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Abstract

To account for difficult-to-forecast turning points in credit risk, we incorporate
uncertainty about transitions between low- and high-loss phases in a well-known
portfolio credit-risk model. We then study how the adequacy of bank capital
depends on two macro risk factors, driving respectively default clustering within
a phase and phase switches. For a bank with lower exposure to the within-
phase macro risk, ignoring phase uncertainty is more detrimental and improving
phase-switch forecasts brings larger solvency benefits. To investigate the practical
relevance of our results, we design a novel empirical method for comparing the
degree of within-phase macro-risk exposure across credit portfolios.
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Figure 1: Abrupt turning points and credit-loss phases. Quarterly net charge-off and delin-
quency rates on loans by US banks to the non-financial private sectors. Turning points are identified
with the Harding and Pagan (2002) business cycle dating algorithm, applied to the 3-year ahead change
in each series (window = 2Y, phase length > 2Y and cycle length > 3Y).

1 Introduction

Turning points in credit risk and the distinct loss phases that they generate have had
important financial stability implications. Abrupt transitions between low- and high-
loss phases transpire from delinquency and loan charge-off rates (Figure 1) as well as
from defaults on bonds issued by non-financial firms (Krüger et al. (2018)). On the
back of such transitions, the old “incurred loss” provisioning framework systematically
failed to support banks’ resilience and had to be eventually overhauled (FSF (2009)).

Even though credit-risk forecasts are counted on for the timely accumulation of loss-
absorbing resources that protect lenders’ solvency – not least by the new provisioning
framework (IASB (2014) and FASB (2016)) – there is an ongoing debate whether they
can live up to the task in practice. Covas and Nelson (2018), Abad and Suárez (2017),
Chae et al. (2018), Krüger et al. (2018), Goncharenko and Rauf (2020), and Loudis and
Ranish (2019) are sceptical about the possibility to forecast credit-risk turning pints
in real time (i.e. out of sample). And while Harris et al. (2018), Lu and Nikolaev
(2022) and Juselius and Tarashev (2020) seek to improve the accuracy of real-time
forecasts of such turning points – respectively on the basis of cross-sectional analysis,
a high-dimensional dynamic factor model and indicators of the build-up of financial
imbalances – much uncertainty remains.
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Wary of the low precision of forecasts around turning points in credit risk, prudential
authorities have increasingly de-emphasised point estimates as drivers of regulation. For
instance, European authorities have enshrined in law the need to account for estimation
error through conservative capital requirements (European Union (2013), Article 179).
In another expression of conservatism, the US Federal Reserve assesses large US banks’
regulatory capital via stress tests that do not refer to the likelihood of the underlying
scenarios (e.g. Federal Reserve Board (2022)). Recently, the Basel Committee on
Banking Supervision (BCBS) has supported the build-up of “cycle neutral” buffers that
would be in place as long as there is no systemic crisis, thus abstracting from financial-
risk estimates outside such an event (BCBS (2022); see also Bank of England (2016)).
Yet, these and similar other measures to handle uncertainty are costly. Hence, there
is value in studying under which conditions they provide particularly high financial-
stability benefits.

With this as a motivation, we investigate bank capital adequacy under uncertainty
about the evolution of credit risk. Building on a parsimonious setup, in which a bank
sets capital to target the same solvency objective as its regulator, we introduce a per-
sistent risk factor to model uncertainty about turning points in probabilities of default
(PDs). We then study how benefits of accounting for or reducing such uncertainty
depend on exposure to a second, short-lived macro risk factor that drives default clus-
tering for given PDs. Finally, we derive an empirical method for comparing portfolios
in terms of their exposure to the default-clustering factor.

Throughout, we focus on two aspects of the probability distribution of credit-loss
rates. One is the expected loss (EL), which determines banks’ new forward-looking pro-
visioning and thus drives their loan-loss reserves (IASB (2014) and FASB (2016)). In a
portfolio of exposures with homogeneous risk parameters – which we assume through-
out the paper, in order to focus on the evolution of credit risk – EL is the product
of loss-given-default (LGD) and probability of default (PD). The other aspect is the
unexpected loss (UL) – or the difference between some high percentile of the default-
rate distribution and EL – which drives banks’ regulatory capital requirements (BCBS
(2017)). Rising uncertainty as to whether the turning point is around the corner – e.g.
an increasing similarity of the perceived likelihoods of increasingly distinct phases –
need not change EL but is sure to raise UL all else the same. Below, when we discuss
such a decoupling between EL and UL, we will think of it as driven by a change in the
general credit outlook, rather than a change in a portfolio’s composition.

We build our analysis on a well-known model of portfolio credit risk (Vasicek (1991)
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and Gordy (2003)), which provides the backbone of banks’ internal ratings-based reg-
ulatory capital requirements (Basel III: BCBS (2017), pp 62-3). This model assumes
that the relevant phase is known, i.e. that banks estimate perfectly the PD and LGD
– and thus the EL – of the borrowers in their portfolio. It also assumes that any de-
viation of default rates from ELs stems from a transient macro risk factor that affects
simultaneously the creditworthiness of all borrowers, i.e. a “default-clustering” factor.
All else equal, a bank with a higher exposure to (or “loading” on) this factor faces a
higher UL. For a given loading on the default-clustering factor, the model implies that
PD and LGD are the only drivers of any change in the probability distribution of
credit losses and, in particular, that EL and UL do not decouple.1

We extend this model by introducing a second macro risk factor that follows a
two-state Markov switching process – driving transitions between low- and high-PD
phases. Admittedly, such a factor cannot account fully for the richness of the time series
properties of credit losses, e.g. it does not distinguish between turning points and phase
switches and leaves all loss variation within a phase to be explained by the default-
clustering factor. Importantly, however, it is designed to capture abrupt transitions
between extreme loss rates – whereby recent incurred losses are uninformative about
future ones around a phase switch – and implies that loss rates are persistent within
a phase, similar to when a deterioration in the macro environment reduces borrowers’
credit quality over several periods. We find that the Markov process describes well data
on US loan charge-off rates from 1985 to 2021. Again, all else equal, a bank with a
higher exposure to the macro risk factor within a phase faces a higher UL. However,
changes to the likelihood of each phase and the magnitude of phase-contingent PDs
can now lead UL to decouple from EL. Since time variation in LGD does not generate
decoupling, we keep this parameter fixed in the background.

We then cast three banks that differ with respect to their information sets and
approaches to uncertainty. The first bank is “informed”, as it can genuinely anticipate
phase switches and estimate exactly the relevant PD level. This is in line with the
traditional Vasicek model. The second bank is “uninformed”: it faces uncertainty about
the phase – i.e. it knows only the parameters of the Markov process, not the relevant

1Because changes to the loading on the default-clustering factor have been extremely difficult to
validate empirically, the literature has tended to treat this loading as constant over time (see Section
3.4.2). For its part, Basel III assumes that the loading is a deterministic decreasing function of the PD
(see Appendix C). Under this assumption, EL and UL still do not decouple over realistic PD levels.
Throughout the paper, we abstract from regulatory adjustments in relation to exposures’ maturity
(BCBS (2017)), as these would overburden the exposition without affecting the upshot of the analysis.
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PD level – but accounts accurately for this uncertainty in assessing its EL and UL.
The third bank is “naive”: it has the same information set as the uninformed bank but
assumes falsely that it can anticipate accurately phase switches, and that the PD it
estimates pertains to the relevant phase. In other words, this bank applies the Vasicek
model, even though its information set does not warrant it. All three banks set their
loss-absorbing resources equal to the sum of perceived EL and UL and fail if their
losses exceed these resources.

Keeping all else the same across the three banks, and in particular the probability
of own failure that they target, we derive analytical expressions to answer the following
two questions. First, what would be the shortfall of loss-absorbing resources – i.e. the
difference between the level that generates a target failure probability and the actual
level – if a bank ignored that there is uncertainty about the PD phase? The answer
stems from a comparison between the naive and uninformed banks. Second, how would
loss-absorbing resources change if a bank, aware of phase uncertainty, improved its
capacity to forecast phase switches? For this question, we compare the informed and
uninformed banks. With the phase-contingent risk factors assumed to be Gaussian, we
need the following parameter values to perform each comparison: borrowers’ PD in
each phase, the phase-switching probabilities and the loading of borrowers’ assets on
the default-clustering factor.

The novel conceptual insight of our analysis stems from an investigation of how the
answers to the above two questions depend on the asset portfolio’s exposure to the
transient default-clustering factor, ie to within-phase macro risk. First, we find that
the naive bank faces a higher failure probability from the perspective of the uninformed
bank when the loading on the default clustering factor is lower. That is, even though
a bank faces a higher UL when its exposure to within-phase macro risk is higher (and
should thus have higher capital), ignoring phase uncertainty is more detrimental for
a bank with lower exposure to such risk. Second, lower exposure to within-phase
macro risk also raises the importance of the quality of the information set. Namely,
immediately after a switch from the low- to the high-PD phase, the informed bank
perceives a higher failure probability of the uninformed bank when the loading on the
default-clustering factor is lower. The overarching intuition is as follows. A lower
loading on the default clustering factor means that benign realisations of this factor are
less likely to compensate for wrongly abstracting from turning points in credit risk (the
naive bank) or failing to anticipate such a turning point (the uninformed bank).

Motivated by the importance of loadings on the default-clustering factor in the
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context of default phase uncertainty, we develop a novel method for comparing these
loadings across portfolios. The underlying intuition is that a smaller exposure to within-
phase macro risk would imply – all else the same – less dispersion of phase-contingent
losses. And when there are several phases, the modes associated with each one of them
would be more distinct. This leads us to conjecture that one should be less likely to
reject a multi-modality of the unconditional loss distribution when the portfolio loads
less strongly on the default-clustering factor. We confirm this conjecture with three
standard modality tests (developed by Cheng and Hall (1998), Hall and York (2001),
and Ameijeiras-Alonso et al. (2019)) in a Monte Carlo environment. Finally, using
credit-loss data for two portfolio types, we find that the business loan portfolio is less
exposed to within-phase macro risk than the real-estate loan portfolio.

In sum, we argue that the regulatory framework should address uncertainty about
turning points in credit risk with both universal and bank-specific measures. In general,
the regulator should not be satisfied only with an accurate EL estimate but should
seek to align the loss-absorbing resources with a loss-rate probability distribution that
incorporates estimates of phase-switch probabilities and phase-contingent PDs. The
regulator should encourage greater accuracy in the forecasts of time-varying loss rates,
but especially in the case of banks with a low exposure to within-phase macro risk. In
addition, when building loss-absorbing resources, it is more important for such banks to
account for their uncertainty about turning points in credit risk. We show the relevance
of this takeaway with a new empirical method that rank-orders banks’ loadings on a
within-phase macro risk factor by comparing the modality of their unconditional loss
distributions.

Roadmap. The rest of this paper is organised as follows. Section 2 presents the
risk environment in which we conduct the analysis. Then, Section 3 introduces three
banks and discusses how risk parameters affect their loss-absorbing resources. Sections
4-5 conduct cross-bank comparisons to first determine the implications of accounting
for or reducing phase-switch uncertainty and then dig into these implications. Section
6 develops an empirical method for comparing portfolios with respect to their within-
phase exposure to macro factors. Section 7 concludes.
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2 Risk environment

We develop the risk environment in three steps. First, we outline a simplified version of
the credit-risk model used for international bank regulatory standards (Vasicek (1991),
Gordy (2003), BCBS (2017)), henceforth “the Vasicek model”. The simplifying assump-
tion is that the credit portfolio comprises homogeneous exposures. Second, we present a
novel extension of the Vasicek model that introduces uncertainty about turning points
in credit risk. The assumed homogeneity facilitates the analysis of this uncertainty.
Third, we derive the probability distribution of portfolio losses.

2.1 Simplified Vasicek model

At the beginning of each year t, the portfolio is composed of n homogeneous one-year
loans and is asymptotic. The loans are homogeneous in the sense that each one is of size
1/n and is extended to a (non-defaulted) borrower, with all borrowers sharing the same
one-year probability of default (PDt) at the beginning of t. The portfolio is asymptotic
because n→∞.

A representative borrower j, defaults in year t if the value of its assets falls below its
debt, Aj,t < Dt. The only stochastic elements are the macro and borrower-specific risk
factors – Gt and Zj,t, respectively – that drive the asset value: Aj,t = µA,t + σG,tGt +

σZ,tZj,t. Concretely, Gt ∼ N (0, 1), Zj,t ∼ N (0, 1) and the two are mutually and serially
independent and inherently unpredictable, with Zj,t independent across j. The volatility
parameters – σG,t > 0 and σZ,t > 0 – and the expected asset value – µA,t – are known.
The default condition is typically rewritten in terms a default threshold, Bt:

ρtGt +
√

1− ρ2
tZj,t < Bt = Φ−1 (PDt) , where: (1)

ρt ≡
1√

1 + σ2
Z,t/σ

2
G,t

∈ (0, 1) and Bt ≡
Dt − µA,t√
σ2
G,t + σ2

Z,t

,

Φ is the standard-normal CDF and the equality on the first line of (1) follows from
the left-hand side being equal to a standard normal variable. Thus, PDt increases in
the debt level but decreases in the expected asset value. And, since debt needs to be
lower than the expected asset value for realistically low levels of PDt (see below) – i.e.
Dt − µA,t < 0 – PDt also increases in the overall asset volatility, σ2

G,t + σ2
Z,t,

The key difference between the two risk factors surfaces at the portfolio level. While
Zj,t is fully diversified at that level, Gt is not and generates default clustering. This
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clustering is stronger for a higher “loading parameter” ρt, which is equivalent to a higher
volatility of the “default clustering” factor relative to that of idiosyncratic factors. Since
the differentiation across borrowers stems only from the i.i.d. factor Zj,t, the surviving
borrowers in each period remain homogeneous.

2.2 Extending the model: uncertainty about the PD phase

To build on the Vasicek model, we note that the evolution of credit losses in Figure 1
has specific implications for the time series properties of PDt. This evolution features
turning points that lead to persistent low- or high-loss phases. In the light of expression
(1), given that Gt and Zt are i.i.d. over time, persistent shocks to credit losses cannot
be stemming from changes in ρt for a fixed PDt. Such changes can drive only period-
to-period deviations of the loss rate around the PDt. By contrast, the observed time
profile of default rates indicates serial dependence in PDt.

Thus, we need to introduce a persistent macro risk factor that drives PDt, alongside
the i.i.d. macro factor that drives default clustering for a given PDt. By (1), the former
risk factor would be related to components of the default point Bt – i.e. the level of debt,
the expected asset value, or the asset volatility. That said, we will continue assuming
that the relative volatility of the two i.i.d factors is known so that ρt is also known.

Our specific modelling decision is guided by the analytical complexities that can
arise in the Vasicek model in the presence of a second risk factor (Gordy (2003)). To
avoid these complexities, we opt for an extremely simple process that leads PDt to
take on one of two possible values. While such a process will not fully account for the
richness of loss rates in the data – eg it leaves all within phase variability to be explained
by the default-clustering factor – it is designed to capture in a stylised fashion abrupt
transitions between extreme loss phases as well as within-phase persistence.

Concretely, we let PDt follow a two-phase Markov process. We assume that this
process is independent of the other risk factors and has realisations PDt ∈

{
PDl

t, PD
h
t

}
,

where the levels of PDl
t and PDh

t are known at the beginning of period t and PDl
t <

PDh
t . In addition, πxt ≡ Pr

(
PDt = PDx

t |PDx
t−1

)
is the probability that phase x ∈

{l, h} materialises in period t, conditional on the same phase being in place in period
t − 1. This is the phase-continuation probability.2 Since this specification does not

2A similar Markov switching setup underpins studies of the effects of ratings-sensitive capital re-
quirements on banks’ capital buffers over the business cycle (see Peura and Jokivuolle (2004) and
references therein).
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Figure 2: Fitting a Markov-switching model. Blue lines: Quarterly charge-off rates on loans by
US banks to the non-financial private sectors (first panel) or sub-sectors (second and third panels).
Red lines: the fitted values of estimating a two-regime Markov switching model.

distinguish between turning points and phase switches, we refer only to the latter in
what follows.

A two-state Markov model – with constant phase-continuation probabilities – fits
well the large abrupt swings in US loan loss rates (see Figure 2 and, for further detail,
Appendix A). For the total loan portfolio, the model captures the high-loss phases
associated with the banking crisis in the early 1990’s and the great financial crisis
of 2008. The persistence of the different phases surfaces as high estimates of phase-
continuation probabilities, πl = 94% and πh = 70%, respectively. By allowing for only
two phases, the model misses the relatively mild increase in total portfolio loss rates that
is associated with the burst of the dot-com bubble (hence, it misses the corresponding
turning points identified in Figure 1). That said, the model does capture this increase
(and the corresponding turning points) within the business loan sub-portfolio.

Remarks on the phase-continuation probabilities are in order. The constant proba-
bilities, which we estimate as part of the Markov model, do not reflect any information
other than the current phase. In practice, the macro-financial environment may gen-
erate uncertainty, driving the perceived continuation probability of the current phase
towards 1/2 (i.e. towards a setting in which the forecaster’s information set is as poor
as that contained in a coin toss). We consider such a scenario in Section 3.4.2. Al-
ternatively, if forecasters refine their estimates of a phase-contingent probability, these
estimates would decline towards 0 in the run-up to an actual phase switch. We revisit
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this point in Section 5.

2.3 Loss distribution

In each period t, the portfolio’s stochastic default rate is equal to3

limn→∞
∑n

j=1
1
n

PrZ

(
ρtGt +

√
1− ρ2

tZj,t < Φ−1 (PDt)
)

= PrZ

(
Zj,t <

Φ−1(PDt)−ρtGt√
1−ρ2

t

)
.

Rearranging and assuming without loss of generality that LGD is 100%, we obtain that
the portfolio’s loss rate is:

Loss (Gt, PDt; ρt) = Φ

(
Φ−1 (PDt)− ρtGt√

1− ρ2
t

)
. (2)

The loss-rate probability distribution has three drivers. First, the default clustering
factor Gt. Second, the known and potentially time-varying loading on this factor, ρt.
Third, the persistent phase-switching factor PDt.

3 Three banks: setting loss-absorbing resources

We now study three banks, for which the only source of potential losses are their loan
portfolios. While all the banks operate in the above risk environment, they differ with
respect to their perceptions, which reflect: (i) capacity to forecast the relevant loan
PD, and (ii) the extent to which this capacity is taken into account when building
loss-absorbing resources (LAR). At the beginning of year t, each bank sets its LAR
equal to the (1− α)-quantile of the perceived probability distribution of the random
variable in (2). In case the actual losses exceed a bank’s LAR, this bank fails and an
identical bank replaces it, facing the same loss distribution that the failed one would
have faced. Ultimately, while each bank perceives its one-year failure probability to be
equal to α – which would tend to be a very low number (see Section 3.4.1 below) – this
probability would typically not be equal to α from the perspective of the other banks.

In practice, LAR are broken into two parts. First, a bank’s loan-loss reserves (the ac-
cumulated provisions net of write-offs) reflect the estimated expected loss (EL), equiv-
alently the estimated loans’ PD in our setting. Second, the difference between the
(1− α) percentile of the perceived loss distribution and EL is denoted by unexpected

3See Gordy (2003) for the theoretical underpinning of an asymptotic portfolio’s loss rate under weak
conditions on the shape, continuity and differentiability of the idiosyncratic and default-clustering
factors, Zj and G. Our setup satisfies these conditions by assuming normality of these two factors.
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losses (UL), which is covered by capital. With accounting and prudential authorities
governing respectively provisioning and capital requirements (IASB (2014) and BCBS
(2017)), there are differences between the time horizons underpinning the correspond-
ing loss distribution. We abstract from these differences, which implies that the sum of
reserves and capital equals LAR.

For each bank, we next derive EL and UL and study their properties.

3.1 Informed bank

The informed bank has exact knowledge of the relevant risk parameters and the relevant
loan-loss phase. Denoting its LAR by the generic Λ, expression (2) implies that its
failure probability is

FP I (PDt, ρt; Λ) ≡ FP I
t = Pr

(
Λ < Φ

(
Φ−1 (PDt)− ρtGt√

1− ρ2
t

))

= Φ

(
Φ−1 (PDt)−

√
1− ρ2

tΦ
−1 (Λ)

ρt

)

In turn, targeting a failure probability of α, the informed banks sets its LAR to:

ΛI (PDt, ρt;α) = Φ

(
Φ−1 (PDt)− ρtΦ−1 (α)√

1− ρ2
t

)
. (3)

Finally, we record this bank’s EL and UL:

ELIt = PDt and ULI (bt, ρt;α) ≡ ULIt = ΛI (PDt, ρt;α)− PDt, (4)

3.2 Uninformed bank

While the uninformed bank knows the default clustering factor, ρt, and the phase-
contingent levels of loans’ probability of default, PDl

t and PDh
t , it faces uncertainty

as to whether the period-t − 1 phase x ∈ {l, h} will continue in period t, πxt ∈ (0, 1).
Taking this uncertainty into account, this bank attains its target failure probability by
setting its loss-absorbing resources, ΛU

(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
, at the (unique) solution
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of the following equation in terms of Λ:

FPU
(
Λ; πxt , PD

x
t , PD

x̃
t , ρt

)
≡ FPU

t

= πxt Φ

(
Φ−1 (PDx

t )−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
(5)

+ (1− πxt ) Φ

(
Φ−1

(
PDx̃

t

)
−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
= α

where x̃ is the phase that did not materialize in year t − 1. The uninformed bank’s
LAR is sandwiched between the corresponding phase-contingent levels for the informed
bank (see Appendix B.1 for a proof):

ΛU
(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
≡ ΛU

t ∈
(
ΛI
(
PDl

t; ρt, α
)
,ΛI

(
PDh

t ; ρt, α
))

. (6)

Ultimately, the uninformed bank perceives the following EL and UL:

ELU
(
πxt , PD

x
t , PD

x̃
t

)
≡ ELUt = πxt PD

x
t + (1− πxt )PDx̃

t , (7)

ULU
(
πxt , PD

x
t , PD

x̃
t ; ρt, α

)
≡ ULUt = ΛU

t − ELUt . (8)

3.3 Naive bank

The naive bank has the same forecasting capacity as the uninformed bank but ignores
the uncertainty it is subject to. The naive bank shares important features with a bank
that adopts blindly the credit-risk model stipulated in global regulatory standards.4

Concretely, if the current phase is xt, the naive bank estimates PDN
t = πxt PD

x
t +

(1− πxt )PDx̃
t but perceives its failure probability to be equal to:

FPN
(
PDN

t ; ρt,Λ
)

= FPN
t = Φ

(
Φ−1

(
PDN

t

)
−
√

1− ρ2
tΦ
−1 (Λ)

ρt

)
. (9)

4For a discussion of the “regulatory” bank, see Appendix C.
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In turn, this leads it to set the following LAR, EL and UL:

ΛN
(
PDN

t ; ρt, α
)
≡ ΛN

t = Φ

(
Φ−1

(
PDN

t

)
− ρtΦ−1 (α)√

1− ρ2
t

)
, (10)

ELNt = PDN
t , (11)

ULN
(
PDN

t ; ρ, α
)
≡ ULNt = ΛN

t − ELNt . (12)

3.4 Discussion: Comparative statics and EL-UL decoupling

In this section, we conduct comparative statics from each bank’s own perspective. Since
the discussions of the informed and naive banks would be qualitatively identical in this
setting, we consider only the former bank.

3.4.1 Parameter restrictions

For the discussion and proofs, we impose three parameter restrictions as maintained
assumptions, which turn out to be borne one by the data.

First, we assume that, even in the low-loss phase, the loan PD is larger than the
bank’s target failure probability: PDl

t > α. One would expect this condition to hold in
practice, as otherwise banks would have a higher cost of funding than their borrowers.
In turn, this would make banks’ intermediation model non-viable. Indeed, given that
α = 0.1% in Basel III (BCBS (2017)), the condition is satisfied in our data on aggregate
loss rates – the lowest one-year loan PD estimate reported in Appendix A is 0.44%.

Second, we assume that a borrower services its debt in the absence of shocks (Gt =

Zj,t = 0). By expression (1), this requires Bt < 0 , which implies that PDt = Φ−1(Bt) <

50%. The aggregate-loss data corroborates this condition, as the highest PD estimate
reported in Appendix A is below 3%.

Third, we limit the persistence of the low-loss regime from above and below with
the assumption, PDh

t < 1−πlt < 50%, which is also in line with our empirical estimates
(Appendix A).

Combining all assumptions, we impose:

α < PDl
t < PDh

t < 1− πlt < 50%. (13)
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Figure 3: EL and UL: joined at the hip for realistic PDs. Loss-absorbing resources (LAR)
and their components – expected loss (EL) and unexpected loss (UL) – from the perspective of the
informed bank when the target one-year probability of bank failure is 0.1%. The dashed line indicates
maximum UL.

3.4.2 Comparative statics

In Figure 3, we illustrate the impact of loans’ PD and loading on the default clustering
factor on the informed bank’s EL, UL and LAR.5 Trivially, ELI increases in PDt and
is insensitive to ρt. In turn, it follows directly from (3) that ΛI increases in both PDt

and ρt. While ULI increases in ρt, the impact of loans’ PD on ULI is ambiguous. Note
that UL is continuous in PDt, zero at PDt = ELt ∈ {0, 1} and positive for intermediate
levels of PDt. Thus, UL first increases but eventually decreases with PDt. In the light
of the sandwiching in (6) and the restrictions in (13), the picture is qualitatively the
same for the uninformed bank.

That said, the relationships are less ambiguous over realistic parameter values.
Given that the levels of ρ in Figure 3 span the range of this parameter’s estimates
in the literature (Düllmann et al. (2007), Zhang et al. (2008) and Bams et al. (2012))
and average PDs at the portfolio level tend to be way below 10% (Section 3.4.1), UL
increases monotonically with PDt in practice. Thus, when PDs changes over time, EL
and UL either increase or decrease together.

5See Appendix B.2 for proofs of statements in Section 3.4.2 and for how these proofs make use of
the assumptions sated in Section 3.4.1.
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Figure 4: Sources of decoupling and implications for bank failure. Loss-absorbing resources
(LAR) and their components – expected loss (EL) and unexpected loss (UL) – from the perspective
of the informed bank (left-hand panel) and uninformed bank (centre panel) when the target one-year
probability of bank failure is 0.1%. On the assumption that the latest phase is the low-PD one, the
additional parameters are as follows: loan PD = 2% (left-hand panel, also the expected loan PD in
centre panel and right-hand panels); ρ2 = 20% (centre panel); πl = 95%. The right-hand panel plots
the naive bank’s probability of failure from the perspective of the uninformed bank, for different levels
of uncertainty (PDh–PDl) = 5% (low), 10% (medium) and 20% (high).

Decoupling of EL and UL: loading on default-clustering factor. EL and UL
may decouple if the loading on the default clustering factor changes over time. This is
because such changes affect UL but not EL (see, for instance, expressions (3) and (4)).
We illustrate this in Figure 4 (left-hand panel).

The empirical relevance of time variation in ρt is questionable. For instance, while
Düllmann et al. (2007), Zhang et al. (2008) and Bams et al. (2012) do find evidence
that this parameter differs across credit portfolios (see below), they do not find cyclical
changes that could help explain e.g. the patterns of default clustering in Figure 1. In
addition, in a setting akin to the one we use here, Zhou (2001) derives that the effect of
a higher ρt on default clustering is similar to that of higher probabilities of default. A
similar message stems from the key argument in Erlenmaier and Gersbach (2013), who
study the impact of PDs on default correlations. Thus, we henceforth consider only a
constant ρ, which allows us to concentrate on changes in PDt over time.

Decoupling of EL and UL: uncertainty about the PD phase. Alternatively, the
decoupling of EL and UL could stem from uncertainty about the credit-loss phase, i.e.
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from uncertainty about PDt. We consider two specific scenarios that reflect emerging
uncertainty: (i) the opening of a wedge between PDl

t and PDh
t for a given πxt ; (ii) πt

declining below 1 towards 1/2. In each of these scenarios, we keep EL constant.
The proposition below states that UL rises in each of these two scenarios. The

proof – in Appendix B.3 – uses the fact that the uninformed bank’s failure probability
(expression (5)) is an increasing convex function of loans’ PD.

Proposition 1 Effect of uncertainty on UL. Suppose that each of the following
two switch-to-uncertainty scenarios maintains ELUt = ELUt−1: (i) πlt−1 = πlt and PDl

t <

PDl
t−1 = PDh

t−1 < PDh
t or (ii) πlt−1 = 1 > πlt > 0.5, PDl

t < PDl
t−1 and PDh

t = PDh
t−1.

Under either scenario, ULUt−1 < ULUt .

In Figure 4 (centre panel), we illustrate the implications of scenario (i). While the
blue area (EL) is flat, the red area (UL) is narrowest at the left edge, where there is
no uncertainty. Moreover, the monotonic widening of the red area from left to right
indicates decoupling between EL and UL even when there is an increase of existing
uncertainty (i.e. when the wedge between PDl

t and PDh
t widens from a positive level).

The picture is similar for scenario (ii).

4 LAR shortfalls: due to ignoring uncertainty

We now investigate how ignoring uncertainty-driven decoupling of EL and UL would
affect the probability of bank failure. For this, we assume that the low-PD phase is in
place in period t−1 and consider the naive bank from the perspective of the uninformed
one. Proposition 1 implies that – from this perspective, for any given ρ and under either
scenario (i) or (ii) – the naive bank has a strictly lower LAR than the one needed to
attain the target failure probability of α.

Then, we consider how LAR evolves as ρ declines towards 0. In the process, the
distribution of portfolio loss rates converges to a degenerate distribution with only one
realisation in each phase, equal to PDl

t and PDh
t (Figure 5). Given the assumed phase

in period t − 1, the probability of these realisations is πlt and 1 − πlt, respectively. In
parallel, since α < 1−πlt by expression (13), the level of LAR that is consistent with the
target failure probability from the uninformed bank’s perspective converges to PDh

t .
Ultimately, since the naive bank’s LAR would then be lower than PDh

t by Proposition
1, its failure probability would converge to 1− πlt as ρ→ 0.
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Figure 5: Effect of ρ on the loss distribution. Conditional on the latest phase being the low-PD
one, with additional model parameters: πl = 55%; PDl = 2% and PDh = 6%. The value of πl is
chosen to optimize readability.

Consider two banks of the naive type. Suppose that the loan portfolio of one of the
banks is governed by values of ρ, πlt, PDl

t and PDh
t that imply a failure probability

below 1 − πlt. By the above reasoning, the failure probability of the other bank would
be higher if it faces the same πlt, PDl

t and PDh
t but a lower ρ that is sufficiently close

to 0. This is stated formally in the following proposition and proved in Appendix B.4.

Proposition 2 Effect of ignoring uncertainty on failure probability. Suppose
that the state in period t − 1 is x = l. There exist ρ̄ < 1 and ρ < ρ̄ such that a naive
bank’s failure probability is higher at ρ ∈

(
0, ρ
)

than at ρ ∈ (ρ̄, 1).

For any given πlt, PDl
t and PDh

t , Appendix B.4 delivers an implicit expression for ρ̄.
For our estimates of the former three parameters within the Markov switching model
(Appendix A), we derive ρ̄ on the basis of that expression and report the results for
different loan portfolios in Table A.1. All derived values of ρ̄ are so low that (ρ̄, 1) en-
compasses any estimate of asset-return correlations that we are aware of in the literature
(Düllmann et al. (2007), Zhang et al. (2008) and Bams et al. (2012)) and regulatory
texts (BCBS (2017)).

In Figure 4 (right-hand panel), we employ specific parameterisations of the risk en-
vironment in Section 2. In these examples, the naive bank’s failure probability increases
as ρ decreases over a wide interval.

17



0.
00

0.
01

0.
02

0.
03

0.
00

0.
10

0.
20

0.
30

0.
40

U−bank capital I−bank capital

U−bank provisions I−bank provisions

 low−low PD              low−high PD

Weak role of clustering factor

0.
00

0.
01

0.
02

0.
03

0.
00

0.
10

0.
20

0.
30

0.
40

U−bank failure probability (rhs)

I−bank failure probability  (rhs)

  low−low PD            low−high PD

Strong role of clustering factor

Figure 6: Implications of missing a turning point. The underlying parameterisation is: PDl =

2%, PDh = 6%, α = 0.1%, πl = 95%, ρ2 = 1% (left-hand panel) and ρ2 = 20% (right-hand panel).

5 LAR shortfalls: due to uncertainty

We now change perspectives to study how the uncertainty in loss forecasts – that is, the
mere existence of EL-UL decoupling – affects LAR shortfall and banks’ failure proba-
bility. To this end, we treat the “appropriate” LAR and the “true” failure probability
to be those derived and perceived, respectively, by the informed bank and study how
they differ from those of the uninformed bank. For brevity, we discus only a scenario
where the latest phase has featured PDl

t−1. The implications are symmetric for PDh
t−1.

While the informed bank’s failure probability is always at the target level, the unin-
formed bank’s can be lower or higher (Figure 6, diamonds versus dots). Concretely, the
latter probability is below target if the low-loss phase continues (low-to-low scenarios:
dots below diamonds) and above target if there is a low-to-high switch. This reflects
LAR excesses, respectively shortfalls, stemming from the sandwiching property of the
uninformed bank’s LAR: expression (6).

Our key insight in this context is that the overshooting of the target failure proba-
bility is more pronounced if the uninformed bank holds a portfolio that is less exposed
to within-phase macro risk (see Appendix B.5 for a proof).

Proposition 3 Failure probability and exposure to default clustering. Suppose
that the phase sequence delivers PDl

t−1 and PDh
t . When the uninformed bank sets its

loss-absorbing resources according to (5), its probability of failure decreases with ρ.
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We illustrate this proposition in Figure 6, where the low-to-high dot in the left-hand
panel is above that in the right-hand panel. A lower ρ implies that phase-contingent
losses are more certain, i.e. that ULα,I and ULα,U are lower, which leads to lower capital
levels in the left-hand panel than in the right-hand panel. The flip side of this is a lower
likelihood that a benign realisation of the default-clustering factor (Gt) would undo
the implications of missing a phase switch. Thus, when the phase-contingent losses are
more certain, it is also more certain that missing a phase switch would be detrimental
for the uninformed bank.

When the loan portfolio’s exposure to within-phase macro risk is sufficiently low,
under-provisioning would be solely responsible for the uninformed bank’s LAR shortfall
in a low-to-high scenario. Imposing a weak restriction on the failure-probability target –
namely, that it is lower than the probability of switching phases – we prove the following
proposition in Appendix B.6.

Proposition 4 EL as a driver of LAR shortfall. Suppose that the phase sequence
delivers PDl

t−1 and PDh
t . If 1 − πlt ≥ α, there exists ρ > 0 such that the uninformed

bank perceives a higher UL than the informed bank for any ρ < ρ. In this case, the
uninformed bank’s LAR shortfall stems entirely from under-provisioning, due to under-
estimated EL.

We illustrate this proposition also in Figure 6. In the left-hand panel, despite the unin-
formed bank’s LAR shortfall in the boom-bust scenario, the UL it perceives (and thus
its capital) is actually larger than that of the informed bank. This is because the impact
of a decline in ρ on perceptions differs between the two banks. As ρ declines to zero,
losses become more and more certain from the perspective of the informed bank: the
perceived UL and capital shrink to zero. From the perspective of the uninformed bank,
however, a decline in ρ cannot eliminate the uncertainty about the phase-switching fac-
tor: thus, UL cannot decline to zero. With the uniformed bank’s UL being larger than
the informed bank’s, the former bank’s LAR shortfall comes from underestimating EL.

In sum, an improvement of the uninformed bank’s forecasting capacity would have
the following implications. It would affect the phase-switching probabilities, with e.g.
πlt−1 decreasing on the cusp of a low-to-high switch. All else the same, the benefit of
better forecasting capacity would be greater if the portfolio of the uninformed bank is
less exposed to macro risk within a phase (Proposition 3). And when such exposure
is sufficiently low, the improved forecasting capacity would lead to lower capital and
higher reserves (Proposition 4).
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Total portfolio Business sub-portfolio Real-estate sub-portfolio
test stat p stat p stat p
CH 0.05 0.29 0.07∗∗ 0.01 0.04 0.63
HY 0.36∗ 0.08 0.26∗∗ 0.03 0.25 0.37
ACR 0.06∗ 0.09 0.06∗ 0.05 0.04 0.40

Table 1: Tests of multi-modality. CH: Cheng and Hall (1998); HY: Hall and York (2001); ACR:
Ameijeiras-Alonso et al. (2019). The null hypothesis in each test is that the distribution of a variable
is uni-modal. ∗ indicates significance at the 10% level; ∗∗ indicates significance at the 5% level.

6 Practical relevance

Our analysis would be relevant in practice if we can answer the question: Which port-
folios load less on within-phase macro risk factors?

In addressing this question, we go through the following thought process. First, we
refer to Figure 5, which illustrates that the existence of a low- and a high-loss phase
gives rise to a bi-modal loss distribution. Second, we observe that the bi-modality is
more distinct for a lower loading, ρ, on the within-phase macro factor. This suggests
that, for a given sample size, statistical tests would be more likely to reject uni-modality
when ρ is low.

Then, we turn to the two distinct sub-portfolios in our dataset, comprising respec-
tively business and real-estate loans. We recall that each portfolio undergoes switches
between two phases (see Figure 2). That said, bi-modality is more clearly visible for the
business-loan portfolio than for the real-estate one. To investigate modality formally,
we run a battery of bi-modality tests based on Cheng and Hall (1998), Hall and York
(2001) and Ameijeiras-Alonso et al. (2019) in (Table 1). All three tests reject the null
for business loans (at either the 10% or 5% significance levels). By contrast, the null
cannot be rejected for real estate loans. In the context of the model in the main text,
these results suggest that business loans have a lower loading factor ρ.

Of course, these results could stem from portfolio specificities other than ρ. For
instance, there are fewer observations for the real-estate portfolio in the high-loss phase
– reflected in a notably lower πh estimate: 72% vs 88% for the business-loan portfolio.
The lower persistence of the high-PD phase would translate into fewer observations in
this phase, thus making a second mode less easy to detect. That said, while the two
portfolios feature similar PDh estimates, the PDl estimate for the real-estate portfolio
is much lower: 0.44% vs 0.81% for business loans. The bigger difference between the
low- and high-loss phases for the real-estate portfolio should have made it easier to
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detect bi-modality all else the same.
To place these considerations on a more formal footing, we resort to Monte Carlo

simulations. For a given value of the loading ρ on the within-phase macro factor and
referring to equation (2), we simulate two time series of default rates: one based on
the Markov-process parameter estimates for business loans and another on the corre-
sponding estimates for real-estate loans (see Appendix A and Table A.1 in particular).
Replicating each time series many times and applying the above three tests at each
replication, we calculate the corresponding rates of rejecting a null hypothesis of uni-
modality. We repeat these steps over a range of ρ values and report the results in Table
A.2. While the rejection rates are roughly similar across tests and loan portfolios for
the same ρ, they decline monotonically as ρ increases. We interpret the results in Table
1 as confirming that ρ is smaller for the business-loan portfolio. Accounting for and/or
mitigating phase uncertainty would make a bigger difference under this portfolio.

7 Concluding remarks

Our paper has delivered three contributions. First, a straightforward generalisation of
a well-known credit-risk model allows for studying analytically the importance of (i)
reducing the uncertainty about turning points in credit risk and (ii) accounting for any
remaining uncertainty when setting loss-absorbing resources. Second, we find that this
importance is especially high for a bank whose phase-contingent losses depend little on
macro risk factors. Third, we show that testing for the number of modes in loss rates’
unconditional distribution helps rank-order portfolios with respect to their within-phase
exposure to macro risk.

Uncertainty about turning points in credit risk may lead expected and unexpected
losses to evolve in different directions. Thus, empirical forecasts need to target different
aspects of the loss distribution on the basis of multiple forecast variables. To reduce
the uncertainty about turning points, these variables would need to capture risk-taking
as it builds up, in the spirit of the literature on early warning indicators of banking
crises (Detken et al. (2014), Tölö et al. (2018), Aldasoro et al. (2019) and references
therein) and more recent advances in default-risk forecasting (Lu and Nikolaev (2022)
and Juselius and Tarashev (2020)). To the extent that private incentives deviate from
system-wide financial stability (Borio and Zhu (2008), Acharya (2009) and Gorton and
Ordoñez (2014)) – a distortion that we have abstracted from – it will be up to a bank
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supervisor to ensure the proper execution of empirical forecasts and to map the forecasts
into adequate loss-absorbing resources.
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Appendices

A Regime-switching in the data

In this appendix, we estimate a two-state Markov process for loss rates in the US
banking sector: for the total loan portfolio and two sub-portfolios, comprised of real
estate and business loans. We then use the model estimates for two purposes. We first
derive values for ρ̄ in Proposition 2. Second, we conduct a Monte Carlo simulation to
show that testing for bi-modality of the unconditional loss-rate distribution can reveal
different degrees of within-phase exposure to macro credit-risk factors.

Our loan loss data consist of quarterly net charge-off rates on loans from the US
banking sector to the non-financial private sector. These series are obtained from the
Federal Reserve Board of Governors. On the assumption that the underlying loss-
given-default is 50%, we obtain default-rate estimates by multiplying the raw series by
2. We estimate probabilities of default (PDs) for the total portfolio, indexed by T , and
separately for the two sub-portfolios: commercial and industrial or “business” loans, B,
and real-estate loans, R. The sample begins in 1985q1 and ends on 2021q1.

We fit a two-state Markov-switching model to charge-off rates (CoR):

CoRx
k,t = PDx

k + εt (14)

where k ∈ {T,B,R}, x ∈ {l, h} stands for the unobserved state, and εt is a white noise
error with variance σ2. Without loss of generality, we assume that PDl

k < PDh
k . In

addition, we model x as an irreducible, aperiodic Markov chain, with phase-continuation
probability πx. The model is estimated by maximizing the implied likelihood function
using numerical techniques (Table A.1). Figure 2 in the main text shows the model’s
fit (red vs blue lines). The estimates capture fairly well the jump dynamics in the
default rates. More elaborate specifications, for instance with auto-regressive terms,
deliver similar point estimates of the parameters but different standard errors of these
estimates. Thus, statistical inference on the basis of the simple model requires caution.

The upper part of Table A.1 delivers two messages. First, loan PDs differ across
regimes, eg 1.41% vs 2.84% for the total portfolio. Second, as assumed in the main
text, the PDs in tranquil times (the PDl

k estimates) are consistently above banks’
target probability of failure, α = 0.1% and those in times of stress are way below 50%.

The estimates in the upper part of Table A.1 allow us to derive values for a parameter
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Total portfolio Business sub-portfolio Real-estate sub-portfolio
Param. Estimated Annualized Estimated Annualized Estimated Annualized
PDl 0.35

(0.02)
1 .41 1) 0.20

(0.02)
0 .81 1) 0.11

(0.01)
0 .44 1)

PDh 0.95
(0.04)

2 .84 1) 0.73
(0.02)

2 .11 1) 0.74
(0.04)

1 .95 1)

σ 0.17
(0.01)

0 .68 0.14
(0.01)

0 .56 0.15
(0.01)

0 .60

πl 0.98
(0.01)

0 .94 1) 0.97
(0.02)

0 .89 1) 0.98
(0.01)

0 .94 1)

πh 0.91
(0.06)

0 .70 2) 0.96
(0.03)

0 .83 2) 0.92
(0.05)

0 .72 2)

Memo item: parameter in Proposition 2
ρ̄2 0 .0020 1) 0 .0019 1) 0 .0061 1)

0 .0004 2) 0 .0003 2) 0 .0007 2)

Table A.1: Markov switching parameter estimates. Based on fitting the model in (14) to US
quarterly loan loss rates from 1985q1 to 2020q4 (144 quarters). Standard errors in parenthesis. The
annualized estimates (in italics) abstract from paths of quarterly states along which there is a switch
reversal (e.g. from l to h and then back to l). 1) Conditional on x = l in the latest quarter. 2)

Conditional on x = h in the latest quarter.

in Proposition 2, ρ̄. For each set of estimates for πl, PDl
k and PDh

k , we report these
values squared (memo item in Table A.1), so that they can be directly compared with
estimates of asset-return correlations in the literature.

Finally, we study how different values of ρ affect our ability to detect the different
modes in the loss distribution associated with low and high loss regimes. For this, we
run a Monte Carlo simulation, using the estimated parameters under the real-estate
and business-loan portfolios, respectively. In particular, we draw 1000 time series of
length 150 (a rounding of the length of our sample: 37 years or 144 quarters) of the
portfolio loss rate according to equation (2) for each model. In calculating the frequency
of rejecting the null that the loss rate’s distribution is uni-modal, we consider three
formal bi-modality tests. The first is a test by Cheng and Hall (1998), which seeks to
reduce the conservatism of the dip test by Hartigan and Hartigan (1985). The second
test is by Hall and York (2001), which improve on the kernel density-based test by
Silverman (1981). The third is a recent test by Ameijeiras-Alonso et al. (2019), which
mixes elements from the other two tests. The rejection frequencies are similar across
tests and portfolios for a given ρ and decline monotonically as ρ declines (Table A.2).
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ρ 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25
Based on business loan parameters

CH 0.92 0.87 0.73 0.51 0.27 0.11 0.06 0.05 0.03
HY 0.99 0.97 0.89 0.54 0.15 0.04 0.03 0.02 0.01
ACR 0.94 0.90 0.79 0.47 0.22 0.10 0.06 0.05 0.05

Based on real estate loan parameters
CH 0.66 0.59 0.47 0.31 0.17 0.07 0.03 0.02 0.01
HY 0.95 0.93 0.82 0.61 0.34 0.15 0.09 0.05 0.03
ACR 0.73 0.65 0.58 0.41 0.24 0.11 0.06 0.04 0.03

Table A.2: Rejection frequencies of uni-modality, simulated data. Based on 1000 random
draws of a time series of length 150 of the portfolio loss rate according to Equation (2) and the two-
phase Markov switching process for PDx

t . In parameterising the latter process, we refer sequentially
to estimates for business loans and real-estate loans in Table A.1. Each number corresponds to the
rejection frequency of the null: that the loss rate’s distribution is uni-modal. The underlying tests are
from: CH: Cheng and Hall (1998); HY: Hall and York (2001); ACR: Ameijeiras-Alonso et al. (2019).

B Proofs

The proofs in this appendix make use of the assumptions stated in Section 3.4.1.

B.1 Proof of sandwiching claim in Section 3.2

We derive equation (5) and show that it has exactly one solution in terms of Λ.
Given PDt−1, the uninformed bank knows the following when its LAR equals Λ:

Pr (loan losses > Λ)

= πxt Pr
G

(loan losses > Λ|G, x) + (1− πxt ) Pr
G

(loan losses > Λ|G, x̃)

= πxt Pr
G

(
Φ

(
Φ−1 (PDx

t )− ρGt√
1− ρ2

)
> Λ

)
+ (1− πxt ) Pr

G

(
Φ

(
Φ−1

(
PDx̃

t

)
− ρGt√

1− ρ2

)
> Λ

)

= πxt Φ

(
Φ−1 (PDx

t )−
√

1− ρ2Φ−1 (Λ)

ρ

)
+ (1− πxt ) Φ

(
Φ−1

(
PDx̃

t

)
−
√

1− ρ2Φ−1 (Λ)

ρ

)

which is the left-hand side of (5).
There is exactly one value of Λ that sets this expression equal to α. This is because

the expression is monotonically decreasing in Λ and converges to 1 (respectively, 0) as
Λ→ 0 (respectively, 1).

Next, we show that ΛU
t is sandwiched between its complete-knowledge counterparts:
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ΛU
t ∈

(
ΛI
(
PDl

t

)
,ΛI

(
PDh

t

))
. Since each of the two summands on the left-hand side

of (5) is strictly decreasing in Λ, equation (3) implies that the left-hand side of (5) is
smaller (respectively, larger) than α if ΛU

t ≥ ΛI
(
PDh

t

)
(respectively, if ΛU

t ≤ ΛI
(
PDl

t

)
).

Ultimately, since (5) has exactly one solution, we obtain the desired result.

B.2 Proof of statements in Section 3.4.2

The results ∂ULI/∂ρ > 0 and ∂ΛI/∂ρ > 0 follow from equations (3)-(4) and the
assumption that Φ−1 (α) < Φ−1 (PDt) < 0. To see this, note that
∂
(

(Φ−1 (PDt)− ρΦ−1 (α)) /
√

1− ρ2
)
/∂ρ = (ρΦ−1 (PDt)− Φ−1 (α)) / (1− ρ2)

3/2
> 0.

We similarly prove that ∂ULU/dρ > 0 and ∂ΛU/dρ > 0. From equation (3), it
follows that Φ−1 (PDx

t ) = ρΦ−1 (α) +
√

1− ρ2Φ−1
(
ΛI
)
. Since α < PDx

t for x ∈ {l, h}
by (13), and ΛU ∈

(
ΛI
(
PDl

t

)
,ΛI

(
PDh

t

))
by (6), it follows that ΛU > PDx

t for x ∈
{l, h}. Turning to (5), ΛU > PDx

t implies that each summand increases in ρ, which in
turn implies that ∂ΛU/dρ > 0. Since ∂ELU/∂ρ = 0, it then follows that ∂ULU/∂ρ = 0.

Next, we prove that ULI is non-monotonic in PDt. In particular, noting that
sgn

(
∂ULI/∂Φ−1 (PDt)

)
= sgn

(
∂ULI/∂PDt

)
, we show that ∂ULI/∂Φ−1 (PDt) is

positive at low PDt and negative at high PDt.

First, we record that Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

< Φ−1 (1− PDt) = −Φ−1 (PDt) ,which can

be rewritten as Φ−1 (PDt)
1+
√

1−ρ2

ρ
< Φ−1 (α). The latter inequality holds for PDt

sufficiently close to α (from above) because Φ−1 (α) < Φ−1 (PDt) < 0 by (13) and
1+
√

1−ρ2

ρ
> 1.

In addition, we record that Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

> Φ−1 (PDt) because Φ−1 (α) < 0 by

(13) and ρ ∈ (0, 1).
Combining the two observations, Φ−1(PDt)−ρΦ−1(α)√

1−ρ2
∈ (Φ−1 (PDt) ,−Φ−1 (PDt)).

By the bell-shape and symmetry properties of the standard normal PDF, φ, it then

follows that φ
(

Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

)
> φ (Φ−1 (PDt)). Thus, ∂ULI

∂Φ−1(PDt)
=

φ

(
Φ−1(PDt)−ρΦ−1(α)√

1−ρ2

)
1√

1−ρ2
− φ (Φ−1 (PDt)) > 0 for PDt that is sufficiently close to α

(from above).

As PDt increases, Φ−1 (PDt)
1+
√

1−ρ2

ρ
eventually rises above Φ−1 (α) or, equiva-

lently, Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

rises above −Φ−1 (PDt). Moreover, due to the exponential

function embedded in φ, φ
(

Φ−1(PDt)−ρΦ−1(α)√
1−ρ2

)
1√

1−ρ2
− φ (Φ−1 (PDt)) turns negative
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for a sufficiently high PDt, implying ∂ULI/∂Φ−1 (PDt) < 0.

B.3 Proof of Proposition 1

We discuss only scenario (i) in the proposition. The proof is similar for scenario (ii).

We first prove that Φ

(
Φ−1(·)−

√
1−ρ2Φ−1(Λ)

ρ

)
is an increasing convex function in the

neighbourhood of EL that solves Λ = Φ

(
Φ−1(EL)−ρΦ−1(α)√

1−ρ2

)
. It is immediate that the

function is increasing in EL. Its second derivative is equal to(√
1−ρ2Φ−1(Λ)−(1−ρ2)Φ−1(EL)

ρ3

)
φ
(

Φ−1(EL)−
√

1−ρ2Φ−1(Λ)

ρ

)
/φ2 (Φ−1 (EL)) , where φ is the stan-

dard normal PDF and thus dφ (x) /dx = −xφ (x). This expression is positive if Λ > EL,

which is the case since Λ = Φ

(
Φ−1(EL)−ρΦ−1(α)√

1−ρ2

)
is equal to EL at ρ = 0 and increases

in ρ (see Appendix B.2).

Given that Φ

(
Φ−1(·)−

√
1−ρ2Φ−1(Λ)

ρ

)
is convex, we know that, for EL = πxt PD

x
t +

(1− πxt )PDx̃
t , Φ

(
Φ−1(πxt PDxt +(1−πxt )PDx̃t )−

√
1−ρ2Φ−1(Λ)

ρ

)
= α

< πxt Φ

(
Φ−1(PDxt )−

√
1−ρ2Φ−1(Λ)

ρ

)
+ (1− πxt ) Φ

(
Φ−1(PDx̃t )−

√
1−ρ2Φ−1(Λ)

ρ

)
. Thus, there is

a LAR shortfall if the bank maintains its initial LAR in the face of uncertainty. Given
that the right-hand side of the latter inequality decreases in Λ, the bank eliminates this
shortfall by increasing its LAR. Since the appropriate LAR increases while EL stays
constant, the switch to uncertainty raises UL.

B.4 Proof of Proposition 2

To obtain the probability of the naive bank’s failure, we substitute

Φ

(
Φ−1(πltPDlt+(1−πlt)PDht )−ρΦ−1(α)√

1−ρ2

)
for Λ in (9) and obtain:

πltΦ

(
Φ−1(PDlt)−Φ−1(πltPDlt+(1−πlt)PDht )

ρ

+Φ−1 (α)

)
+
(
1− πlt

)
Φ

(
Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )

ρ

+Φ−1 (α)

)
(15)

Next, we show that expression (15) is smaller than
(
1− πlt

)
for a sufficiently high

ρ ∈ (0, 1).
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Since PDl
t < PDh

t , Φ−1
(
PDl

t

)
< Φ−1

(
πltPD

l
t +
(
1− πlt

)
PDh

t

)
and thus the first

summand of expression (15) is smaller than πltα. Then, since α <
(
1− πlt

)
by (13), this

summand is smaller than πlt
(
1− πlt

)
.

Turning to the second summand, we derive a condition under which it is smaller

than
(
1− πlt

)2. For this, we need that Φ

(
Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )

ρ
+ Φ−1 (α)

)
<

1− πlt, which is equivalent to Φ−1
(
1− πlt

)
−Φ−1 (α) >

Φ−1(PDht )−Φ−1(πltPDlt+(1−πlt)PDht )
ρ

.

This inequality holds if Φ−1
(
1− πlt

)
−Φ−1 (α) >

Φ−1(PDht )−πltΦ−1(PDlt)−(1−πlt)Φ−1(PDht )
ρ

=
πlt
ρ

(
Φ−1

(
PDh

t

)
− Φ−1

(
PDl

t

))
, where the latter inequality stems from

πltPD
l
t +
(
1− πlt

)
PDh

t < 0.5, by (13), which implies that Φ−1
(
πltPD

l
t +
(
1− πlt

)
PDh

t

)
corresponds to the concave portion of Φ−1.

Putting the arguments on the two summands together, we conclude that
Φ−1(1−πlt)−Φ−1(α)

Φ−1(PDht )−Φ−1(PDlt)
>

πlt
ρ
is a sufficient condition for expression (15) to be smaller than(

1− πlt
)
.

Referring again to (13), we obtain
Φ−1(1−πlt)−Φ−1(α)

Φ−1(PDht )−Φ−1(PDlt)
> 1, which implies that the

above sufficient condition is satisfied at a sufficiently high ρ.
Thus, there exists ρ̄ < 1 such that expression (15) is smaller than

(
1− πlt

)
for

ρ ∈ (ρ̄, 1) .

Then, we observe that – because Φ−1
(
PDl

t

)
< Φ−1

(
πltPD

l
t +
(
1− πlt

)
PDh

t

)
<

Φ−1
(
PDh

t

)
– expression (15) converges to

(
1− πlt

)
as ρ→ 0.

Finally, by continuity, we conclude that there exists ρ > 0 such that the bank’s
failure probability is smaller under ρ ∈ (ρ̄, 1) than under ρ ∈

(
0, ρ
)
.

B.5 Proof of Proposition 3

When the uninformed bank’s LAR is equal to ΛU and the phase implies PDt, the in-

formed bank perceives it as failing in year t with probability FPU
t = Φ

(
Φ−1(PDt)−

√
1−ρ2Φ−1(ΛU)
ρ

)
,

which implies ΛU = Φ

(
Φ−1(PDt)−ρΦ−1(FPUt )√

1−ρ2

)
. Using this to substitute for Λ in equation

(5) while imposing x = l and x̃ = h and rearranging, we obtain:

Φ−1
(
PDh

t

)
− Φ−1

(
PDl

t−1

)
ρ

= Φ−1
(
FPU

t

)
− Φ−1

(
α−

(
1− πlt

)
FPU

t

πlt

)
,
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where the left-hand side is strictly positive and decreases in ρ, and the right-hand side
increases in FPU

t . This implies dFPU
t /dρ < 0, as stated in the proposition.

B.6 Proof of Proposition 4

Suppose that the economy undergoes a low-to-high switch – implying PDl
t−1 and PDh

t .
As ρ → 0, the informed bank perceives ULI → 0. By contrast, when ρ → 0, the
uninformed bank perceives that date-t losses will be higher than the expected ones,
ELU , with probability 1 − πlt. Thus, as long as 1 − πlt ≥ α – i.e. as long as the
perceived probability of switching phases is higher than the bank’s targeted probability
of failure – limρ→0 UL

U
t > 0. By continuity, this implies that there exists ρ > 0 such that

ULUt−1 > ULIt when ρ ∈
(
0, ρ
)
. That is, that the uninformed bank is over-capitalized

from the informed bank’s perspective. This proves the proposition.

C “Regulatory” bank

The naive bank in the main text shares important similarities with a bank that sets its
LAR by relying only on the model underpinning international regulatory requirements
for credit risk (BCBS (2017)). The latter bank would also assume (wrongly) that it has
overcome the uncertainty about phase switches and has thus pinned down the relevant
loan PD at the beginning of period t. Moreover, this “regulatory” bank would map its
PD estimate, PDR

t , into the loading on the default-clustering factor:

ρ2
t ≡ ρ2(PDR

t ; ρ̃, ˜̃ρ, S) = ρ̃2 1− e−S∗PDRt
1− e−S

+ ˜̃ρ2

(
1− 1− e−S∗PDRt

1− e−S

)
, (16)

where ρ̃ < ˜̃ρ denote the lower and upper limits of the loading and the parameter S
determines the speed at which this loading declines from the latter to the former as PDR

t

rises. BCBS (2005) states on page 12 that the assumption of a negative relationship
between PDR

t and ρt reflects “empirical analysis and intuition” that higher credit risk
stems largely from idiosyncratic risk factors. Given this assumption, regulation requires
that banks estimate only one parameter per credit-risk exposure: the probability of
default (see Section 2.3).

The other, regulatory parameters in (16) differ across exposure types (BCBS (2017)).
For corporate exposures, ρ̃2 = 12%, ˜̃ρ2

= 24% and S = 50; for residential mortgages,
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Figure C.1: Regulatory assumptions and implications of uncertainty. Loss-absorbing re-
sources (LAR) and their components – expected loss (EL) and unexpected loss (UL) – from the
perspective of the regulatory bank when the target one-year probability of bank failure is 0.1%. The
dashed line is plotted at the maximum UL. In the left-hand panel the regulatory bank’s LAR is
compared to that of the informed bank, assuming that the latter perceives three different levels of ρ2.
For the right hand panel, it is assumed that the true level ρ2 is as reported on the horizontal axis;
πl
t = 0.95; and the naive bank’s probability of failure is from the perspective of the uninformed bank,

for different levels of uncertainty, (PDh–PDl) = 5% (low), 10% (medium) and 20% (high), while the
expected loan PD is always 2%.

ρ̃2 = ˜̃ρ2
= 15%; and, for “other retail exposures”, ρ̃2 = 3%, ˜̃ρ2

= 16% and S = 35.
Acting like the naive bank, the regulatory bank sets LAR to:

ΛR
(
PDR

t ;α
)
≡ ΛR

t = Φ

(
Φ−1

(
PDR

t

)
− ρ

(
PDR

t

)
Φ−1 (α)√

1− ρ2 (PDR
t )

)
. (17)

Assuming that the regulatory bank has the same information set as the naive one, the
underlying EL and UL are

ELRt = PDR
t = πxt PD

x
t + (1− πxt )PDx̃

t , (18)

ULU
(
PDR

t ;α
)
≡ ULRt = ΛR

t − ELRt . (19)

Figure C.1 reports properties of the regulatory bank’s LAR using the parameterisa-
tion for corporate exposures. For one, the mapping in (16) implies a LAR that increases
less strongly with loan PD than the LAR of the informed bank (left-hand panel). In
addition, the regulatory bank perceives EL and UL that are joined at the hip over a
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realistic range of loan PDs (centre panel, recall Section 3.4.1).
Similar to the naive bank, the regulatory bank’s LAR will not attain the target

failure probability of α. To illustrate that, from the perspective of the uninformed
bank, the regulatory bank could be safer or riskier than targeted, Figure C.1 plots its
failure probability for a given PDR

t , different levels of uncertainty, and different values
of the actual ρ. To see the underlying mechanism, note first that, given PDR

t , the LAR
of the regulatory bank is constant. Then refer to Figure 5, which shows that, as ρ→ 0,
the largest possible loss rate converges to PDh

t . When the uncertainty stems from the
difference

(
PDh

t − PDl
t

)
– as assumed in Figure C.1 – and is sufficiently low, the level of

PDh
t would be below the bank’s constant LAR. In this case, the failure probability is 0

in the limit ρ→ 0 (red and green lines). Conversely, when the uncertainty is sufficiently
high, PDh

t would be above the regulatory bank’s LAR and this bank’s failure probability
will converge to one minus the continuation probability of the low-PD phase, 1 − πlt,
as ρ→ 0 (blue line).
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