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Abstract

This paper formulates an Early Warning System (EWS) for tail financial risks based on
real-time multi-period forecast combinations of Value-at-Risk (VaR) and Expected Short-
falls (ES) of portfolio returns of non-financial firms and banks. Forecast combinations in-
clude baseline (VaR,ES) forecasts conditional on a domestic risk factor, as well as stress
(sVaR,sES) forecasts conditional on CoVaRs of the risk factor, thereby integrating stress
testing into forecasting. Using monthly data of the G-7 economies for the period 1975:01-
2018:12, the proposed EWS delivers significant out-of-sample tail financial risk forecasts and
reliable vulnerability signals up to a 12-month forecasting horizon, with stress forecasts in
the combination improving forecasting ability prior to periods of severe financial stress.
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1 Introduction

The financial crisis of 2007-2009 has spurred significant efforts at central banks and bank regu-

latory agencies in designing early warning systems (EWS) for tail risks in the financial sector,

where tail risks are defined as the occurrences of large financial losses with small probability.

Importantly, the current implementation of key Basel bank regulations is increasingly relying

on banking system-wide tail risk forecasts as embedded in stress testing exercises.

The EWS in this paper builds on the literature taking a risk management approach to the

modeling and measurement of economy-wide tail financial risks. An early analysis of measures

of tail financial risks in banking is in Lehar (2005). Current prominent statistical models aimed

at capturing the dynamics of tail financial risks include the CoVaR measures of Adrian and

Brunnermeier (2016), the Systemic Expected Shortfall measure of Acharya et al (2017), and

the SRISK measures of Brownlees and Engle (2017). A key feature of the approach of this

literature is the ex-ante definition of tail financial risk measures for which real time forecasting

out-of sample is well defined. 1 Recent contributions focusing on forecasting include forecasts of

aggregate financial and macroeconomic ”at-risk” indicators of De Nicolo’ and Lucchetta (2011,

2012, 2017), the forecasting and backtesting exercises by Brownlees et al (2018) and Banulescu

et al. (2019), and the prediction of the probability of a financial crisis using SRISK measures

by Engle and Ruan (2019). The key contribution of this paper to this literature is its focus on

real-time forecasting of measures of tail financial risks and the integration of stress-testing into

tail risk forecasting.

The proposed EWS delivers out-of-sample real-time forecast combinations of Value-at-Risk

(VaR) and Expected Shortfall (ES) of multi-period equity returns of portfolios of non-financial

firms and banks, used as indicators of tail risk measures in the non-financial and banking sectors.

My methodological approach is in the spirit of Giacomini and White (2006) and Geweke and

Amisano (2012): rather than conducting a classical horse race among competing models with the

goal of determining whether a winner exists, the proposed EWS exploits the potential of several

1This approach contrasts with EWS defined as predictions of ”crisis” events identified ex-post with dating
based on some statistics based on measures of banking system solvency, government interventions, and expert
assessments. A recent contribution following this approach is in Fouliard, Howard, and Rey, 2020.
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competing and likely mis-specified forecasting models to improve forecasting performance.

Three novel features characterize the proposed EWS. First, the weights assigned to each

forecast in the (VaR,ES) combinations are determined by maximization of an average of a scoring

function over an optimally determined evaluation window at each forecasting date. Inefficient

forecasts are assigned zero weights, adopting an ”elimination rule” akin to that used by Hansen,

Lund and Nason (2011) to identify a ”model confidence set”.

Second, forecast combinations include forecasts of (VaR,ES) conditional on an observed

predictor, called baseline forecasts, as well as forecasts conditional on tail risk measures of

the predictor, called stress forecasts, denoted by (sVaR,sES) henceforth. These (sVaR, sES)

measures are forecasting versions of the CoVaR and CoES measures introduced by Adrian and

Brunnermeier (2016). The inclusion of stress forecasts in the combination gauges the value

added of stress scenarios in terms of their ability to improve (VaR, ES) forecasts, integrating

stress testing into forecasting.

Third, ES forecasts are used as predictors of a binary (Logit) model of the probability of

the occurrence of VaR violations, defined as realizations of returns below the historical VaR. I

construct a vulnerability index which takes on positive values when the model predicts a high

probability of a VaR violation. The optimal signal threshold is determined by minimization

of a linear function of forecasting errors, following standard Receiving Operating Characteriscs

(ROC) analysis. This index complements the optimal (VaR,ES) forecast combination by asso-

ciating a signal of vulnerability with the predicted level of increases in VaR and ES measures of

the market value of equity of portfolio of financial firms and banks.

I implement the EWS in real time using monthly time series of equity returns of portfolios

of non-financial and financial sectors of the G-7 economies during the 1975:01-2018:12 period.

Forecasts of (VaR,ES) are computed for 1-month-, 3-month-, 6 month-, and 12-month-ahead

returns, obtaining forecasts of the short-end term structure of tail financial risks in both the non-

financial and banking sectors. Stress test scenarios built into stress test forecasts include both

domestic and external tail risk shocks, with the objective of assessing their relative importance

in improving forecasting performance.

My choice of forecasting models (and methods) is deliberately parsimonious, since I wish to
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gauge in a transparent way the contribution of each model to the (VaR,ES) forecast combina-

tions. However, any desired set of forecasting methods can be used. Specifically, I consider three

basic models of equity returns of portfolios, where each model has an aggregate risk factor as

predictor. This specification is similar to those used to assess the predictability of returns using

measures of variance premia ( see e.g. Bollerslev et al. (2014) and Zhou (2018)). The aggregate

risk factor is a measure of the (log) volatility of stock market returns, interpreted as a measure of

a “portfolio” distance-to-insolvency measure as in Atkeson, Eisfeldt, and Weill (2017). The first

model is a simple linear model of equity returns under a Gaussian distribution of the innovation.

The second model is the same as the first one, except that the variance of percentage change in

equity values has the risk factor as predictor. The third model is a quantile model. Importantly,

the candidate forecast combination also includes an equally weighted combination (EWC) of

these three models. The inclusion of the EWC in the combination is motivated by the desire

to assess the ”forecast combination puzzle” exhibited in many studies, where EWCs have been

found to dominate a variety of ”optimal” weighting schemes.

As in Giacomini and White (2006), I define forecast methods as specifications of models’

forecasts that vary according to the length of the estimation window and the forecast evaluation

window. The weights of each method’s (VaR,ES) forecast in the forecast combination maximize

an average of the strictly consistent scoring function derived by Patton, Ziegel and Chen (2019)

where strict consistency ensures the appropriate ordering of the forecasting performance of

(VaR, ES) pairs. Tests of equal (unconditional) forecasting performance are conducted at each

forecasting date and for a range of significance levels using the Diebold and Mariano (1995) test

on pairwise differences of this scoring function as in Giacomini and White (2006). These tests are

used to assign zero weights to forecasts found inferior to at least one competing forecast at a given

significance level, called dominated forecasts. The consideration of the set of selected models in

the combination for each significance level determines the final weights of a combination, which

is selected with respect to an optimal evaluation window.

The resulting (VaR,ES) forecast combinations can still fail to pass validation tests due to

model risk, since the models underlying these forecasts are likely mis-specified. To minimize

model risk, the (VaR,ES) forecast combinations at each forecasting date are further corrected by
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a correction factor ensuring that they both pass two backtesting tests jointly over an evaluation

data window, one for VaR, and one for ES, as in Du and Escanciano (2017) and Lazar and

Zhang (2019).

I obtain two main results. First, (VaR,ES) forecast combinations have significant predictive

power up to the 12-month-ahead horizon, with the vulnerability index providing timely signals

of increased vulnerabilities in the non-financial and banking sectors. Second, the value added of

including stress forecast (sVaR,sES) in the combination is significant, as they improve forecasting

performance by taking their largest weights preceding periods of financial stress, indicating that

their ability to improve forecasts occurs when it is most needed.

The remainder of the paper is composed of four sections. Section 2 briefly reviews the liter-

ature related to forecast combinations. Section 3 describes the EWS setup and the forecasting

procedure. Section 4 details the empirical results. Section 5 concludes. The Appendix reports

additional tables and figures referenced in the text.

2 Related literature

Forecast combinations for tail risk measures have been implemented through combinations of

either density forecasts or quantile forecasts. Geweke and Amisano (2011) and Durham and

Geweke (2014) focus on optimal pooled density forecasts based on the log score criterion. Diks

et al (2011) and Opschoor et al (2017) study the performance of optimal weighting schemes

derived from modified versions of the log score criterion, as well as from the quantile weighted

probability score proposed by Gneiting and Ranjan (2011).2 De Nicolò and Lucchetta (2017)

focus on quantile forecasts evaluated according to the Gneiting and Ranjan (2011) criterion,

showing the superiority of equally weighted forecast combinations relative to single model VaRs.

The work closest to my paper is that by Patton, Ziegel and Chen (2019), who deliver (VaR,ES)

forecasts under a model specification that directly maximizes a scoring function of (VaR,ES).

Using the strictly consistent scoring function of Patton, Ziegel and Chen (2019), I construct

2Samuels and Sekkel (2017) implement a combination scheme based on a version of the model selection pro-
cedure used by Hansen, Lunde and Nason (2011) as applied to macroeconomic data rather than to measures of
tail financial risk.
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out-of-sample forecast combinations of both VaR and ES measures in real-time

A growing literature on stress testing has recently developed focusing on the architecture,

the information content, and the identification of sources of tail risks of these exercises (see e.g.

De Nicolò and Lucchetta (2011, 2012), Acharya et al (2014), Corbae et al. (2017), Gofman

(2017)). Related practices in central banks and regulatory bodies are reviewed in BCBS (2017).

However, with the exception of the work by Covas, Rump and Zakrajsek (2014) and Kupiec

(2018), who explore the implications of stress test exercises for financial distress forecasts in the

context of US stress testing exercises, the role of stress testing as a forecasting tool has not been

explored systematically in the literature to date. As noted, a key contribution of this paper

to the literature is the explicit integration of stress test scenarios as predictors of tail financial

risks.

3 The EWS set-up

The EWS is composed of: (a) combinations of baseline and stress (VaR,ES) forecasts of equity

returns of portfolios of non-financial firms and banks conditional with a risk factor as a predic-

tor; (b) a vulnerability index signaling the probability of tail risk realizations predicted by ES

forecasts. In this section I detail the choice of risk factors, the set of baseline and stress fore-

casts of each model, the scoring function associated with each forecast, the forecast combination

strategy, and the construction of the vulnerability index.

3.1 Risk factors

Risk factors are proxy measures of the Distance to Insolvency (DI) measure derived by Atkeson,

Eisfeldt, and Weill (2017) for an equity market index of each country. Based on Leland’s (1994)

structural model of credit risk for a single firm, Atkeson, Eisfeldt, and Weill (2017) show that

DI ≤ σ−1 ≤ DD, where σ is the volatility of equity, DD is a measure of the distance to

default, DI is a measure of distance to insolvency, and the above inequality is tight if creditors

force firms into bankruptcy to minimize the cost of distress. Using U.S. firm level data, they

show that measures of σ−1 for a large set of non-financial and financial firms track measures
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of insolvency risk derived from a wide range of structural models of firm valuation, as well as

from measures derived from CDS spreads. A portfolio DI can be viewed as a proxy measure of

risk of insolvency of a set of firms, since it is a lower bound of the distance to insolvency of the

firms in the portfolio, as its volatility is generally lower than the sum of the volatilities of its

components.

Using the portfolio DI as measure of risk factors is consistent with (endogenous) volatility

as a key driver of systemic risk in recent aggregate models of financial intermediation (see

e.g. Brunnermeier and Sannikov, 2014, and De Nicolo’, Klimenko, Pfeil, and Rochet, 2020).

Measures of risk shocks obtained either by cross-sectional or time varying indicators of equity

volatility have also been shown to be important sources of business cycle fluctuations (see, e.g.

Christiano, Motto and Rostagno, 2014, and Brunnermeier et al., 2018).

Empirically, risk factors are measured by the (log) equity volatility (standard deviation)

of portfolios equity returns constructed using daily data. As in Bandi and Perron (2008), an

estimator of monthly realized variance of an equity return is given by σ2t =
∑dj

j=1 r
2
t−1+j/dj ,

where dj is the number of trading days in a month and r2t−1+j/dj is the squared continuously

compounded return in day j of month t. Indexing countries by i ∈ {1, 2, .., N}, risk factors are

defined by V i
t ≡ log σit.

3.2 Forecasting methods

Forecasts of (V aR,ES) pairs for a given quantile level τ are h-month-ahead projections ob-

tained from specifications of three models, labeled Model 1, Model 2, and Model 3. As detailed

below, these models will be estimated using two rolling data windows. Forecasts and estimated

coefficients are denoted with a ”hat”.

Let Ri,jt+h denote the return of portfolio j ∈ {nf, b} in country i, where nf and b denote ”non-

financial firms” and ”banks” portfolios respectively. I consider three basic forecasting models of

the (VaR,ES) of Ri,jt+h, with the country risk factors V i
t as predictors.
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3.2.1 Baseline forecasts

The h-month-ahead projection of return j in country i with Model 1 is :

Ri,jt+h = αi,jh + βi,jh V
i
t + σi,jt+hη

i,j
t+h (1)

where the innovation ηi,jt+h is i.i.d N(0, 1) and σi,jt+h is the variance. The baseline forecasts of the

h-month-ahead expected return and (V aRτ , ESτ ) are:

Et(R̂
i,j
t+h) ≡ α̂i,jh + β̂i,jh V

i
t (2)

V aRτ (R̂i,jt+h) = Et(R̂
i,j
t+h) + σ̂i,jt+hG(τ) (3)

ESτ (R̂i,jt+h) = Et(R̂
i,j
t+h)− σ̂i,j,t+hH(τ) (4)

where G(τ) ≡ F−1(τ), H(τ) ≡ f(F−1(τ))
τ , and f(.) and F (.) are the density function and the cdf

of the standardized Normal respectively.

The h-month-ahead projection of return j in country i with Model 2 is the same as in Model

2 (Equation (2)), except that the variance depends on the risk factors according to:

(σi,jt+h)2 = exp (φi,j0 + φi,j1 V
i
t ) (5)

The baseline VaR and ES forecasts of Model 2 are obtained by inserting σi,jt+h =
√

exp (φi,j0 + φi,j1 V
i
t )

in Equations (3) and (4).

Model 3 is a quantile forecasting model. As stressed by Komunjer (2013), an advantage of

a quantile regression model is its independence of distributional assumptions, which may give

it the potential ability to capture important time-varying asymmetries in the distribution of

returns. De Nicolò and Lucchetta (2017) document that this is the case for several indicators of

tail real and financial risks in the U.S.

The VaR forecast of Model 3 is the h-month-ahead quantile projection given by:

V aRτ (R̂i,jt+h) = α̂i,jh (τ) + β̂i,jh (τ)V i
t (6)
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where the coefficients are estimated with quantile regressions. To estimate the conditional ES

forecast, I use a version of the semi-parametric procedure implemented by Taylor (2019). The

starting point of this procedure is a result by Basset, Koenker and Kordas (2004), who show

that an estimate of the unconditional ESτ of a time series Rt is ÊSτ = R̂ − τ−1σ̂ , where R̂

is the sample mean of Rt, and σ̂ is the sample average of the minimized thick loss function

σ̂t = (Rt− V aRτ (R̂t))(τ − I(Rt ≤ V aRτ (R̂t)) , where V aRτ (R̂t) is the estimated quantile. The

conditional h-month-ahead ES forecast can be written as:

ESτ (R̂i,jt+h) = EtR
i,j
t+h − τ

−1σ̂i,jt+h (7)

where σ̂i,jt+h = (Ri,jt+h − V aRτ (R̂t+h)(τ − I(Ri,jt+h ≤ V aRτ (R̂i,jt+h) is the forecast of the minimized

thick loss function. Gourieroux and Li (2012) show that VaR and ES are connected by a link

function L(τ) monotonically increasing in τ . We can then write:

EtR
i,j
t+h − τ

−1σ̂i,jt+h = Lhij(τ)V aRτ (R̂i,jt+h) (8)

Given a VaR forecast estimate, the ES forecast can be obtained by estimating the parameters

of a specified link function. I adopt the following piece-wise linear specification:

Lhij(τ) = chij,1(τ)I
(V aRτ (R̂

ij
t+h)<0)

+ chij,2(τ)I
(V aRτ (R̂

ij
t+h)>0)

(9)

The coefficients are assumed to be different depending on whether VaR values are positive

or negative. This specification ensures that the ES never exceeds the VaR, as verified in all

estimations described in the sequel.

Let Zhij,t+h ≡ Rt+h − τ−1σ̄t. Then, the ES forecast of Model 3 is the predicted value of the

following regression:

Zhij,t+h = chij,1(τ)I
(V aRτ (R̂

j
i,t+h<0)

+ chij,2(τ)I
(V aRτ (R̂

j
ij,t+h>0)

+ et+h (10)
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Using Equations (8) and (9), the baseline ES forecast of Model 3 is:

ESτ (R̄ijt+h) = [ĉhij,1(τ)I
V aRτ (R̂

ij
t+h)<0

+ ĉhij,2(τ)I
V aRτ (R̂

ij
t+h>0)

]V aRτ (R̂jij,t+h) (11)

3.2.2 Stress forecasts

Stress forecasts are (VaR,ES) return forecasts conditional on CoVaRs of risk factors. These

CoVaRs capture the extreme adverse realizations of risk factors typically assumed in a stress

testing scenario. I construct CoVaRs of the risk factors that capture domestic and external tail

risk shocks in reduced-form.

I assume the following models for: a. the VaR of the risk factor V i
t in country i;, and, b. the

VaR of the leave-one-out average of risk factors across countries, defined by V −it ≡
∑N

k 6=i
V kt
N−1 ,

for quantile levels τ ′ ≤ τ :

V aRτ ′(V
i
t ) = ai(τ ′) + bi(τ ′)V −it−1 + ci(τ ′)V i

t−1 (12)

V aRτ ′(V
−i
t ) = a−i(τ ′) + b−i(τ ′)V −it−1 (13)

By Equations (12), the VaR of a risk factor in country i is predicted by its lagged value and the

lagged value of the leave-one-out average of risk factors. By Equation (13), the leave-one-out

average of risk factors is predicted by its lagged value. The parameters of Equations (12) and

(13) are estimated by quantile regressions.

. I consider two stress scenarios defined by the following CoVaRs:

co1V aRτ ′(V
i
t ) = âi(τ ′) + b̂i(τ ′)V −it−1 + ĉi(τ ′)V aRτ ′(V

i
t−1) (14)

co2V aRτ ′(V
i
t ) = âi(τ ′) + b̂i(τ ′)V aRτ ′(V

−i
t−1) + ĉi(τ ′)V i

t−1 (15)

By Equation (14), the VaR of a country risk factor is predicted conditional on its level being at its

VaR in the previous period. Therefore, co1V aRτ ′(V
i
t ) can be viewed as capturing a domestic tail

risk shock scenario. By Equation (15), the VaR of a country risk factor is predicted conditional

on the level of the leave-one-out risk factor being at its VaR in the previous period. Thus,
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co2V aRτ ′(V
i
t ) can be viewed as capturing an external tail risk shock scenario.

The stress forecasts (sVaR,sES) of the returns of the non-financial and banking sectors

are obtained by replacing V i
t with cokV aR(V i

t ), for k = 1, 2, in all Equations (2)-(4), (6)-(9),

and (10)-(11). All (sVaR,sES) forecasts are measured for the pair of quantile levels (τ, τ ′) =

(0.10, 0.95).

3.3 The scoring function for (VaR, ES) forecasts

Recall that a scoring function for a statistic is strictly consistent if there exists a score (or loss)

function such that the correct prediction of this statistics is the unique minimizer of the ex-

pected score. A statistic for which a strictly consistent scoring function exists is called elicitable.

Gneiting (2011) shows that ES is not elicitable. Fissler and Ziegel (2016) identify the family of

scoring functions such that the pair (VaR,ES) is “jointly” elicitable.3

To evaluate the out-of-sample forecasting performance of (VaR,ES) of return Rt+h generated

by different forecasting methods, I use the following (strictly consistent) FZ0 scoring function

derived by Patton, Ziegel and Chen (2019, Proposition 1), which applies to strictly negative

values of VaR and ES:

FZ0(V aRt+h, ESt+h) ≡ − 1

τESt+h
I(Rt+h ≤ V aRt+h)(V aRt+h −Rt+h)+

V aRt+h
ESt+h

+ log(−V aRt+h)− 1

(16)

The FZ0 statistics has negative orientation, that is, lower values indicate higher scores.

Following Giacomini and White (2006), pairwise comparisons of unconditional forecasting

performance of (VaR, ES) forecasts obtained with limited memory estimators, such as those

obtained with rolling windows, is carried out by applying Diebold and Mariano (1995) tests of

equal forecasting performance (DM tests henceforth) using the FZ0 scoring function.

3For a survey on elicitability and its relationship with back-testing and forecasting, see Nolde and Ziegel (2017).
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3.4 Forecast combinations

The forecasting strategy underlying the proposed EWS aims at: (a) capturing forecasting per-

sistence; (b) exploiting the potential of stress forecasts to improve forecasting performance; and

(c) excluding inferior forecasts. It is implemented in real time, replicating what a forecaster

could do with the information available at each forecasting date.

This strategy is implemented in two stages at each forecasting date. The first stage is the

method selection stage, which involves the construction of an optimal forecast combination. In

the second stage, the (VaR,ES) of the optimal forecast combination obtained in the first stage is

corrected so as to pass a VaR backtest and an ES backtest, as in Du and Escanciano (2017). This

second stage can be viewed as the model validation stage. By conducting backtests using a data

evaluation window at each forecasting date, model valuidation is embedded in the forecasting

process so as to improve forecasting performance.

Let (V aRm(R̂t+h), ESm(R̂t+h)) be the h-period ahead forecast at t of forecasting method

m, and let M be the total number of forecasting methods. Denote with fm(t, h) the FZ0 score

associated with the h-month-ahead forecast of forecasting method m, and with ∆fm,m′(t, h) the

difference between the FZ0 scores of methods m and m′.

The comparison of performance of forecasting method m relative to m′ at forecasting date

t is tracked by the average of ∆fm,m′,t over a rolling evaluation window of the last w periods,

given by:

µt(m,m
′|w) =

1

w

t∑
t−w+1

∆fm,m′(t, h) (17)

. The h-month-ahead forecast combination of (VaR, ES) at forecasting date t is given by:

(V aRτ (R̂t+h), ESτ (R̂T+h)) = (

M∑
m=1

wmt V aRm(R̂t+h),

M∑
m=1

wmt ESm(R̂t+h)) (18)

where the weights satisfy wmt ≥ 0 for all models m ∈ {1, 2, ....,M} and
∑M

m=1w
m
t = 1.

Denote with αj the j’th confidence level in the discrete set A ≡ {0.05, .., 0.95}, and with W

a set of evaluation windows of different lenght. As shown next, the weights of a combination

depend on the confidence level and the length of an evaluation window.
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3.4.1 Choosing forecast combination weights

The choice of forecast weights is implemented in three steps. In the first step, the inclusion of a

forecast in a combination is determined by pairwise DM tests of equal forecasting performance

at confidence level αj ∈ A for any given evaluation window w ∈ W . If the forecast of method

m is significantly worse than the forecast of at least one competing method m′ at confidence

level αj , then the forecast m is said to be dominated, and is assigned zero weight. The result of

this first step is the classification of dominated and non-dominated forecasts for each confidence

level in A and evaluation data window in W .

In the second step, forecast combinations are computed for every confidence level in A and

evaluation data window in W . The weights of each forecast at confidence level αj ∈ A are

computed as the fraction of the instances a forecast is non-dominated for all confidence levels

preceding and including αj . This second step yields weights as a function of the confidence level

αj ∈ A and evaluation window w ∈W .

In the third and final step, the weights of the best forecast combination are obtained by

selecting the confidence level αj and the evaluation window w that minimize the average FZ0

score. This procedure is repeated at each forecasting date.

Two reasons motivate this forecast combination strategy. First, the size of a given confidence

level αj ∈ A determines the stringency of the criterion for eliminating forecasts, since the set

of dominated forecasts (weakly) monotonically increases with αj ∈ A, until typically only one

forecast remains. Therefore, the weights assigned to each forecast for any given αj record the

fraction of instances such forecasts receive positive weights over preceding confidence levels up to

αj , that is, as the stringency of the elimination criterion becomes tighter. Second, the length of

the rolling evaluation window assigns different weights to past forecasts: the shorter the window,

the higher is the likelihood of capturing recent developments but at the cost of the power of

the DM test given comparatevely more limited data. Conversely, the longer the window, the

more powerful are the DM tests likely to be at the cost of more limited weighting of recent

developments. Hence, the choice of the evaluation window is meant to capture these trade-

off by choosing the window that minimizes the average FZ0 score. This procedure essentially

determines a ranking of forecasting methods germane to the ranking of forecast combinations by
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quantile sorting proposed by Aiolfi and Timmermann (2006) in the context of forecast evaluation

based on minimum squared forecast errors.

Formally, let Im(αj , w) denote an indicator function of forecast m taking on a value of 0 if

forecast m is dominated, and 1 otherwise. The vector of weights (w∗1t , ..., w
∗M
t ) is determined as

follows:

1. For all αj ∈ A and w ∈ W , Im(αj , w) = 0 if there exists a forecast m′ such that: (a)

µ(m,m′|w) > 0; and, (b) the null hypothesis µ(m,m
′|w) = 0 is rejected according to a

DM test at a significance level αj ∈ A. Im(αj , w) = 1 otherwise.

2. The weights of a forecast combination evaluated at the pair (αj , w) are given by:

wmt (αj , w) =

∑j
h=1 I

m(αh, w)∑M
m=1

∑j
h=1 I

m(αh, w)
(19)

3. The optimal weights are those associated with the pair (αj , w) that minimizes the average

FZ0 score defined by:

aFZ0(αj , w) ≡ 1

w

t∑
i=t−w+1

FZ0(
M∑
m=1

wmi (αj , w)V aRm(R̂t+h),
M∑
m=1

wmi (αj , w)ESm(R̂t+h))

(20)

Table 1 illustrates how weights in the forecast combination are selected with a simple nu-

merical example. Suppose forecasts with four different forecasting methods have been obtained

(denoted with Mod.x, for x=1,2,3,4). A discrete set of confidence levels is indicated in column

(1). Panels A and B report results for two evaluation windows of differing length, w1, and w2.

Columns (1)-(4) report the classification of each forecast as dominated (I=0) or non-dominated

(I=1) for each model according to DM tests: as the confidence level increases, the number of

dominated models is (weakly) increasing. Columns (6)-(15) compute cumulative sums of indica-

tors functions, relevant weights, and the average of the FZO score associated with each weight

profile for all confidence levels and the two evaluation windows. The minimum of the FZ0 score

associated with each of the two windows is marked in red. The chosen combination is the one

corresponding to the minimum of these two FZO scores: in the example, the minimum is 0.42
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corresponding to w = w2 and αj = 0.75.

3.4.2 Backtest-based corrections to the optimal forecast combination

Validation of a tail risk forecasts is typically assessed through backtesting. Several tests are

available to backtest VaR, and many tests have been recently proposed in the literature to

backtest ES. As pointed out by Acerbi and Szekely (2017), however, while VaR is backtestable

since it is elicitable, ES is not backtestable in isolation since it is not elicitable: in other words,

elicitability is a necessary condition for backtestability. Acerbi and Szekely (2017) propose ”ridge

backtests” that allow to backtest (VaR,ES) forecasts jointly.4. As detailed momentarily, I use

simple joint validation tests of (VaR,ES) forecasts.

Note that a forecast that does not pass a validation test indicates that the forecaster is

exposed to model risk, which may be unavoidable if forecasting models are mis-specified. A

strategy to minimize model risk and improve forecasts is based on corrections to VaR and

ES forecasts based on several backtesting measures. These corrections essentially modify the

original forecasts to ensure a set of backtests based on a data evaluation window preceding the

forecasting date is passed at a given confidence level. In this application, I implement these

corrections using the procedure suggested by Boucher et al. (2014) for VaR, implemented using

the unconditional coverage tests formulated by Kupiec (1995), and the procedure formulated by

Du and Escanciano (2017) for ES. 5

The corrections are implemented as follows. Let (V aRPτ (t, h)), (ESPτ (t, h)) denote the fore-

cast combination selected at forecasting date t on the basis of the evaluation window w̄. The

null hypothesis of the Kupiec’s test posits that the estimated frequency of violations of the

VaR equals the probability level p of interest (in this paper, p = 0.10). The test statistics is a

likelihood ratio test distributed asymptotically as a χ2 with one degree of freedom. The null hy-

pothesis of the Du and Escanciano’s test is that the estimated frequency of cumulative violations,

defined by H(p) = 1
p(p− ut)I(ut ≤ p), where ut is the estimated probability level corresponding

to the empirical distribution of returns, equals the probability level p/2. The corresponding test

4Separate backtests of VaR and ES based on the Fissler and Ziegel (2016) scoring functions have been recently
implemented by Patton et al (2019) and Nolde and Ziegel (2017)

5As in Lazar and Zhang (2019), multiple backtests can be used depending on the set of models used
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statistics is distributed as a standardized normal. Then, the percentage corrections cV aR, cES

are determined such that ((1 + cV aR)V aRPτ (R̂t+h)), (1 + cES)ESPτ (R̂t+h)) pass both the VaR

and ES backtests at a 5% confidence level.

3.5 A vulnerability index

The quantitative results of the (VaR,ES) forecast combinations are embedded in the EWS by

using these forecasts to generate signals of forthcoming increases in tail risks. To this end, I use

a binary model where the probability of the empirical VaR violations is predicted by lagged ES

forecasts. A prediction exceeding a threshold determined by minimization of the sum of forecast

errors provides a signal of future realizations of VaR violations. The vulnerability index is thus

constructed based on a standard Receiver Operating Characteristic (ROC) analysis.

Formally, define the indicator function I(Rt) = 1 if Rt ≤ V aRτ (Rt), and I(Rt) = 0 other-

wise, where the event Rt ≤ V aRτ (Rt) is the violation of the empirical VaR computed over all

observations of a return up to the forecasting date t. The binary model of the probability of a

violation estimated with the available data up to the forecasting date t is a Logistic regression

given by:

P (I(Rt)) = Logit
( 12∑
h=0

ahES
∗(R̂t−h)

)
(21)

where the probability of a violation is predicted by 12 lags of ES forecasts.

To obtain a signal of the probability of a violation, the prediction of Equation (22) is used to

identify the threshold value of P (I(Rt)) corresponding to the minimization of a weighted sum

of the probability of issuing a signal when Rt > V aRτ (Rt) (a false alarm) , and that of not

issuing a signal when Rt ≤ V aRτ (Rt) (a missed violation). Denote the fraction of false alarms

and missed tail risk realizations with P1 and P2 respectively. Then, the threshold P̂ (I(Rt)) is

chosen to minimize the linear combination of errors αP1 + (1 − α)P2, where α ∈ (0, 1). The

predictive ability of such signal is evaluated using the area under the ROC curve (AUROC). 6

Denoting with P ∗(I(Rt)) and P̂ (I(Rt)) the threshold probability and the actual prediction

6The AUROC provides a simple test against the null hypothesis value of 0.5, which corresponds to classifying
states of tail risk and no-tail risk realizations via a coin toss. The AUROC is bounded above by 1, which denotes
a perfect classification. Under the assumption of asymptotic normality, a test of significant difference of the
estimated AUROC value against the null of 0.5 can be performed.
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at forecasting date t respectively, the vulnerability index is defined by:

V I(RT ) = max{0, P̂ (I(Rt))− P ∗(I(Rt))} (22)

The interpretation of this index is straightforward: a signal of a high probability of a tail risk

realization is issued when the predicted probability of a violation is greater than the threshold,

with the size of the difference capturing the severity of the deviation.

4 Tail risks in the G7 non-financial and banking sectors

I implement the EWS using monthly equity returns of indexes of non-financial firms (RNF) and

banks (RB) for the G7 countries during the period 1975:1-2018:12. To illustrate some properties

of the data and the mechanics of the EWS, I first present the results of a combination that

includes in-sample predictions of the three models and the relevant equally weighted combination

(EWC) of their predictions. Then I turn to illustrate the results obtained by constructing forecast

combinations in real time and assessing the signal properties of the vulnerability index.

4.1 In-sample prediction combinations

Table 2 reports the parameters of the three models and relevant HAC p-values estimated over

the entire sample. Across all models and samples, the risk factor predicts lower h-period ahead

expected returns and 0.10 quantiles (models 1 and 3 respectively) and higher return volatility

(model 2), although in few instances coefficients are not statistically different from zero at a 5%

significance level.

Table 3 reports the optimal weights of Models 1-3 and the EWC. Note that in this case, the

evaluation data window is the entire data set. The inclusion of the EWC in the combination

is instrumental in assessing to what extent deviations from equal weights of each model in the

prediction combination identify their effective contribution to the fit of the prediction. Across

the two variables, the four horizons, and the seven countries, there is significant variation of

the weights of each model and the EWC. However, every model contributes to the prediction

combination as it receives a non-trivial positive weight, although the largest weights are in most

16



cases associated with Models 2 and 3, suggesting an important role on the impact of the risk

factor on return volatility (through Model 2) and the presence of asymmetries in the distribution

of returns captured by the quantile model (Model 3). The EWC contributes significantly to the

predictive combination as well, but the relatively large positive weights of the individual models

imply that the EWC is not the best prediction combination.

Figure 1 reports mean and standard deviation of the prediction combination of ES for all

variables and countries. Two results are worth noticing. First, both mean and volatility of

the ES forecast vary markedly across variables, horizons and countries, suggesting significant

heterogeneity in the sources of risks. Second, the ES forecast of RNF is strictly lower than

the ES forecast of RB in all countries, indicating significantly higher exposures of the banking

sectors to the risk factor relative to the non-financial sectors.

4.2 Real-time forecast combinations

I construct a forecast combination that includes the following set of forecasting methods:

1. baseline forecasts of each model and their EWC combinations obtained with 120-month

and 84-month rolling estimation windows;

2. EWC forecast combinations of the two stress test specifications using a 84-month rolling

estimation window.

Therefore, the forecast combination for each of the four forecasting horizons is obtained by

selecting weights of 10 forecasting methods: 4 baseline forecasts for 2 estimation windows plus

2 EWC stress forecasts estimated on the shorter estimation window. The first estimation is

conducted on the data window 1975:1-1984:12, with the first 1-month ahead forecast for 1985:1.

The first evaluation window starts in 1985:1 and ends in 1991:12. Thereafter, all forecasts are

produced from 1992:1 on.

The weights obtained with the forecasting strategy described previously indicate the marginal

contribution of each individual model specification to the forecast combination. The inclusion of

the EWC combinations is useful to assess how weights diverge from the EWC. 7 The inclusion

7Note that other pre-determined combinations could be considered, such as one whose weights are proportional
to the relative magnitude of the FZ0 score associated with each model, if so desired.
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of forecasts using different estimation windows aims at capturing the potential time variation

in the estimated parameters. Importantly, the contribution of stress forecasts to forecasting

performance is assessed by the size of their weights in the forecast combination.

Table 4 reports averages of mean, minima and maxima of weights across all countries (Ap-

pendix Tables A1 and A2 reports these statistics for each country). Three results stand out.

First, while average weights do not appear to differ significantly across methods, there are

notable variations across maxima, which suggest that some methods contribute most to the

forecast combination in specific time periods. Moreover, many forecast receive 0 weights at

some dates, and the minimum weight for each forecast is negligible for all forecasts, indicating

that most forecasts ends up either being dominated or with negligible weights at some dates.

Second, average weights of baseline forecasts using the longer and the shorter rolling windows

are similar, suggesting that the exclusive use of one rolling window of fixed length, often used in

some contributions of the literature, is not necessarily best in a forecasting context. Third, the

weights of the domestic stress scenarios (Stress 1) relative to the external stress scenario (Stress

2) are lower at shorter forecast horizons and larger at a longer horizon. This suggests a larger

impact of external shocks in the short term, and a stronger impact of domestic shocks in the

longer term, as perhaps it might be expected.

Focusing on comparisons of aggregate weights of baseline and stress forecasts, the weights of

the latter are sizeable and increase with the length of the horizon, reaching about a 30% average

for the 12-month horizon for both RNF and RB returns. Figure set 1 illustrates the dynamics

of baseline and stress aggregate weights for the US, UK and Germany (BD) for 1-month- and 12

month-ahead forecasts. Time variations of weights are significant, with stress forecasts receiving

larger weight at longer horizons even during periods of relatively low values of the risk factor.

4.3 The performance of the EWS

In this section we show that our ES forecasts, despite being based on just two portfolios of non-

financial and banking firms, predict stress in the real and financial sectors, as well as measures

of systemic risk, up to the 12 months horizon.

Figure Set 2 shows ES optimal forecasts of RNF and RB for all horizons, compared with the
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evolution of the financial distress indicator constructed by Romer and Romer (2017), which was

constructed based on OECD textual coding of perceived financial stress by OECD observers.

In almost all cases, the ES forecasts of both RNF and RB anticipate periods of stress in both

the non-financial and banking sectors. Importantly, the 12-month ES forecasts (orange lines)

appear to be the ones that first anticipate stress dates and, as shown earlier, these are indeed

the ES forecast combinations where stress forecasts receive the larger weights.

Do ES forecasts capture the externality-driven forces that may turn bank portfolios’ tail risks

into systemic risk? Brownlee and Engle (2017) proposed their SRISK measure as one capturing

these externalities, based on the notion that the likelihood of a realization of systemic risk is

higher when the banking system as a whole is under-capitalized. Note that the SRISK measure

is built bottom up from a large set of individual bank returns. By contrast, our measures are

based on bank portfolios that include a more limited sample of the banks. Yet, as shown in

Figure Sets 3 and 4, the ES forecasts closely track, and in some instances even anticipate, the

SRISK measures. This result suggests that the ES forecast combinations constructed in this

paper also capture tail risk realizations morphing into systemic risk events.

Does the vulnerability indicator (VI) provide timely signals of tail risk realizations? The

answer appears affirmative. As shown in Table 5, its predictive accuracy is relatively high

and stable, as measured by mean and minima and maxima of the AUROC computed at each

forecasting date. For all countries and on average, the AUROC ranges between 80% and 90%.

Furthermore, as shown in Figure 5, the VI for RB tracks and even anticipates in some instances

the Romer and Romer (2017) financial stress index described previously.

5 Conclusion

This paper has formulated an EWS based on forecast combinations of (VaR,ES) pairs for in-

dicators of tail financial risk in the non-financial and banking sectors that integrates stress

testing scenarios into forecasting. The implementation on data for the G7 countries shows that

the proposed EWS is promising in delivering timely early warning signals for tail risks up to

a 12-month forecasting horizon and an assessment of their quantitative impact. Importantly,
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integrating stress testing into forecasting improves the EWS forecasting performance.

The EWS presented in this paper has been designed parsimoniously, in terms of models and

variables used, to illustrate in a transparent way its underlying assumptions and the details of

its implementation. However, the proposed methodology can be easily and usefully expanded

in several directions exploiting its flexibility. For example, the EWS can be implemented using

data at any level of dis-aggregation (firm, sector, country), and it can incorporate any desired

set of forecasting models and methods from which to construct useful forecasts of tail financial

risk measures. Some of these extensions are part of my ongoing research.
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Tables and Figures 

 

Table 1. Forecasting Strategy Example 

 

 

 

 

 

 

 

 

 

 

 

Indicator functions (I=0: dominated) Cumulative sum of Cumulative weights aFZ0(w)

indicator functions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alpha Mod  1 Mod 2 Mod  3 Mod 4 sum I cum. sum I Mod  1 Mod 2 Mod  3 Mod 4 w1 w2 w3 w4

Panel A (w=w1)

0.05 0 1 1 1 3 3 0 1 1 1 0.00 0.33 0.33 0.33 0.57

0.25 0 1 1 0 2 5 0 2 2 1 0.00 0.40 0.40 0.20 0.53

0.50 0 1 1 0 2 7 0 3 3 1 0.00 0.43 0.43 0.14 0.48

0.75 0 0 1 0 1 8 0 3 4 1 0.00 0.38 0.50 0.13 0.51

0.95 0 0 1 0 1 9 0 3 5 1 0.00 0.33 0.56 0.11 0.63

Panel B (w=w2)

0.05 1 1 1 1 4 4 1 1 1 1 0.25 0.25 0.25 0.25 0.53

0.25 0 1 1 1 3 7 1 2 2 2 0.14 0.29 0.29 0.29 0.51

0.50 0 1 1 1 3 10 1 3 3 3 0.10 0.30 0.30 0.30 0.48

0.75 0 1 1 0 2 12 1 4 4 3 0.08 0.33 0.33 0.25 0.42

0.95 0 0 1 0 1 13 1 4 5 3 0.08 0.31 0.38 0.23 0.56
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Table 2. Estimated Coefficients of Models 1-3 

 

Model 1 Model 2 Model 3

horizon

h beta(h) p-value beta(h) p-value phi(h) p-value beta(tau,h) p-values

US

RNF 1 -2.37 0.00 -0.95 0.02 1.83 0.00 -6.12 0.00

3 -2.19 0.00 -0.78 0.30 1.52 0.00 -2.86 0.10

6 -2.25 0.01 -1.44 0.20 1.43 0.00 -3.04 0.00

12 -4.76 0.00 -4.45 0.01 1.39 0.00 -3.00 0.01

RB 1 -3.12 0.00 -1.66 0.00 1.67 0.00 -8.83 0.00

3 -4.66 0.00 -1.67 0.11 1.36 0.00 -1.29 0.60

6 -5.28 0.00 -3.40 0.04 1.20 0.00 -3.01 0.06

12 -6.15 0.00 -5.50 0.03 0.98 0.00 -1.83 0.25

CN

RNF 1 -2.51 0.00 -0.45 0.30 1.79 0.00 -5.95 0.00

3 -1.99 0.00 -0.25 0.78 1.10 0.00 -2.67 0.04

6 -2.12 0.04 -1.37 0.32 1.03 0.00 -1.92 0.04

12 -5.29 0.00 -4.12 0.03 0.93 0.00 -1.22 0.22

RB 1 -1.60 0.00 -1.07 0.04 1.20 0.00 -4.92 0.00

3 -0.91 0.15 -0.77 0.41 0.84 0.00 0.51 0.70

6 0.35 0.71 -1.01 0.43 0.80 0.00 -0.72 0.47

12 1.07 0.51 -0.40 0.83 0.47 0.00 0.39 0.73

JP

RNF 1 -2.06 0.00 -0.53 0.12 1.56 0.00 -5.07 0.00

3 -3.40 0.00 -2.51 0.00 0.90 0.00 -0.55 0.70

6 -5.37 0.00 -5.02 0.00 0.80 0.00 -3.67 0.00

12 -8.09 0.00 -7.61 0.00 0.63 0.00 -1.67 0.12

RB 1 -2.73 0.00 -1.31 0.01 1.54 0.00 -7.81 0.00

3 -5.50 0.00 -5.12 0.00 0.60 0.00 -0.91 0.60

6 -7.84 0.00 -7.93 0.00 0.61 0.00 -6.02 0.00

12 -13.65 0.00 -13.82 0.00 0.33 0.02 -5.44 0.00

UK

RNF 1 -1.03 0.00 -0.71 0.10 1.95 0.00 -5.55 0.00

3 0.08 0.89 -0.72 0.43 1.25 0.00 -1.18 0.21

6 0.29 0.75 -1.13 0.37 1.15 0.00 -2.24 0.00

12 0.73 0.58 -1.50 0.37 1.19 0.00 -0.46 0.60

RB 1 -2.56 0.00 -1.91 0.00 1.89 0.00 -9.43 0.00

3 -3.09 0.00 -4.03 0.00 1.38 0.00 -0.66 0.81

6 -4.43 0.00 -6.01 0.00 1.31 0.00 -4.17 0.02

12 -5.42 0.01 -8.13 0.00 1.04 0.00 -1.90 0.24

BD

RNF 1 -2.67 0.00 -0.27 0.50 1.68 0.00 -6.13 0.00

3 -2.06 0.01 -0.13 0.88 1.04 0.00 -1.86 0.43

6 -2.31 0.04 -0.82 0.54 0.86 0.00 -3.34 0.01

12 -4.95 0.00 -4.40 0.02 0.51 0.00 -2.08 0.08

RB 1 -4.21 0.00 -0.14 0.82 1.88 0.00 -8.79 0.00

3 -4.59 0.00 -1.47 0.23 1.56 0.00 1.66 0.58

6 -5.18 0.01 -3.80 0.07 1.44 0.00 -4.25 0.00

12 -9.12 0.00 -10.45 0.00 0.99 0.00 -3.13 0.05

FR

RNF 1 -3.38 0.00 -1.51 0.01 1.77 0.00 -8.01 0.00

3 -2.65 0.00 -1.18 0.35 0.85 0.00 -2.41 0.07

6 -4.34 0.01 -3.55 0.06 0.75 0.00 -2.63 0.02

12 -4.74 0.07 -4.97 0.07 0.43 0.02 1.37 0.24

RB 1 -4.31 0.00 -1.65 0.01 1.72 0.00 -10.12 0.00

3 -3.98 0.00 -1.78 0.16 1.05 0.00 -1.43 0.44

6 -4.95 0.00 -4.07 0.05 0.87 0.00 -3.55 0.04

12 -4.62 0.12 -4.78 0.13 0.23 0.15 1.53 0.33

IT

RNF 1 -2.19 0.00 -1.42 0.04 1.87 0.00 -7.46 0.00

3 -2.77 0.03 -2.37 0.08 0.88 0.00 -3.78 0.02

6 -2.82 0.12 -2.44 0.24 0.40 0.00 -0.68 0.67

12 -5.02 0.12 -5.73 0.06 -0.21 0.24 -2.47 0.05

RB 1 -5.15 0.40 -8.41 0.00 -1.64 0.00 -11.02 0.00

3 -10.23 0.28 -9.65 0.00 -1.74 0.00 -1.03 0.60

6 -14.69 0.17 -14.97 0.01 -1.47 0.00 -6.01 0.00

12 -24.33 0.13 -27.59 0.00 -1.88 0.00 -3.13 0.11



3 
 

Table 3. Weights of the prediction combination (1975:1-2018:12) 

 

 

 

 

 

 

Models' weights Effective models' weights

RNF RB RNF RB

h Model 1 Model 2 Model 3 EWC Model 1 Model 2 Model 3 EWC Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

US 1 0.00 0.33 0.33 0.33 0.00 0.33 0.33 0.33 0.11 0.44 0.44 0.11 0.44 0.44

3 0.00 0.33 0.33 0.33 0.25 0.25 0.25 0.25 0.11 0.44 0.44 0.33 0.33 0.33

6 0.26 0.26 0.23 0.26 0.31 0.31 0.06 0.31 0.34 0.34 0.32 0.42 0.42 0.16

12 0.41 0.45 0.04 0.11 0.34 0.34 0.05 0.26 0.44 0.49 0.07 0.43 0.43 0.14

CN 1 0.00 0.33 0.33 0.33 0.25 0.25 0.25 0.25 0.11 0.44 0.44 0.33 0.33 0.33

3 0.27 0.27 0.18 0.27 0.33 0.33 0.00 0.33 0.36 0.36 0.27 0.44 0.44 0.12

6 0.33 0.33 0.01 0.33 0.33 0.33 0.01 0.33 0.44 0.44 0.12 0.44 0.44 0.12

12 0.33 0.33 0.01 0.33 0.33 0.33 0.02 0.33 0.44 0.44 0.12 0.44 0.44 0.13

JP 1 0.00 0.33 0.33 0.33 0.00 0.50 0.50 0.00 0.11 0.44 0.44 0.00 0.50 0.50

3 0.33 0.33 0.00 0.33 0.09 0.38 0.15 0.38 0.44 0.44 0.11 0.21 0.51 0.28

6 0.33 0.33 0.00 0.33 0.33 0.34 0.00 0.34 0.44 0.44 0.11 0.44 0.45 0.11

12 0.33 0.33 0.00 0.33 0.33 0.33 0.00 0.33 0.44 0.44 0.11 0.44 0.44 0.11

UK 1 0.00 0.33 0.33 0.33 0.00 0.33 0.33 0.33 0.11 0.44 0.44 0.11 0.44 0.44

3 0.28 0.28 0.18 0.28 0.25 0.25 0.25 0.25 0.37 0.37 0.27 0.33 0.33 0.33

6 0.22 0.35 0.07 0.35 0.31 0.33 0.02 0.33 0.34 0.47 0.19 0.42 0.44 0.14

12 0.44 0.46 0.04 0.07 0.32 0.32 0.03 0.32 0.46 0.48 0.06 0.43 0.43 0.14

BD 1 0.00 0.33 0.33 0.33 0.00 0.50 0.50 0.00 0.11 0.44 0.44 0.00 0.50 0.50

3 0.27 0.27 0.18 0.27 0.36 0.47 0.01 0.16 0.36 0.36 0.27 0.42 0.52 0.06

6 0.33 0.33 0.00 0.33 0.32 0.34 0.00 0.34 0.44 0.44 0.11 0.43 0.46 0.11

12 0.33 0.33 0.01 0.33 0.33 0.33 0.00 0.33 0.44 0.44 0.12 0.44 0.44 0.11

FR 1 0.00 0.33 0.33 0.33 0.00 0.33 0.33 0.33 0.11 0.44 0.44 0.11 0.44 0.44

3 0.32 0.32 0.03 0.32 0.33 0.33 0.01 0.33 0.43 0.43 0.13 0.44 0.44 0.12

6 0.33 0.33 0.01 0.33 0.33 0.33 0.01 0.33 0.44 0.44 0.12 0.44 0.44 0.12

12 0.33 0.33 0.01 0.33 0.33 0.33 0.00 0.33 0.44 0.44 0.12 0.44 0.44 0.11

IT 1 0.00 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.11 0.44 0.44 0.00 0.00 1.00

3 0.33 0.33 0.01 0.33 0.00 0.00 0.50 0.50 0.44 0.44 0.12 0.17 0.17 0.67

6 0.33 0.33 0.00 0.33 0.00 0.00 0.50 0.50 0.44 0.44 0.11 0.17 0.17 0.67

12 0.33 0.33 0.00 0.33 0.00 0.00 0.50 0.50 0.44 0.44 0.11 0.17 0.17 0.67

Average 1 0.00 0.33 0.33 0.33 0.04 0.32 0.46 0.18 0.11 0.44 0.44 0.10 0.38 0.52

3 0.26 0.31 0.13 0.31 0.23 0.29 0.17 0.31 0.36 0.41 0.23 0.33 0.39 0.27

6 0.30 0.32 0.05 0.32 0.28 0.28 0.09 0.36 0.41 0.43 0.16 0.39 0.40 0.20

12 0.36 0.37 0.02 0.26 0.28 0.28 0.09 0.34 0.44 0.45 0.10 0.40 0.40 0.20
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Figure 1. Mean and Standard Deviations of the ES prediction combination 

(1975:01-2018:12) 
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Table 4. Mean, minimum and maximum of weights of forecasting methods in 

the forecast combinations (1992:01-2018:12) 

 

RNF 

 

RB 

 

 

 

 

Horizon h=1 h=3 h=6 h=12

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Mod.1 (w=120) 0.09 0.00 0.27 0.04 0.00 0.17 0.06 0.01 0.20 0.07 0.00 0.27

Mod.1 (w=84) 0.10 0.00 0.23 0.06 0.00 0.23 0.06 0.00 0.21 0.09 0.00 0.27

Mod.2 (w=120) 0.13 0.01 0.28 0.12 0.01 0.29 0.12 0.01 0.26 0.08 0.00 0.25

Mod.2 (w=84) 0.16 0.04 0.37 0.15 0.04 0.30 0.16 0.03 0.28 0.12 0.00 0.29

Mod.3 (w=120) 0.09 0.00 0.20 0.10 0.01 0.21 0.09 0.01 0.24 0.11 0.01 0.29

Mod.3 (w=84) 0.13 0.02 0.49 0.14 0.02 0.28 0.12 0.02 0.30 0.13 0.01 0.32

EWC (w=120) 0.08 0.00 0.20 0.08 0.00 0.25 0.06 0.00 0.18 0.06 0.00 0.19

EWC (w=84) 0.13 0.01 0.26 0.10 0.01 0.22 0.08 0.02 0.20 0.05 0.00 0.18

Stress 1 EWC (w=84) 0.03 0.00 0.20 0.11 0.00 0.33 0.14 0.01 0.38 0.17 0.00 0.46

Stress 2 EWC (w=84) 0.06 0.00 0.38 0.11 0.01 0.28 0.11 0.00 0.27 0.13 0.01 0.40

Baseline 0.91 0.60 1.00 0.78 0.51 0.99 0.75 0.48 0.97 0.70 0.35 0.98

Stress 0.09 0.00 0.40 0.22 0.01 0.49 0.25 0.03 0.52 0.30 0.02 0.65

Horizon (months) h=1 h=3 h=6 h=12

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Mod.1 (w=120) 0.09 0.01 0.23 0.05 0.00 0.17 0.06 0.00 0.19 0.08 0.00 0.24

Mod.1 (w=84) 0.10 0.00 0.26 0.05 0.00 0.19 0.09 0.01 0.22 0.10 0.00 0.25

Mod.2 (w=120) 0.12 0.02 0.23 0.12 0.01 0.30 0.11 0.00 0.32 0.07 0.00 0.25

Mod.2 (w=84) 0.14 0.03 0.34 0.14 0.02 0.30 0.15 0.01 0.32 0.11 0.00 0.30

Mod.3 (w=120) 0.11 0.01 0.26 0.09 0.01 0.24 0.07 0.01 0.22 0.07 0.00 0.25

Mod.3 (w=84) 0.11 0.02 0.35 0.14 0.03 0.33 0.12 0.02 0.27 0.14 0.02 0.34

EWC (w=120) 0.11 0.00 0.20 0.08 0.00 0.21 0.05 0.00 0.18 0.06 0.00 0.21

EWC (w=84) 0.12 0.02 0.24 0.10 0.01 0.23 0.09 0.01 0.22 0.06 0.00 0.22

Stress 1 EWC (w=84) 0.03 0.00 0.16 0.10 0.00 0.31 0.16 0.00 0.36 0.20 0.02 0.46

Stress 2 EWC (w=84) 0.07 0.00 0.27 0.13 0.00 0.36 0.11 0.01 0.31 0.11 0.00 0.38

Baseline 0.90 0.69 1.00 0.77 0.38 0.98 0.73 0.49 0.95 0.69 0.34 0.94

Stress 0.10 0.00 0.31 0.23 0.02 0.62 0.27 0.05 0.51 0.31 0.06 0.66



6 
 

Figure Set 1 
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Figure Set 2 
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Figure Set 3 

AEmean= average ES forecasts  of RB 
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Figure set 4  
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Table 5. Area under the ROC curve (AUROC) of the Logit model 

(sample: 2000:01-2018:12) 

 

 

 

 

 

RNF RF

h (months) Mean Min Max Mean Min Max

US 1 0.82 0.78 0.85 0.78 0.75 0.80

3 0.86 0.82 0.90 0.84 0.81 0.86

6 0.86 0.81 0.89 0.85 0.81 0.87

12 0.81 0.50 0.88 0.86 0.83 0.88

CN 1 0.83 0.79 0.85 0.80 0.76 0.84

3 0.85 0.81 0.89 0.84 0.79 0.87

6 0.86 0.81 0.89 0.77 0.70 0.83

12 0.85 0.82 0.88 0.79 0.75 0.84

JP 1 0.80 0.76 0.84 0.86 0.82 0.89

3 0.84 0.79 0.87 0.86 0.81 0.90

6 0.77 0.70 0.83 0.85 0.80 0.89

12 0.79 0.75 0.84 0.81 0.76 0.87

UK 1 0.86 0.82 0.89 0.82 0.78 0.84

3 0.86 0.81 0.90 0.84 0.80 0.86

6 0.85 0.80 0.89 0.84 0.79 0.87

12 0.81 0.76 0.87 0.81 0.78 0.84

BD 1 0.80 0.78 0.83 0.86 0.82 0.89

3 0.86 0.82 0.88 0.86 0.82 0.90

6 0.85 0.81 0.87 0.84 0.81 0.88

12 0.83 0.81 0.85 0.84 0.80 0.88

FR 1 0.86 0.82 0.89 0.79 0.76 0.83

3 0.86 0.82 0.90 0.84 0.79 0.87

6 0.84 0.81 0.88 0.84 0.79 0.87

12 0.84 0.80 0.88 0.83 0.80 0.85

IT 1 0.82 0.77 0.86 0.85 0.82 0.87

3 0.86 0.81 0.90 0.86 0.81 0.88

6 0.84 0.80 0.88 0.85 0.82 0.88

12 0.83 0.79 0.86 0.83 0.81 0.85

Average 1 0.83 0.79 0.86 0.82 0.79 0.85

3 0.86 0.81 0.89 0.85 0.80 0.88

6 0.84 0.79 0.87 0.83 0.79 0.87

12 0.82 0.75 0.87 0.83 0.79 0.86
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Figure Set 5 
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Appendix  

Table A1. RNF forecast combination weights (mean, min and max) 

 

Horizon (months) h=1 h=3 h=6 h=12

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US

Mod.1 (w=120) 0.08 0.00 0.18 0.03 0.00 0.13 0.02 0.00 0.24 0.05 0.00 0.22

Mod.1 (w=84) 0.10 0.00 0.21 0.03 0.00 0.28 0.05 0.00 0.25 0.08 0.00 0.37

Mod.2 (w=120) 0.13 0.02 0.22 0.09 0.00 0.31 0.14 0.04 0.25 0.06 0.00 0.22

Mod.2 (w=84) 0.18 0.07 0.36 0.19 0.00 0.37 0.17 0.00 0.29 0.11 0.00 0.28

Mod.3 (w=120) 0.11 0.00 0.23 0.09 0.00 0.24 0.12 0.02 0.24 0.08 0.00 0.27

Mod.3 (w=84) 0.07 0.02 0.24 0.20 0.07 0.38 0.16 0.05 0.38 0.14 0.02 0.46

EWC (w=120) 0.09 0.00 0.19 0.07 0.00 0.35 0.04 0.00 0.19 0.05 0.00 0.23

EWC (w=84) 0.14 0.01 0.30 0.12 0.04 0.26 0.08 0.02 0.22 0.04 0.00 0.14

Stress 1 EWC (w=84) 0.01 0.00 0.16 0.06 0.00 0.21 0.06 0.00 0.18 0.24 0.00 0.86

Stress 2 EWC (w=84) 0.08 0.00 0.42 0.12 0.00 0.26 0.15 0.00 0.25 0.15 0.00 0.43

CN

Mod.1 (w=120) 0.10 0.00 0.32 0.05 0.00 0.18 0.08 0.01 0.24 0.04 0.00 0.21

Mod.1 (w=84) 0.11 0.00 0.21 0.06 0.00 0.20 0.08 0.00 0.29 0.11 0.00 0.26

Mod.2 (w=120) 0.12 0.02 0.22 0.12 0.00 0.30 0.11 0.00 0.32 0.10 0.00 0.22

Mod.2 (w=84) 0.13 0.00 0.32 0.15 0.04 0.28 0.17 0.05 0.30 0.15 0.00 0.27

Mod.3 (w=120) 0.07 0.00 0.17 0.08 0.00 0.19 0.09 0.01 0.28 0.08 0.00 0.25

Mod.3 (w=84) 0.13 0.01 0.53 0.16 0.03 0.32 0.13 0.03 0.38 0.13 0.01 0.28

EWC (w=120) 0.11 0.00 0.23 0.07 0.00 0.20 0.06 0.00 0.17 0.04 0.00 0.17

EWC (w=84) 0.13 0.00 0.25 0.10 0.02 0.20 0.10 0.03 0.20 0.07 0.00 0.20

Stress 1 EWC (w=84) 0.01 0.00 0.20 0.09 0.00 0.28 0.08 0.00 0.23 0.18 0.00 0.39

Stress 2 EWC (w=84) 0.09 0.00 0.40 0.12 0.00 0.28 0.11 0.00 0.25 0.12 0.00 0.25

JP

Mod.1 (w=120) 0.11 0.00 0.29 0.04 0.00 0.19 0.02 0.00 0.17 0.06 0.00 0.17

Mod.1 (w=84) 0.08 0.00 0.20 0.05 0.00 0.24 0.03 0.00 0.14 0.09 0.00 0.23

Mod.2 (w=120) 0.13 0.00 0.40 0.14 0.00 0.32 0.17 0.00 0.41 0.13 0.00 0.26

Mod.2 (w=84) 0.18 0.07 0.43 0.09 0.00 0.19 0.13 0.00 0.27 0.15 0.02 0.39

Mod.3 (w=120) 0.06 0.00 0.17 0.10 0.00 0.17 0.08 0.00 0.20 0.19 0.04 0.41

Mod.3 (w=84) 0.20 0.09 0.67 0.09 0.00 0.20 0.10 0.00 0.23 0.07 0.00 0.24

EWC (w=120) 0.07 0.00 0.20 0.10 0.00 0.39 0.09 0.00 0.21 0.08 0.00 0.17

EWC (w=84) 0.13 0.00 0.21 0.10 0.00 0.20 0.05 0.00 0.17 0.06 0.00 0.19

Stress 1 EWC (w=84) 0.01 0.00 0.19 0.17 0.00 0.63 0.24 0.05 0.63 0.05 0.00 0.21

Stress 2 EWC (w=84) 0.03 0.00 0.22 0.12 0.00 0.22 0.07 0.00 0.24 0.12 0.03 0.32

UK

Mod.1 (w=120) 0.07 0.00 0.33 0.04 0.00 0.17 0.06 0.00 0.15 0.08 0.00 0.24

Mod.1 (w=84) 0.09 0.00 0.20 0.05 0.00 0.22 0.05 0.00 0.24 0.14 0.00 0.33

Mod.2 (w=120) 0.16 0.00 0.34 0.16 0.01 0.28 0.11 0.01 0.20 0.06 0.00 0.25

Mod.2 (w=84) 0.18 0.00 0.40 0.18 0.09 0.31 0.16 0.01 0.30 0.15 0.01 0.32

Mod.3 (w=120) 0.08 0.00 0.21 0.11 0.00 0.21 0.11 0.02 0.25 0.08 0.00 0.25

Mod.3 (w=84) 0.15 0.01 0.41 0.13 0.00 0.25 0.09 0.00 0.23 0.10 0.04 0.30

EWC (w=120) 0.07 0.00 0.19 0.09 0.00 0.25 0.09 0.00 0.22 0.05 0.00 0.16

EWC (w=84) 0.14 0.04 0.26 0.11 0.00 0.23 0.08 0.00 0.18 0.06 0.00 0.16

Stress 1 EWC (w=84) 0.03 0.00 0.23 0.07 0.00 0.26 0.12 0.00 0.28 0.11 0.00 0.32

Stress 2 EWC (w=84) 0.05 0.00 0.39 0.06 0.00 0.25 0.14 0.00 0.35 0.17 0.00 0.34

BD

Mod.1 (w=120) 0.08 0.00 0.20 0.03 0.00 0.17 0.02 0.00 0.14 0.03 0.00 0.21

Mod.1 (w=84) 0.10 0.00 0.23 0.03 0.00 0.16 0.07 0.00 0.16 0.05 0.00 0.23

Mod.2 (w=120) 0.14 0.01 0.29 0.14 0.02 0.28 0.03 0.00 0.23 0.05 0.00 0.38

Mod.2 (w=84) 0.16 0.06 0.29 0.14 0.06 0.24 0.19 0.03 0.31 0.13 0.00 0.28

Mod.3 (w=120) 0.09 0.00 0.18 0.13 0.02 0.23 0.03 0.00 0.25 0.11 0.00 0.34

Mod.3 (w=84) 0.11 0.03 0.29 0.12 0.00 0.23 0.21 0.05 0.33 0.17 0.01 0.33

EWC (w=120) 0.06 0.00 0.18 0.10 0.00 0.23 0.02 0.00 0.15 0.03 0.00 0.20

EWC (w=84) 0.13 0.00 0.25 0.11 0.00 0.20 0.13 0.04 0.24 0.03 0.00 0.18

Stress 1 EWC (w=84) 0.07 0.00 0.23 0.09 0.00 0.22 0.25 0.01 0.42 0.23 0.00 0.56

Stress 2 EWC (w=84) 0.05 0.00 0.22 0.11 0.00 0.33 0.05 0.00 0.25 0.17 0.02 0.41

FR

Mod.1 (w=120) 0.08 0.00 0.20 0.01 0.00 0.14 0.10 0.03 0.19 0.10 0.00 0.49

Mod.1 (w=84) 0.11 0.00 0.23 0.12 0.01 0.30 0.05 0.00 0.19 0.09 0.00 0.25

Mod.2 (w=120) 0.12 0.00 0.25 0.08 0.00 0.20 0.11 0.00 0.24 0.07 0.00 0.16

Mod.2 (w=84) 0.17 0.09 0.35 0.17 0.07 0.27 0.17 0.04 0.27 0.07 0.00 0.22

Mod.3 (w=120) 0.09 0.00 0.18 0.07 0.01 0.21 0.09 0.00 0.20 0.07 0.00 0.18

Mod.3 (w=84) 0.12 0.00 0.36 0.19 0.04 0.32 0.10 0.00 0.27 0.15 0.00 0.33

EWC (w=120) 0.07 0.00 0.19 0.03 0.00 0.15 0.05 0.00 0.16 0.07 0.00 0.18

EWC (w=84) 0.14 0.02 0.23 0.08 0.01 0.21 0.08 0.02 0.17 0.06 0.00 0.21

Stress 1 EWC (w=84) 0.05 0.00 0.20 0.12 0.00 0.21 0.10 0.00 0.41 0.16 0.00 0.33

Stress 2 EWC (w=84) 0.04 0.00 0.56 0.12 0.04 0.30 0.16 0.02 0.33 0.15 0.00 1.00

IT

Mod.1 (w=120) 0.10 0.00 0.34 0.10 0.00 0.21 0.13 0.00 0.29 0.15 0.02 0.33

Mod.1 (w=84) 0.09 0.00 0.32 0.06 0.00 0.20 0.06 0.00 0.21 0.03 0.00 0.25

Mod.2 (w=120) 0.10 0.00 0.23 0.12 0.00 0.33 0.13 0.00 0.19 0.11 0.01 0.24

Mod.2 (w=84) 0.11 0.00 0.45 0.13 0.02 0.47 0.11 0.05 0.25 0.08 0.00 0.26

Mod.3 (w=120) 0.12 0.00 0.26 0.09 0.02 0.23 0.10 0.03 0.25 0.14 0.00 0.32

Mod.3 (w=84) 0.14 0.00 0.90 0.06 0.00 0.25 0.08 0.00 0.27 0.12 0.00 0.31

EWC (w=120) 0.11 0.00 0.23 0.08 0.02 0.16 0.10 0.00 0.19 0.11 0.00 0.23

EWC (w=84) 0.11 0.00 0.32 0.07 0.02 0.25 0.06 0.01 0.25 0.04 0.00 0.20

Stress 1 EWC (w=84) 0.03 0.00 0.18 0.17 0.00 0.48 0.12 0.00 0.50 0.20 0.00 0.56

Stress 2 EWC (w=84) 0.10 0.00 0.43 0.12 0.00 0.28 0.10 0.00 0.23 0.01 0.00 0.03
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Table A2. RB forecast combination weights (mean, min and max) 

 

h=1 h=3 h=6 h=12

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US

Mod.1 (w=120) 0.11 0.02 0.28 0.05 0.00 0.20 0.07 0.00 0.18 0.04 0.00 0.19

Mod.1 (w=84) 0.11 0.01 0.29 0.05 0.00 0.19 0.08 0.00 0.25 0.09 0.00 0.23

Mod.2 (w=120) 0.12 0.02 0.21 0.12 0.01 0.20 0.13 0.01 0.28 0.07 0.00 0.21

Mod.2 (w=84) 0.14 0.03 0.40 0.15 0.04 0.29 0.13 0.00 0.33 0.08 0.00 0.29

Mod.3 (w=120) 0.10 0.01 0.23 0.11 0.01 0.22 0.10 0.01 0.27 0.07 0.00 0.29

Mod.3 (w=84) 0.10 0.00 0.33 0.15 0.00 0.53 0.09 0.00 0.25 0.17 0.03 0.33

EWC (w=120) 0.11 0.00 0.18 0.09 0.01 0.20 0.09 0.00 0.24 0.05 0.00 0.16

EWC (w=84) 0.10 0.00 0.16 0.08 0.01 0.21 0.06 0.00 0.20 0.06 0.00 0.20

Stress 1 EWC (w=84) 0.03 0.00 0.16 0.11 0.00 0.21 0.13 0.00 0.33 0.19 0.03 0.34

Stress 2 EWC (w=84) 0.09 0.00 0.32 0.09 0.00 0.29 0.12 0.00 0.33 0.19 0.00 0.54

CN

Mod.1 (w=120) 0.11 0.00 0.21 0.06 0.00 0.18 0.11 0.00 0.20 0.10 0.00 0.19

Mod.1 (w=84) 0.12 0.00 0.38 0.06 0.00 0.20 0.05 0.01 0.17 0.08 0.01 0.24

Mod.2 (w=120) 0.11 0.00 0.21 0.11 0.03 0.22 0.07 0.00 0.28 0.09 0.01 0.18

Mod.2 (w=84) 0.16 0.05 0.59 0.13 0.02 0.23 0.16 0.00 0.36 0.17 0.00 0.32

Mod.3 (w=120) 0.09 0.00 0.25 0.07 0.01 0.19 0.06 0.01 0.21 0.07 0.00 0.24

Mod.3 (w=84) 0.11 0.02 0.52 0.18 0.08 0.31 0.17 0.05 0.32 0.13 0.01 0.27

EWC (w=120) 0.09 0.00 0.17 0.08 0.01 0.20 0.07 0.02 0.20 0.08 0.00 0.24

EWC (w=84) 0.10 0.00 0.22 0.10 0.01 0.23 0.11 0.01 0.21 0.09 0.00 0.21

Stress 1 EWC (w=84) 0.02 0.00 0.17 0.08 0.00 0.24 0.10 0.00 0.22 0.10 0.00 0.27

Stress 2 EWC (w=84) 0.08 0.00 0.38 0.14 0.00 0.33 0.09 0.00 0.29 0.10 0.00 0.27

JP

Mod.1 (w=120) 0.11 0.02 0.34 0.04 0.00 0.22 0.02 0.00 0.19 0.14 0.00 0.44

Mod.1 (w=84) 0.08 0.00 0.21 0.11 0.00 0.27 0.14 0.00 0.30 0.11 0.00 0.26

Mod.2 (w=120) 0.11 0.00 0.27 0.12 0.00 0.27 0.19 0.00 0.45 0.06 0.00 0.32

Mod.2 (w=84) 0.13 0.00 0.22 0.15 0.03 0.30 0.10 0.00 0.44 0.08 0.00 0.27

Mod.3 (w=120) 0.16 0.06 0.38 0.13 0.00 0.28 0.06 0.00 0.25 0.12 0.00 0.33

Mod.3 (w=84) 0.14 0.00 0.30 0.07 0.00 0.18 0.07 0.00 0.23 0.07 0.00 0.23

EWC (w=120) 0.12 0.01 0.23 0.09 0.00 0.22 0.09 0.00 0.25 0.10 0.00 0.28

EWC (w=84) 0.11 0.00 0.22 0.08 0.00 0.19 0.11 0.00 0.27 0.09 0.00 0.21

Stress 1 EWC (w=84) 0.02 0.00 0.12 0.11 0.00 0.37 0.14 0.00 0.57 0.17 0.00 0.63

Stress 2 EWC (w=84) 0.02 0.00 0.16 0.10 0.00 0.26 0.09 0.00 0.32 0.06 0.00 0.21

UK

Mod.1 (w=120) 0.05 0.00 0.20 0.01 0.00 0.08 0.07 0.00 0.17 0.05 0.00 0.24

Mod.1 (w=84) 0.12 0.00 0.32 0.01 0.00 0.07 0.12 0.02 0.24 0.13 0.01 0.24

Mod.2 (w=120) 0.15 0.02 0.23 0.04 0.00 0.20 0.10 0.00 0.23 0.04 0.00 0.13

Mod.2 (w=84) 0.12 0.00 0.21 0.22 0.00 0.36 0.18 0.01 0.27 0.09 0.00 0.22

Mod.3 (w=120) 0.11 0.00 0.25 0.08 0.00 0.23 0.04 0.00 0.16 0.07 0.02 0.26

Mod.3 (w=84) 0.06 0.00 0.65 0.20 0.06 0.32 0.06 0.00 0.18 0.18 0.01 0.38

EWC (w=120) 0.14 0.00 0.26 0.01 0.00 0.15 0.02 0.00 0.13 0.05 0.00 0.14

EWC (w=84) 0.17 0.06 0.34 0.17 0.00 0.36 0.06 0.00 0.18 0.07 0.00 0.17

Stress 1 EWC (w=84) 0.01 0.00 0.15 0.07 0.00 0.44 0.19 0.00 0.36 0.20 0.04 0.44

Stress 2 EWC (w=84) 0.06 0.00 0.25 0.19 0.01 0.44 0.15 0.04 0.32 0.12 0.00 0.35

BD

Mod.1 (w=120) 0.09 0.00 0.26 0.02 0.00 0.06 0.02 0.00 0.13 0.03 0.00 0.20

Mod.1 (w=84) 0.10 0.01 0.16 0.03 0.00 0.20 0.15 0.04 0.24 0.06 0.00 0.19

Mod.2 (w=120) 0.13 0.05 0.27 0.22 0.00 0.38 0.04 0.00 0.19 0.03 0.00 0.18

Mod.2 (w=84) 0.16 0.07 0.43 0.09 0.00 0.24 0.15 0.01 0.26 0.12 0.00 0.34

Mod.3 (w=120) 0.09 0.00 0.17 0.09 0.02 0.23 0.02 0.00 0.15 0.05 0.00 0.14

Mod.3 (w=84) 0.12 0.05 0.21 0.16 0.00 0.37 0.19 0.11 0.26 0.18 0.03 0.38

EWC (w=120) 0.09 0.00 0.18 0.11 0.00 0.29 0.02 0.00 0.13 0.02 0.00 0.15

EWC (w=84) 0.09 0.00 0.19 0.09 0.01 0.21 0.09 0.01 0.26 0.05 0.00 0.32

Stress 1 EWC (w=84) 0.06 0.00 0.17 0.07 0.00 0.22 0.23 0.01 0.41 0.29 0.00 0.56

Stress 2 EWC (w=84) 0.07 0.00 0.20 0.14 0.00 0.53 0.10 0.00 0.22 0.15 0.00 0.68

FR

Mod.1 (w=120) 0.11 0.00 0.19 0.05 0.00 0.18 0.02 0.00 0.21 0.05 0.00 0.17

Mod.1 (w=84) 0.09 0.01 0.20 0.06 0.00 0.17 0.07 0.00 0.20 0.10 0.00 0.37

Mod.2 (w=120) 0.12 0.03 0.26 0.09 0.00 0.27 0.07 0.00 0.20 0.07 0.00 0.43

Mod.2 (w=84) 0.15 0.07 0.27 0.13 0.04 0.25 0.18 0.04 0.25 0.12 0.00 0.35

Mod.3 (w=120) 0.09 0.00 0.24 0.11 0.00 0.25 0.13 0.01 0.29 0.06 0.00 0.23

Mod.3 (w=84) 0.10 0.03 0.24 0.15 0.05 0.37 0.11 0.01 0.28 0.17 0.02 0.45

EWC (w=120) 0.11 0.01 0.20 0.06 0.00 0.18 0.02 0.00 0.18 0.04 0.00 0.24

EWC (w=84) 0.11 0.02 0.27 0.10 0.00 0.20 0.13 0.03 0.21 0.06 0.00 0.21

Stress 1 EWC (w=84) 0.05 0.00 0.16 0.13 0.00 0.35 0.14 0.00 0.27 0.23 0.00 0.54

Stress 2 EWC (w=84) 0.07 0.00 0.21 0.12 0.00 0.35 0.13 0.02 0.40 0.08 0.00 0.35

IT

Mod.1 (w=120) 0.02 0.00 0.14 0.11 0.00 0.25 0.10 0.00 0.27 0.12 0.00 0.23

Mod.1 (w=84) 0.12 0.00 0.26 0.06 0.00 0.25 0.04 0.00 0.16 0.10 0.00 0.25

Mod.2 (w=120) 0.11 0.00 0.20 0.17 0.00 0.54 0.19 0.00 0.61 0.14 0.00 0.30

Mod.2 (w=84) 0.14 0.02 0.29 0.12 0.00 0.40 0.13 0.00 0.35 0.08 0.00 0.30

Mod.3 (w=120) 0.14 0.03 0.29 0.09 0.00 0.27 0.04 0.00 0.20 0.06 0.00 0.23

Mod.3 (w=84) 0.14 0.07 0.23 0.05 0.00 0.21 0.12 0.00 0.36 0.09 0.00 0.37

EWC (w=120) 0.09 0.00 0.20 0.11 0.00 0.23 0.03 0.00 0.17 0.10 0.00 0.28

EWC (w=84) 0.13 0.05 0.29 0.05 0.00 0.19 0.07 0.00 0.23 0.03 0.00 0.21

Stress 1 EWC (w=84) 0.01 0.00 0.15 0.15 0.01 0.34 0.19 0.01 0.39 0.24 0.04 0.43

Stress 2 EWC (w=84) 0.10 0.00 0.35 0.10 0.00 0.33 0.08 0.00 0.32 0.03 0.00 0.30
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Table A3. Weights of baseline and stress forecasts in the forecast combination  

(Mean, minimum and maximum) 
(sample: 1992:01-2018:12) 

 
RNF 

 
 

RB 

 
 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US Baseline 0.91 0.57 1.00 0.82 0.64 1.00 0.79 0.63 1.00 0.61 0.14 1.00

Stress 0.09 0.00 0.43 0.18 0.00 0.36 0.21 0.00 0.37 0.39 0.00 0.86

CN Baseline 0.90 0.53 1.00 0.78 0.43 1.00 0.81 0.52 1.00 0.70 0.49 1.00

Stress 0.10 0.00 0.47 0.22 0.00 0.57 0.19 0.00 0.48 0.30 0.00 0.51

JP Baseline 0.95 0.77 1.00 0.70 0.37 1.00 0.68 0.33 0.90 0.83 0.56 0.95

Stress 0.05 0.00 0.23 0.30 0.00 0.63 0.32 0.10 0.67 0.17 0.05 0.44

UK Baseline 0.92 0.61 1.00 0.86 0.59 1.00 0.74 0.48 0.97 0.71 0.52 1.00

Stress 0.08 0.00 0.39 0.14 0.00 0.41 0.26 0.03 0.52 0.29 0.00 0.48

BD Baseline 0.88 0.69 1.00 0.79 0.56 0.98 0.71 0.53 0.96 0.59 0.32 0.97

Stress 0.12 0.00 0.31 0.21 0.02 0.44 0.29 0.04 0.47 0.41 0.03 0.68

FR Baseline 0.91 0.44 1.00 0.76 0.59 0.93 0.74 0.43 0.98 0.68 0.00 0.91

Stress 0.09 0.00 0.56 0.24 0.07 0.41 0.26 0.02 0.57 0.32 0.09 1.00

IT Baseline 0.87 0.57 1.00 0.72 0.42 1.00 0.78 0.44 1.00 0.79 0.44 1.00

Stress 0.13 0.00 0.43 0.28 0.00 0.58 0.22 0.00 0.56 0.21 0.00 0.56

Average Baseline 0.91 0.60 1.00 0.78 0.51 0.99 0.75 0.48 0.97 0.70 0.35 0.98

Stress 0.09 0.00 0.40 0.22 0.01 0.49 0.25 0.03 0.52 0.30 0.02 0.65

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US Baseline 0.89 0.66 1.00 0.80 0.61 0.99 0.75 0.34 1.00 0.62 0.30 0.95

Stress 0.11 0.00 0.34 0.20 0.01 0.39 0.25 0.00 0.66 0.38 0.05 0.70

CN Baseline 0.89 0.58 1.00 0.78 0.47 0.97 0.81 0.65 0.97 0.80 0.46 1.00

Stress 0.11 0.00 0.42 0.22 0.03 0.53 0.19 0.03 0.35 0.20 0.00 0.54

JP Baseline 0.96 0.79 1.00 0.79 0.44 0.99 0.77 0.33 1.00 0.77 0.37 0.98

Stress 0.04 0.00 0.21 0.21 0.01 0.56 0.23 0.00 0.67 0.23 0.02 0.63

UK Baseline 0.92 0.73 1.00 0.73 0.12 0.97 0.66 0.40 0.85 0.68 0.27 0.92

Stress 0.08 0.00 0.27 0.27 0.03 0.88 0.34 0.15 0.60 0.32 0.08 0.73

BD Baseline 0.86 0.66 1.00 0.80 0.31 0.98 0.68 0.54 0.92 0.56 0.24 0.85

Stress 0.14 0.00 0.34 0.20 0.02 0.69 0.32 0.08 0.46 0.44 0.15 0.76

FR Baseline 0.88 0.74 1.00 0.75 0.42 0.96 0.72 0.59 0.94 0.68 0.36 0.95

Stress 0.12 0.00 0.26 0.25 0.04 0.58 0.28 0.06 0.41 0.32 0.05 0.64

IT Baseline 0.89 0.65 1.00 0.75 0.33 0.97 0.73 0.55 0.95 0.72 0.41 0.89

Stress 0.11 0.00 0.35 0.25 0.03 0.67 0.27 0.05 0.45 0.28 0.11 0.59

Average Baseline 0.90 0.69 1.00 0.77 0.38 0.98 0.73 0.49 0.95 0.69 0.34 0.94

Stress 0.10 0.00 0.31 0.23 0.02 0.62 0.27 0.05 0.51 0.31 0.06 0.66
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Table A4. Weights of domestic and external stress forecasts 
 in the forecast combination  

(Mean, minimum and maximum, 1992:01-2018:12) 
 

RNF 

 
 

RB 
 

 
 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US Stress 1 0.01 0.00 0.16 0.06 0.00 0.21 0.06 0.00 0.18 0.24 0.00 0.86

Stress 2 0.08 0.00 0.42 0.12 0.00 0.26 0.15 0.00 0.25 0.15 0.00 0.43

CN Stress 1 0.01 0.00 0.20 0.09 0.00 0.28 0.08 0.00 0.23 0.18 0.00 0.39

Stress 2 0.09 0.00 0.40 0.12 0.00 0.28 0.11 0.00 0.25 0.12 0.00 0.25

JP Stress 1 0.01 0.00 0.19 0.17 0.00 0.63 0.24 0.05 0.63 0.05 0.00 0.21

Stress 2 0.03 0.00 0.22 0.12 0.00 0.22 0.07 0.00 0.24 0.12 0.03 0.32

UK Stress 1 0.03 0.00 0.23 0.07 0.00 0.26 0.12 0.00 0.28 0.11 0.00 0.32

Stress 2 0.05 0.00 0.39 0.06 0.00 0.25 0.14 0.00 0.35 0.17 0.00 0.34

BD Stress 1 0.07 0.00 0.23 0.09 0.00 0.22 0.25 0.01 0.42 0.23 0.00 0.56

Stress 2 0.05 0.00 0.22 0.11 0.00 0.33 0.05 0.00 0.25 0.17 0.02 0.41

FR Stress 1 0.05 0.00 0.20 0.12 0.00 0.21 0.10 0.00 0.41 0.16 0.00 0.33

Stress 2 0.04 0.00 0.56 0.12 0.04 0.30 0.16 0.02 0.33 0.15 0.00 1.00

IT Stress 1 0.03 0.00 0.18 0.17 0.00 0.48 0.12 0.00 0.50 0.20 0.00 0.56

Stress 2 0.10 0.00 0.43 0.12 0.00 0.28 0.10 0.00 0.23 0.01 0.00 0.13

Average Stress 1 0.03 0.00 0.20 0.11 0.00 0.33 0.14 0.01 0.38 0.17 0.00 0.46

Stress 2 0.06 0.00 0.38 0.11 0.01 0.28 0.11 0.00 0.27 0.13 0.01 0.41

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

US Stress 1 0.03 0.00 0.16 0.11 0.00 0.21 0.13 0.00 0.33 0.19 0.03 0.34

Stress 2 0.09 0.00 0.32 0.09 0.00 0.29 0.12 0.00 0.33 0.19 0.00 0.54

CN Stress 1 0.02 0.00 0.17 0.08 0.00 0.24 0.10 0.00 0.22 0.10 0.00 0.27

Stress 2 0.08 0.00 0.38 0.14 0.00 0.33 0.09 0.00 0.29 0.10 0.00 0.27

JP Stress 1 0.02 0.00 0.12 0.11 0.00 0.37 0.14 0.00 0.57 0.17 0.00 0.63

Stress 2 0.02 0.00 0.16 0.10 0.00 0.26 0.09 0.00 0.32 0.06 0.00 0.21

UK Stress 1 0.01 0.00 0.15 0.07 0.00 0.44 0.19 0.00 0.36 0.20 0.04 0.44

Stress 2 0.06 0.00 0.25 0.19 0.01 0.44 0.15 0.04 0.32 0.12 0.00 0.35

BD Stress 1 0.06 0.00 0.17 0.07 0.00 0.22 0.23 0.01 0.41 0.29 0.00 0.56

Stress 2 0.07 0.00 0.20 0.14 0.00 0.53 0.10 0.00 0.22 0.15 0.00 0.68

FR Stress 1 0.05 0.00 0.16 0.13 0.00 0.35 0.14 0.00 0.27 0.23 0.00 0.54

Stress 2 0.07 0.00 0.21 0.12 0.00 0.35 0.13 0.02 0.40 0.08 0.00 0.35

IT Stress 1 0.01 0.00 0.15 0.15 0.01 0.34 0.19 0.01 0.39 0.24 0.04 0.43

Stress 2 0.10 0.00 0.35 0.10 0.00 0.33 0.08 0.00 0.32 0.03 0.00 0.30

Average Stress 1 0.03 0.00 0.16 0.10 0.00 0.31 0.16 0.00 0.36 0.20 0.02 0.46

Stress 2 0.07 0.00 0.27 0.13 0.00 0.36 0.11 0.01 0.31 0.11 0.00 0.38
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