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Introduction

RTGS Systems:

Facilitate the settlement of financial transactions

Settle transactions gross and (almost) real-time

Systemic Risk:

”The risk associated with any event that threatens the stability
of a financial system as a whole” (Berndsen, et al., 2016).

Research Goal:

Apply Machine Learning to analyze payment data

Automatically identify anomalies (stress or undesired behavior)
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Anomaly Detection

Anomaly:

”A pattern that does not conform to expected behavior”
(Chandola et al., 2009).

Unsupervised Anomaly Detection:

The task of automatically identifying anomalies in a set of
unlabeled data.

Components:

Model of ’normal’ behavior

Distance function
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Lossy Compression

Lossy compression preserves the most important features of data.

Original Picture Reconstructed Picture
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Definitions

Let B = {b1, . . . , bn} be a set of n banks and T =< t1, . . . , tm > be an
ordered set of m time intervals.

We extract D = {A(1), . . . ,A(m)} a set of m liquidity matrices from a
RTGS system where each A(k) ∈ D is:

A(k) =

a
(k)
11 · · · a

(k)
1n
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. . .

...

a
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(k)
nn

 (1)

Each element a
(k)
ij is the liquidity flow between bi and bj at tk .

Liquidity Vector:

a(k) = [a
(k)
11 , . . . , a

(k)
n1 , . . . , a

(k)
1n , . . . , a

(k)
nn ]T (2)
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Anomaly Detection Task

Let M be a lossy compression model. We measure the reconstruction
error of a(k) after its compressed and reconstructed by M by:

RE(a(k)) =
1

2
||â(k) − a(k)||22 (3)

Accordingly, we classify a(k) by:

h(a(k)) =

{
1 if RE(a(k)) ≥ ε)
0 otherwise

(4)

Here, ε > 0 is a threshold.
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Autoencoder

We employ a three-layered autoencoder to compress and reconstruct
liquidity vectors. The autoencoder can be defined by two functions:

Encoder function φ:

φ(a(k)) = f (l)(W1a
(k) + b1) (5)

Decoder function ψ:

ψ(φ(a(k))) = g (n2)(W2φ(a(k)) + b2) (6)
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Autoencoder Architecture
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Model Learning

Parameters θ = {W1,W2,b1,b2} are estimated from historic liquidity
vectors. We do this by minimizing the following cost function:

J (θ) =
1

2m

m∑
k=1

||ψ(φ(a(k)))− a(k)||22 +
λ

2

2∑
i=1

||Wi ||2F (7)

Here, λ is a regularization parameter.

We apply stochastic gradient descent in conjunction with
back-propagation to solve this optimization problem: I.o.w an
optimization algorithm.
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Experimental Setup

Payment Data:

2.3 million client payments from TARGET2-NL

Jan 2014 - Oct 2015

Aggregated over 4,680 consecutive hours

20 largest banks

Two autoencoders:

Linear (AE-L) with (linear/linear) activations

Non-linear (AE-S) with (sigmoid/linear) activations

Data partitioning:

Holdout set (2 months)

Training set (16 months)

Test set (4 months)
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Grid search (1/2)

The number of neurons was optimized by a grid search.
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Commercial Bank Run Simulation

Choose a bank bi and increase its outflow to each bj ∈ B over time:

a
(k)
ij := a

(k)
ij + c

(k)
ij d

(k)
ij (8)

where:

c
(k)
ij ∼ B(1, p

(k)
ij ) determines if liquidity is added.

d
(k)
ij ∼ Exp(δ

(k)
ij ) is the amount of additional liquidity.

Multipliers

Rate Duration ps pe δs δe

Baseline 2 140 1 2 0.1 0.01
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Baseline Simulation of AE-L
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Anomalies in real data (1/3)
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Anomalies in real data (2/3)
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Anomalies in real data (3/3)

Bank run did not follow ‘normal’ pattern because of:

Initially continuous outflow.

Part of the ‘gaps’ had no payments (no liquidity, clients no access to
accounts).

Increased flows still considered ‘normal’.
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Conclusions

Autoencoder can detect anomalous flows reasonably well.

Start of bank run well detected.

However, part of the anomalous flows during bank run missed.
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Questions?
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