.25 \ Outflow$$
$$Buffer =$$

 $(1 + \alpha)$ 0.25 *Outflow*

First results - Example of an LCR Deterioration Network

Nodes:

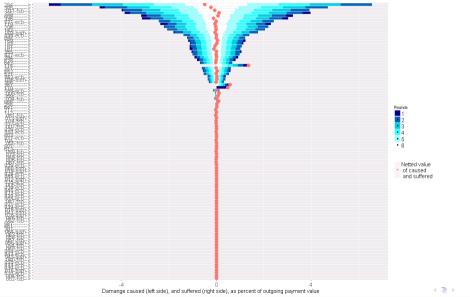

Size and darkening of colors reflect banks' outgoing strength ^a i.e. the power to cause damage

Edges:

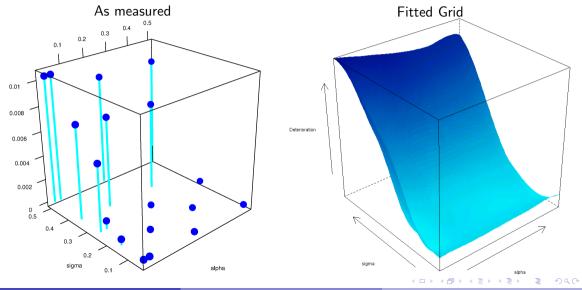
Size and darkening of colors reflect value of damage i.e. path of destruction

^aKleinberg's hub centrality measure has been applied, which highly ranks nodes that have outgoing links to most central nodes.

First Results - LCR Deterioration per round³


 $^3\mathsf{Parameters}$ used: addition α = 0.05 , shortage σ = 0.50 , nr of rounds ρ = 6.

Richard Heuver and Ron Berndsen (DNB)


LCR in a payments network

・ロト ・ 一下・ ・ ヨト・

First Results - LCR Deterioration Caused and Suffered

First Results - Relation between shortage and addition

Richard Heuver and Ron Berndsen (DNB)

14 / 18

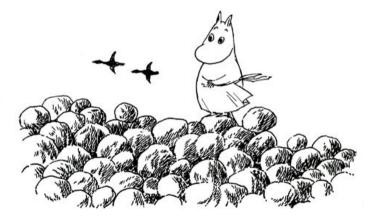
(Very) Preliminary Conclusions

- \bullet Liquidity Shortage σ seems to be the most important driver
- \bullet Liquidity Addition α quickly lost, in the first rounds
- Large institutions cause most damage
- Small institutions on suffering side
- LCR benefits from an added network dimension, at damaging side as well as at suffering side

Ο ...

Challenges faced

- Large amount of transactions (786 mln)
- Aggregation from BIC code (2,500) to institution level (1,200) not present
- Data Warehouse approach is necessary and time consuming
- Storage of cascade results (566k) also needs database solution
- Performance and storage of the environment has reached its limits


Further Work

- Data validation
- Daily cascades on whole period (2008-2016)
- Analysis of relation between addition α , shortage σ and rounds ρ
- Analysis of deterioration network

• ...

▶ ∢ ≣

Thanks for your attention

<ロト < 同ト < 回ト < 回ト = 三日