

Mikael Juselius (Bank of Finland) and Nikola Tarashev (Bank for International Settlements)

Conference on Systemic Risk Analytics, Bank of Finland, 8-9 June 2023

BIS ¹⁹³⁰/₂₀₂₀ Promoting monetary and financial stability

Motivation

- Abrupt turning points in credit losses are tough to anticipate.
 - Scepticism: Covas and Nelson (2018), Abad and Suárez (2017), Chae et al. (2018), Krüger et al. (2018), Goncharenko and Rauf (2020), and Loudis and Ranish (2019)
 - Some progress: *Harris et al.* (2018), *Lu and Nikolaev* (2022) and *Juselius and Tarashev* (2020)

• When do costly prudential safeguards against uncertainty have largest benefits?

The paper in a nutshell

- Model uncertain turning points / phases extension of the ASRF model
- Decoupling of EL and UL (a high percentile minus EL)
- Ask: how does exposure to within-phase macro risk (ρ) affect ...
 - ... the failure probability of a bank that ignores phase uncertainty?
 - ... the benefit of improving forecasts of turning points?
- Findings:
 - ignoring uncertainty bites more if ρ is smaller;
 - same for the impact of improving phase forecasts.
 - unconditional loss distribution helps compare p across portfolios

Roadmap

- Stylised risk setup
- From phase uncertainty to EL-UL decoupling
- Shortfall of loss absorbing resources (LAR)
 - due to ignoring uncertainty
 - due to uncertainty
- Method for comparing ρ across portfolios

Setup: uncertain phase switches and 3 banks

Extending the regulatory ASRF model

• Asymptotic single risk factor

$$Loss\left(G_{t}, PD_{t}; \rho_{t}\right) = \Phi\left(\frac{\Phi^{-1}\left(PD_{t}\right) - \rho_{t}G_{t}}{\sqrt{1 - \rho_{t}^{2}}}\right)$$

Uncertain phase ≡ uncertain PD
 2-state Markov process captures phase switches in business and real-estate loan loss rates (US banks)

Parameter restrictions: $(0.1\% =) \alpha < PD_t^l < PD_t^h < 1 - \pi_t^l < 50\%$

Setting loss absorbing resources (LAR)

- LAR ensure that the one-year failure probability is α .
- LAR are equal to expected losses (EL) + unexpected losses (UL).
- Informed bank's LAR:

$$\Lambda^{I}(PD_{t},\rho_{t};\alpha) = \Phi\left(\frac{\Phi^{-1}(PD_{t}) - \rho_{t}\Phi^{-1}(\alpha)}{\sqrt{1 - \rho_{t}^{2}}}\right)$$
$$EL_{t}^{I} = PD_{t}$$

$$UL_t^I = \Lambda^I \left(PD_t, \rho_t; \alpha \right) - PD_t$$

Uninformed bank's LAR

- This bank faces uncertainty about the PD and knows it.
- Its LAR is an implicit solution of:

$$\pi_t^x \Phi\left(\frac{\Phi^{-1}\left(PD_t^x\right) - \sqrt{1 - \rho_t^2} \Phi^{-1}\left(\Lambda\right)}{\rho_t}\right) + \left(1 - \pi_t^x\right) \Phi\left(\frac{\Phi^{-1}\left(PD_t^{\tilde{x}}\right) - \sqrt{1 - \rho_t^2} \Phi^{-1}\left(\Lambda\right)}{\rho_t}\right) = \alpha$$
where $x = \{l, h\}$ and $\tilde{x} = \{h, l\}$

• LAR is broken down into:

$$EL_t^U = \pi_t^x P D_t^x + (1 - \pi_t^x) P D_t^{\tilde{x}}$$

$$UL^U_t = \Lambda^U_t - EL^U_t$$

Naive bank's LAR

- Same information set as the uninformed bank, but acts as if informed
- Its LAR is equal to:

$$\Lambda_t^N = \Phi\left(\frac{\Phi^{-1}\left(PD_t^N\right) - \rho_t \Phi^{-1}\left(\alpha\right)}{\sqrt{1 - \rho_t^2}}\right)$$

• ... where:

$$EL_t^N = PD_t^N = \pi_t^x PD_t^x + (1 - \pi_t^x) PD_t^{\tilde{x}}$$
$$UL_t^N = \Lambda_t^N - EL_t^N$$

Phase uncertainty \rightarrow decoupling of EL and UL

Decoupling: two sources, one outcome

- When the portfolio is less diversified (left-hand panel)
- When there is uncertainty about the loss phase (right-hand panel)

Proposition 1 Effect of uncertainty on UL. Suppose that each of the following two switch-to-uncertainty scenarios maintains $EL_t^U = EL_{t-1}^U$: (i) $\pi_{t-1}^l = \pi_t^l$ and $PD_t^l < PD_{t-1}^l = PD_{t-1}^h < PD_t^h$ or (ii) $\pi_{t-1}^l = 1 > \pi_t^l$, $PD_t^l < PD_{t-1}^l$ and $PD_t^h = PD_{t-1}^h$. Under either scenario, $UL_{t-1}^U < UL_t^U$.

LAR shortfalls

LAR shortfall due to ignoring uncertainty

- Naive vs uninformed bank
- From the perspective of the uninformed bank, the naïve bank has a LAR shortfall (Proposition 1)
- Greater portfolio diversification (smaller correlation, ρ) \rightarrow probability of naive bank's failure (from the uninformed bank's perspective) converges to the probability of a switch to the high-loss phase

LAR shortfall due to ignoring uncertainty

- Naive vs uninformed bank
- From the perspective of the uninformed bank, the naïve bank has a LAR shortfall (Proposition 1)
- Greater portfolio diversification (smaller ρ) \rightarrow probability of naive bank's failure (from the uninformed bank's perspective) converges to the probability of a switch to the high-loss phase

LAR shortfall due to uncertainty

- Uninformed vs informed bank
- Greater portfolio diversification (smaller ρ) \rightarrow worse to miss a phase

Proposition 3 Failure probability and exposure to default clustering. Suppose that the phase sequence delivers PD_{t-1}^{l} and PD_{t}^{h} . When the uninformed bank sets its loss-absorbing resources according to (5), its probability of failure decreases with ρ .

Comparing diversification across portfolios

Comparison methodology

- Bi-modality of unconditional loss distribution: stronger for a lower ρ
- Battery of tests reject uni-modality for business but not for real-estate loans

	Total portfolio		Business sub-portfolio		Real-estate sub-portfolio	
test	stat	p	stat	p	stat	p
CH	0.05	0.29	0.07^{**}	0.01	0.04	0.63
ΗY	0.36^{*}	0.08	0.26^{**}	0.03	0.25	0.37
ACR	0.06^{*}	0.09	0.06^{*}	0.05	0.04	0.40

- Monte Carlo simulations, using Markov-switching parameter estimates, indicate that the conclusion is not due to small sample.
- Upshot: business loan portfolio more diversified

Takeaways

Takeaways

- In forecasting credit losses, essential to target several aspects of the distribution
 - Reason: uncertainty about abrupt turning points decouples EL and UL
 - Thus: multiple forecast variables needed
- Accept that predictions of turning points will never be perfect
- Prudential safeguards against the implications of imperfect forecasts
 - Costly
 - Benefits higher when portfolio more diversified (less exposed to macro risk within a phase).

