Detection and Explanation of Anomalous Payment Behavior in Real-Time Gross Settlement Systems

Ron Triepels^{1,2} Hennie Daniels^{1,3} Ronald Heijmans²

15th Payment System Simulator Seminar Helsinki, Finland

31 August - 1 September 2017

¹Tilburg University, ²De Nederlandsche Bank, ³Erasmus University

医下颌 医下

RTGS Systems:

- Facilitate the settlement of financial transactions
- Settle transactions gross and (almost) real-time

Systemic Risk:

"The risk associated with any event that threatens the stability of a financial system as a whole" (Berndsen, et al., 2016).

Research Goal:

- Apply Machine Learning to analyze payment data
- Automatically identify anomalies (stress or undesired behavior)

Anomaly:

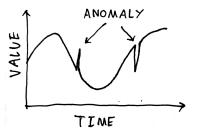
"A pattern that does not conform to expected behavior" (Chandola et al., 2009).

Unsupervised Anomaly Detection:

The task of automatically identifying anomalies in a set of unlabeled data.

Components:

- Model of 'normal' behavior
- Distance function



Lossy Compression

Lossy compression preserves the most important features of data.

Original Picture

Reconstructed Picture

Definitions

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a set of *n* banks and $\mathcal{T} = \langle t_1, \ldots, t_m \rangle$ be an ordered set of *m* time intervals.

We extract $\mathcal{D} = {\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(m)}}$ a set of *m* liquidity matrices from a RTGS system where each $\mathbf{A}^{(k)} \in \mathcal{D}$ is:

$$\mathbf{A}^{(k)} = \begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1n}^{(k)} \\ \vdots & \ddots & \vdots \\ a_{n1}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$
(1)

Each element $a_{ij}^{(k)}$ is the liquidity flow between b_i and b_j at t_k .

Liquidity Vector:

$$\mathbf{a}^{(k)} = [a_{11}^{(k)}, \dots, a_{n1}^{(k)}, \dots, a_{1n}^{(k)}, \dots, a_{nn}^{(k)}]^T$$
(2)

化压力 化压力

Let \mathcal{M} be a lossy compression model. We measure the reconstruction error of $\mathbf{a}^{(k)}$ after its compressed and reconstructed by \mathcal{M} by:

$$\mathsf{RE}(\mathbf{a}^{(k)}) = \frac{1}{2} ||\hat{\mathbf{a}}^{(k)} - \mathbf{a}^{(k)}||_2^2$$
(3)

Accordingly, we classify $\mathbf{a}^{(k)}$ by:

$$h(\mathbf{a}^{(k)}) = \begin{cases} 1 & \text{if } \mathsf{RE}(\mathbf{a}^{(k)}) \ge \epsilon \\ 0 & \text{otherwise} \end{cases}$$
(4)

Here, $\epsilon > 0$ is a threshold.

We employ a three-layered autoencoder to compress and reconstruct liquidity vectors. The autoencoder can be defined by two functions:

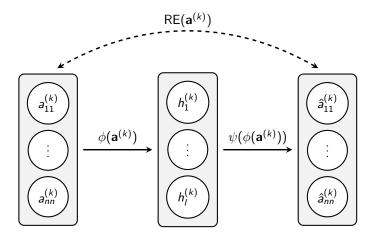
Encoder function ϕ :

$$\phi(\mathbf{a}^{(k)}) = f^{(l)}(\mathbf{W}_1 \mathbf{a}^{(k)} + \mathbf{b}_1)$$
(5)

Decoder function ψ :

$$\psi(\phi(\mathbf{a}^{(k)})) = g^{(n^2)}(\mathbf{W}_2\phi(\mathbf{a}^{(k)}) + \mathbf{b}_2)$$
(6)

Autoencoder Architecture



3. 3

Parameters $\theta = {\mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2}$ are estimated from historic liquidity vectors. We do this by minimizing the following cost function:

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{k=1}^{m} ||\psi(\phi(\mathbf{a}^{(k)})) - \mathbf{a}^{(k)}||_{2}^{2} + \frac{\lambda}{2} \sum_{i=1}^{2} ||\mathbf{W}_{i}||_{F}^{2}$$
(7)

Here, λ is a regularization parameter.

We apply stochastic gradient descent in conjunction with back-propagation to solve this optimization problem: I.o.w an optimization algorithm. Payment Data:

- 2.3 million client payments from TARGET2-NL
- Jan 2014 Oct 2015
- Aggregated over 4,680 consecutive hours
- 20 largest banks

Two autoencoders:

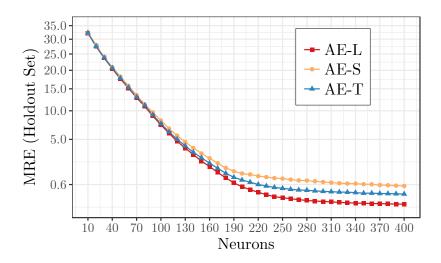
- Linear (AE-L) with (linear/linear) activations
- Non-linear (AE-S) with (sigmoid/linear) activations

Data partitioning:

- Holdout set (2 months)
- Training set (16 months)
- Test set (4 months)

Grid search (1/2)

The number of neurons was optimized by a grid search.



Choose a bank b_i and increase its outflow to each $b_j \in \mathcal{B}$ over time:

$$a_{ij}^{(k)} := a_{ij}^{(k)} + c_{ij}^{(k)} d_{ij}^{(k)}$$
(8)

where:

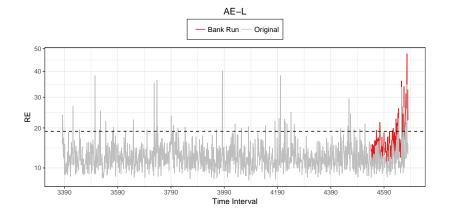
•
$$c_{ij}^{(k)} \sim B(1, p_{ij}^{(k)})$$
 determines if liquidity is added.
• $d_{ij}^{(k)} \sim \text{Exp}(\delta_{ij}^{(k)})$ is the amount of additional liquidity.

			Multipliers			
	Rate	Duration	p _s	p _e	δ_s	δ_e
Baseline	2	140	1	2	0.1	0.01

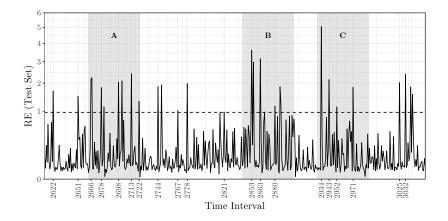
() <) <)
 () <)
 () <)
</p>

э

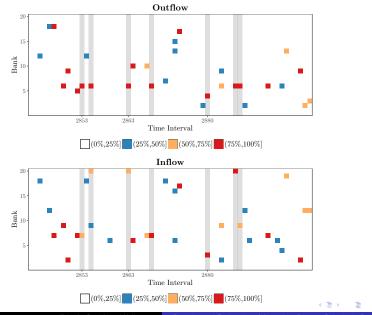
Baseline Simulation of AE-L



B 5



Anomalies in real data (2/3)



Triepels, Daniels and Heijmans Detection and Explanation of And

Detection and Explanation of Anomalous Payment Behavior in Real-Time Gro

Bank run did not follow 'normal' pattern because of:

- Initially continuous outflow.
- Part of the 'gaps' had no payments (no liquidity, clients no access to accounts).
- Increased flows still considered 'normal'.

A 32 b

- Autoencoder can detect anomalous flows reasonably well.
- Start of bank run well detected.
- However, part of the anomalous flows during bank run missed.

法国际 化基本

-

Questions?

・ 同 ト ・ ヨ ト ・ ヨ ト

3