Workshop for advanced users

Payment and settlement simulator seminar - 2005

Matti Hellqvist, Bank of Finland

Topics

- New and advanced features
- Performance optimization
- Database tools and tricks
- Process flow and logic of the simulator
- User modules

Some existing possibilities

- Assessing scenarios in network of interlinked systems.
 - Simulations with several interlinked systems with different logic are possible. See e.g. examples 2&3
- Borrowing liquidity from specified account when necessary
 - Mimic behavioral responce to liquidity shock (?)
 - implemented with "Liquidity injections"
 - Cost or friction terms are lacking however.

More existing possibilities

Simulation batches

- Combine multiple (timely non overlapping) simulations into one.
- Define batch from a set of simulation ID:s.
 => Changes in underlying data or system specifications create efficiently new scenarios.
- Arbitrary queue order
 - LIFO, Smallests first, alphabethical...
 - All these in strict queue order or bypass-mode
 - Use QUUSEDEF algorithms and import the sorting criteria in user defined fields.

New possibilities in 2.0.0

Time / Date transpositions

- Automatic transpositions in import or export of data.
- Practical for systems that are open over midnight.

Database optimization

- ...or "Defragmentation" button for input and output database.
- Reported to prevent slowing down of simulations in projects with massive data sets and repeated simulation runs.

New possibilities in 2.0.0

- Intrady liquidity management features
 - Known limits for multilateral or bilateral flow of liquidity or granted credit can be replicated
 - Bilateral limits in v.2.0.0
- Bilateral statistics
 - Statistics on intraday flow on bilateral level: (Set large enough values for bilaterla limits)
 - Can be utilized e.g. to reveal bilateral limits used by the participants by observing history of actual bilateral balances

Coming soon...

 Group codes of DVP data i.e. linking of arbitrary many transactions together

Helsinki, 25 August 2005

- Receipt reactive gross settlement
 - See Johnson McAndrews Soramäki (2004): 'Economizing on Liquidity with Deferred Settlement Mechanisms'
- PNS-algorithm for DVP data

Topics

- Recent new features
- Performance optimization
- Database tools and tricks
- Process flow and logic of the simulator
- User modules

When "tuning" is needed?


- If you make hardware modifications after simulator installation
- If the simulations run out of memory due to
 - Increased number of transactions / day
 - Decreased liquidity and accumulating queues
 - Increased nr of liquidity constraints
 - Bilateral limits

Complex processing rules will allways take their time (DVP, continuous gridlock resolution etc.)

OS constraints

- 32bit Windows => max 2G memory per application ("address space")
- Java requires continuous block of address space for "heap" = available amount of memory for e.g. the simulator.
 - Max ~1.5G
- Available "virtual memory" used: RAM (+ Hard disk = "paging")

One detailled explanation:

http://forum.java.sun.com/thread.jspa?threadID=584329&messageID=3009798

Start up parameters

Simulator:

```
c:\BoF-PSS\startup.bat
```

```
"jre-1.3\bin\java -Xms128m -Xmx512m ..."
```

- Xms = initial heap size
- Xmx = Maximum heap size
- MySQL: c:\my.cnf
 - For alternative configurations see: c:\bof-pss\program\ or c:\mysql\

Simulations with paging will be **severy** slower regardless which program is out of memory (MySQL or BoF-PSS)

Topics

- Recent new features
- Performance optimization
- Database tools and tricks
- Process flow and logic of the simulator
- User modules

Managing projects

- Creating a project creates the structure of folders and databases.
- After this, contents can be changed simply by copying files
- ⇒Easy backups, cloning, transfering etc. of entire contents of a project.
 - (Handy also for reporting bugs)

Database tools and tricks

- Database of the simulator can be accessed directly for
 - Modifying the installation (templates, projects, user modules...)
 - viewing (or altering) the data directly
 - More powerful or tailored exports / imports of data

Database tools and tricks

- In practice
 - Start the database server:
 c:\bof-pss2\program\database.bat
 - 2. Open viewing or editing tool. Command line and graphical versions available
 - Simulator must not be running (DB locking)
- Carefully with the direct modifications...
 - e.g. removing the project defined to be default will paralyse the simulator

MySQL tools

- Several easy to use monitor applications available
 - MySQL Query browser (freeware by MySQL)

http://www.mysql.com/products/tools/query-browser/
(connect to "localhost" as "root")

- MySQL Front, MyCon, ... (Shareware)
- ODBC drivers for MySQL
 - Allows connection with e.g. MS Access

http://www.mysql.com/products/connector/odbc/

Topics

- Recent new features
- Performance optimization
- Database tools and tricks
- Process flow and logic of the simulator
- User modules

The actual building blocks

Main algorithms

Submission: What happens next?

Entry: Initial processing for transactions: settle immediately if possible, call sub algorithms if defined or send to queue.

Settlement: Execute sub algorithms to settle trans from queue.

End: Perform final procedures of day or settlement period.

Sub algorithms

Queue: Settle individual transactions from queue in defined order.

Partial Net Settlement (PNS): Settle a subset of queued trans

Multilateral Net Settl. (MNS):Settle queues with "All or nothing"

Bilateral offsetting: Match entered payments with queued payments having opposite direction (sender & receiver)

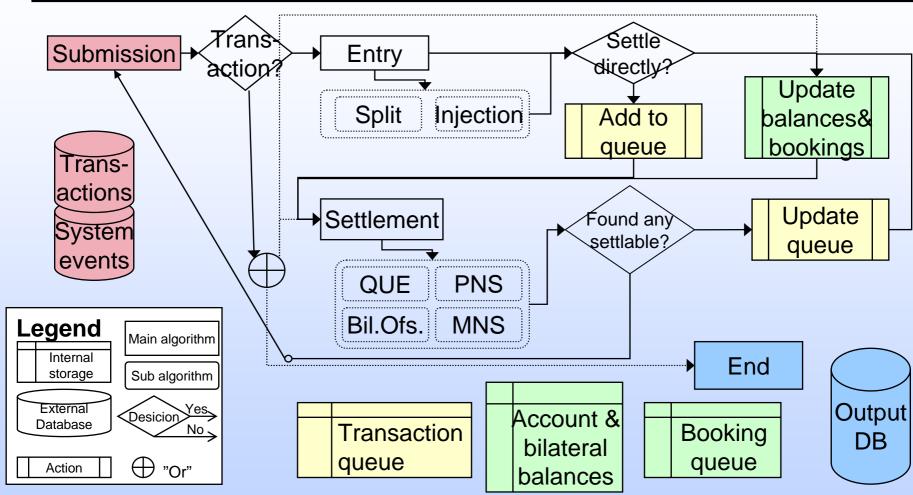
Splitting: Split larger trans into sub-transactions

Injections: Perform liquidity transfers between defined accounts

Common for all systems simulated concurrently

Logics of one individual simulated system.

Some definitions


- "Settling": Booking or execution of a transaction. Account balances are updated.
- "Netting": Simultaneous settlement of independent transactions. Results in allowed balances for all involved accounts after all the transactions in the "netting" are settled.

RTGS process

Simulator engine: User interface, process control, all common data

Subalgorithms are executed in the same order which they have in system definition ²⁰

Topics

- Recent new features
- Performance optimization
- MySQL tools and tricks
- Process flow and logic of the simulator
- User modules

User modules

- When existing logics/algorithms are too limited you can build new ones of your own
 - Setting up development environment

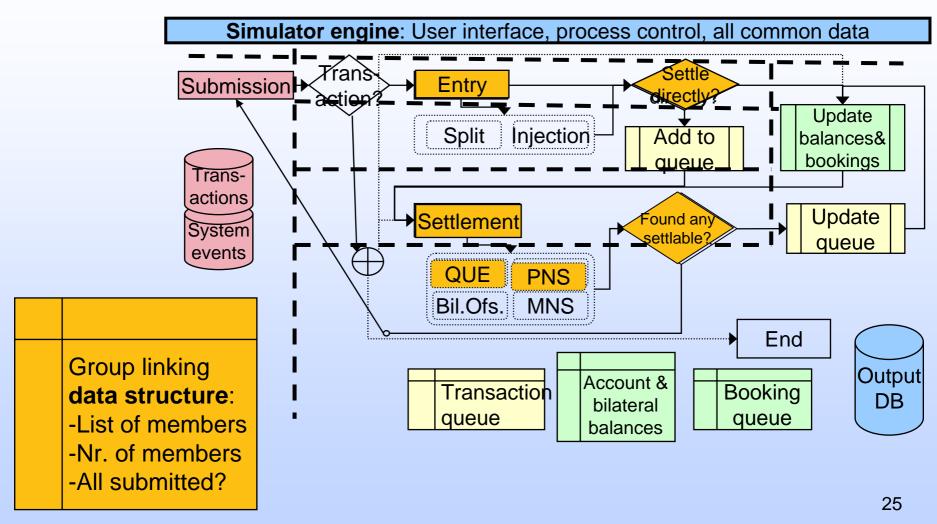
Helsinki, 25 August 2005

- Case study: Group Codes
- JavaDoc
- Behavioural algorithms

Development environment

- Java coding is needed
 - Some tools to recommend: Jbuilder, eclipse (<u>www.eclipse.org</u>), NetBeans...

Helsinki, 25 August 2005


Case Group codes

- Purpose: To allow efficient linking of arbitrary many transactions together
 - DVP-link only works for pair of transactions
- Additional data required:
 - Group key, count of group members.
 - ⇒Usercode 1 & 2 used to import these
- Efficient implementation requires a prepared data structure for linking transactions of one group together.

GroupCodes: implementation

Java doc

- New documentation is available of the technical side of the simulator
 - Listings of all methods in all classes
 - Brief descriptions of the most important classes.
- (Extensive) HTML-document created automatically from code

Helsinki, 25 August 2005

Behavioral algorithms

- Natural place is in submission:
 - Observe the simulator situation & decide when to submit or delete transactions.
 - It should be possible to write a interfase algorithm and combine simulator with some other software.
 - e.g. Matlab has Java-application compatibility.

