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Introduction

• any network can be modeled as a graph with nodes
and links between the nodes

• this presentation introduces concepts from graph 
theory and network science and applies them to 
describe liquidity flows in payment systems

• it is one of three components in our approach for 
modelling payment systems: Complex network, 
Complex behavior, and Adaptation
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What can the results be used for?

• to better understand the topology of liquidity flows in 
payment systems 

• to better understand the spill-over effects of liquidity 
disturbances

• for identifying important banks
• to possibly devise financial fragility indicators on the 

basis of the topology
• to analyze long-term structural changes and spot the 

impact of abnormal events
• to generate artificial data

– we can compare the model’s statistical properties with the one of 
the actual system
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Some terminology

• Graphs are made up by nodes
and links between the nodes

• Links can be either directed, 
or undirected

• Links can have weights

• A path is a sequence of nodes in which each node is 
linked to the next one (e.g. EDCA is a path of length 3)

• The degree of a node is the number of links from (out-
degree) or to it (in-degree) from other nodes

• A cluster is a set of nodes that all have links with each 
other (e.g. ABC)
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Basic network models I: Erdos-Renyi

• Erdos-Renyi model (50’s)
• classical random network
• start with N nodes, and connect pairs at random until 

desired connectivity is reached

The ER model 
degree distribution 
follows the Poisson 
distribution
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Basic network models II: Barabasi-Albert

• start with a small number of nodes
• growth: at each step add a node and link it to one 

existing node
• preferential attachment: nodes with a higher number of 

incoming links have a higher likelihood of being selected
• continue until desired number of nodes have been 

created

The BA model 
degree distribution 
follows the power 
law
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Interbank payment networks
• how to define the network depends on the question one wishes to 

study

Options:

• which payment system participants to include?
– all, commercial banks, settlement institutions, ...

• what kind of interaction?
– a payment, exchange of payments, a debt relationship, ...

• how long do we observe the formation of the network?
– an hour, a day, a week, ...

• how intense should the interaction be
– certain number, certain value of payments, ...
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Network fundamentals used

• we use payment data from Fedwire to illustrate liquidity 
flows among banks in a payment system

• other large-scale payment systems are likely to exhibit 
the same properties 

• in particular, we build
– daily networks. If one ore more payments are 

transacted from a bank to another, we establish a 
directed link from the bank to the other

• we consider only
– payments between commercial banks,
– that are not related to overnight funding
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Basic statistics

averages for 62 daily networks:

• banks (n) 5,086
• links (l) 85,585

– possible links, n*(n-1) 25,862,310
– connectivity, l / n*(n-1) 0.3%
– reciprocity 21.5%

(share of two-way links)
• value 1,302 billion
• number 435,533

– average payment size 3.0 million
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Visualising the network
• example random 

scale-free network 
of 100 nodes and 
680 links

• similar topology as 
in the liquidity 
flows

• small core with 
high flows (red 
lines)

• large periphery 
with low flows 
(black lines)

• visualising larger 
networks difficult Pajek.exe
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Components of the created network

GWCC: Giant weakly connected component. All banks in this component can 
be reached via undirected links from each other

Tendrils

Giant 
in-

component
(GIN)

GSCC

Disconnected
components Giant 

out-
component 

(GOUT)

Tendrils

GWCC

GSCC: Giant strongly 
connected component. 
The core of the network. 
All banks reachable from 
any other bank.

GIN: All banks that can 
reach the GSCC

GOUT: All banks 
reachable from GSCC

Tendrils: Banks that are 
not reachable nor reach 
the GSCC
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Degree Distribution what kind of hierarchy 
does the network have?
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Fedwire Banks: Directed-Strong Gross Largest Component
1st Quarter 2004

Out Degree Distributionprobability of 
degree 1 ~ 13%

probability of 
degree 10 ~ 2%

probability of 
degree 100 ~ 

0.02%

average degree = 15
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The power law distribution
• the slope of the distribution is defined by the co-efficient 

γ, P(k)~k-γ

– for our network γ = 2.1
• examples of other networks

– internet, router level γ = 2.4
– movie actor collaboration network γ = 2.3
– co-authorship network of physicists γ = 2.5
– co-authorship network of neuroscientist γ = 2.1

• networks with a power law degree distribution are called 
scale-free

• sometimes said to be the new ”normal distribution” as 
the distribution of many man-made and natural events 
have this distribution
– the size of earthquakes, stock market movements, ...
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Number of payments on a link
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Distribution of Link Weights (Number of Payments)

probability of 
10 payments

~ 0.4%

probability of 
100 payments

~ 0.005%

probability of 1 
payment
~ 60%

power law distribution, 

P(n)~n-2 

average = 5.1
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Value of payments on a link
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Fedwire Banks: Directed-Strong Gross Largest Component
1st Quarter 2004

Distribution of Edge Weights (Value) 

value of payments 
transacted on a link 
follows a lognormal 
distribution

average = 15.2 mil.
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Average Path Length how dense is the network?
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Mass-Distance Function

average path length 2.6
diameter (maximum) 7
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Clustering how are banks connected locally?
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= 3/6 = 0.5

many real networks exhibit a 
high degree of clustering

- internet 0.2-0.3
- co-authorship 0.6-0.8

vs Erdos-Renyi 0.006

Example:

average
clustering 
coefficient 
= 0.53
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Relevance of the numbers?

• We don’t know yet. Some hypotheses:

• Degree distribution and link weights (power law)
– most banks irrelevant from financial stability perspective
– hubs and bridges matter

• Average path length 
– might be relevant for e.g. gridlocks RTGS systems. The 

smaller the APL, the quicker a liquidity shortage would spill 
over to other banks

• Clustering co-efficient
– might be relevant in contagion of netting systems, and in 

liquidity problems when exposures are reinforced by the 
neighbours
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Summary

• payment systems are just one of many similar networks

• the statistics presented here are just scratch the surface

• many questions ahead: 
– what drives the topology? 
– how does the topology relate to liquidity disturbances?
– what is the topology of liquidity flows in other 

payment systems?  
– how to best describe the importance of a bank? (PageRank, 

betweenness centrality, etc) 
– other network statistics? (loops, communities, etc)
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auxiliary slides
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Other scale-free networks ...
A B

Sources:

A) R. Albert and A.-L. Barabasi: Statistical 
mechanics of complex networks, Reviews 
of modern physics, vol. 74, January 2002

B) M. Boss, H. Elsinger, M. Summer, and S. 
Thurner: The Network Topology of the 
Interbank Market, Quantitative Finance, 4, 
2004, 1-8.
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Average nearest neighbour degree
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Fedwire Banks: Directed-Strong Gross Largest Component
1st Quarter 2004

Average Nearest Neighbor Out Degree average 
degree of 
neighbours, 
i.e. banks to 
whom one 
has links to • average = 617

• compare: average degree = 15

most banks have a very small degree, 
and connect to banks with high degree

example:
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515

ANND = 
(15+5+10+50)

/4 = 20

degree
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Link weights and degree
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both the number and 
value of payments on a 
link increase with the 
degree of the bank
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