

Oesterreichische Nationalbank

Stabilität und Sicherheit.

Risk Concentration and Operational Risk in Payment Systems – A Simulation Approach

Stefan W. Schmitz / Claus Puhr Financial Stability Division Oesterreichische Nationalbank

Agenda

Motivation and Objectives

ARTIS – Liquidity and Concentration

Stress Testing ARTIS – A Simulation Approach

Results of the ARTIS Stress Tests

Key Findings and Conclusion

Motivation and Objectives

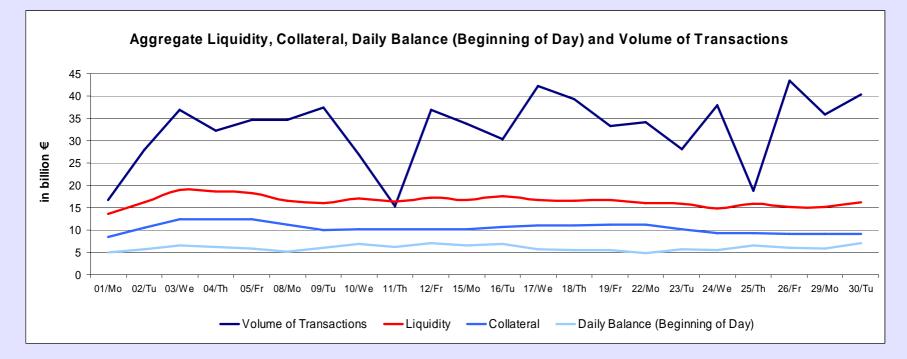
- Motivation
 - OeNB in charge of payment system oversight
 - ESCB/OeNB objective: smooth functioning of the payments system
- Objectives
 - Better understanding of ARTIS
 - Statistical analysis (companion paper)
 - Analyse impact of operational risk of in payment systems
 - On aggregate level
 - On individual bank level
 - Policy implications?

Agenda

Motivation and Objectives

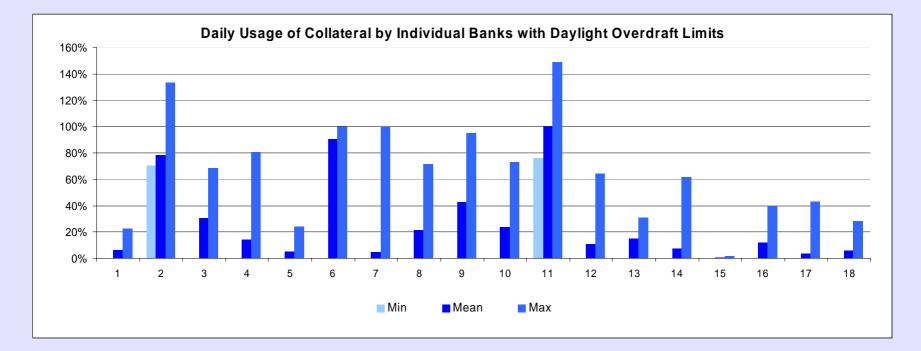
ARTIS – Liquidity and Concentration

Stress Testing ARTIS – A Simulation Approach

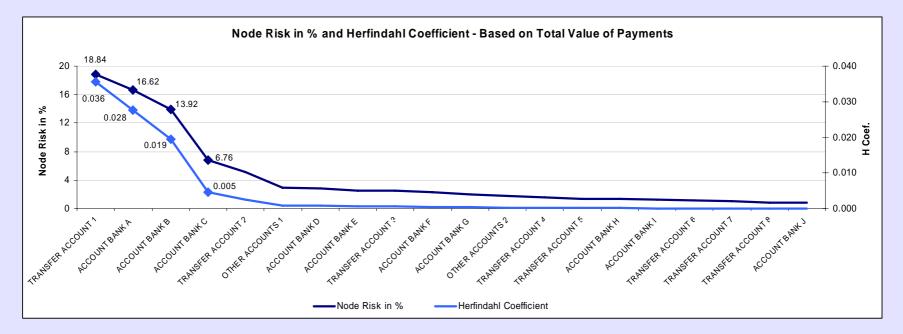

Results of the ARTIS Stress Tests

Key Findings and Conclusion

Aggregated liquidity in ARTIS

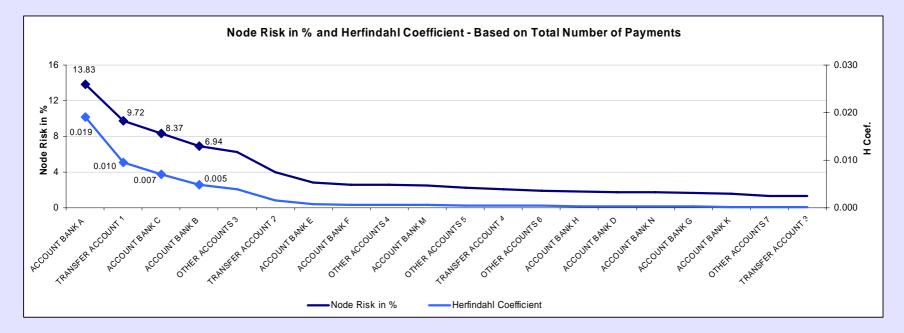

- The average daily aggregate liquidity equalled 16.8 billion EUR
 - Liquidity in the system: beginning of day balances + collateral available
- The aggregate liquidity in the system exceeded the use of liquidity
 - No accounts experienced liquidity shortages that would have lead to unsettled transactions at closing time (6 pm)
- On average (across participants and across days):
 - about 1/3 of all transactions were covered by available liquidity reserves
 - <u>– about 2/3 were covered by liquidity from received payments</u>

Daily values for aggregate liquidity


 Despite sufficient aggregate liquidity, individual accounts were occasionally illiquid. Throughout an average day payments with a total value of 1.4 billion Euros were queued.

Disaggregated analysis of collateral usage

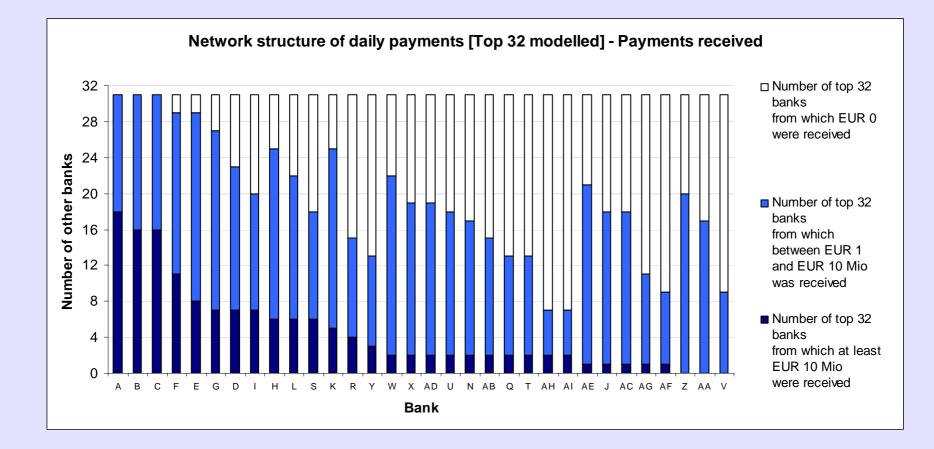
 Sufficient aggregate liquidity does not imply sufficient individual liquidity


Node risk based on the value of payments

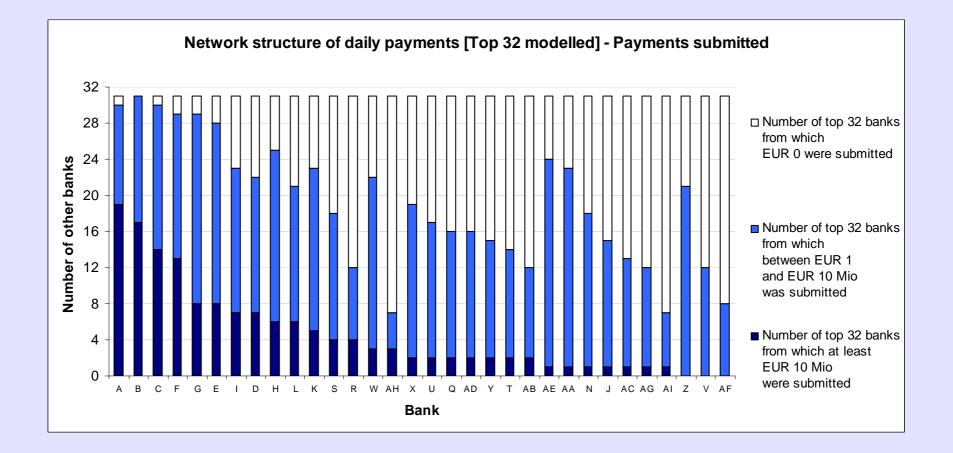
- The concentration of payment value is quite high in ARTIS:
 - CR3: 49.4 %
 - CR5: 61.3 %
 - HHI: 0.0955

(Node risk top 3 banks for the sample period)
(Node risk top 5 banks for the sample period)
(Herfindahl Index for the sample period uniformly distributed reference 1/56, 0.0017)

Node risk based on the number of payments


- The concentration of the number of payments is much lower:
 - CR3: 31.9 %
 - CR5: 45.1 %
 - HHI: 0.0530

(Node risk top 3 banks for the sample period)
(Node risk top 5 banks for the sample period)
(Herfindahl Index for the sample period uniformly distributed reference 1/31, 0.0017)


The network structure of ARTIS

- Concentration ratios indicate that the most active banks also transfer higher value payments
- This conclusion is supported by the analysis of the network structure among the top 32 participating banks.
- Only the three most active accounts received payments from all other 31 banks among the top 32 on an average day.
- The other top 32 banks received payments from an average of 17.9 other banks.
- A similar picture was presented by the network analysis of the payments submitted.

Network structure of daily payments received

Network structure of daily payments submitted

Agenda

Motivation and Objectives

ARTIS – Liquidity and Concentration

Stress Testing ARTIS – A Simulation Aproach

Results of the ARTIS Stress Tests

Key Findings and Conclusion

Simulation fundamentals

- The scenarios are designed according to an ex-ante estimation of potential risk concentrations.
- The objective of the simulations is to estimate the contagion effect within the system.
- The simulations utilise real data for the sample period November 2004 (a typical month of activity of ARTIS)
 - Daily simulations for 22 days

Original features

- We operate with <u>real rather than simulated liquidity data</u>
- Analysis of contagion based on the <u>individual bank level</u> in addition to aggregate level of unsettled payments
- Features of large value payment systems that have hitherto gone unstudied in the literature:
 - Stop sending rule
 - Debit authorisation

Simulation scenarios

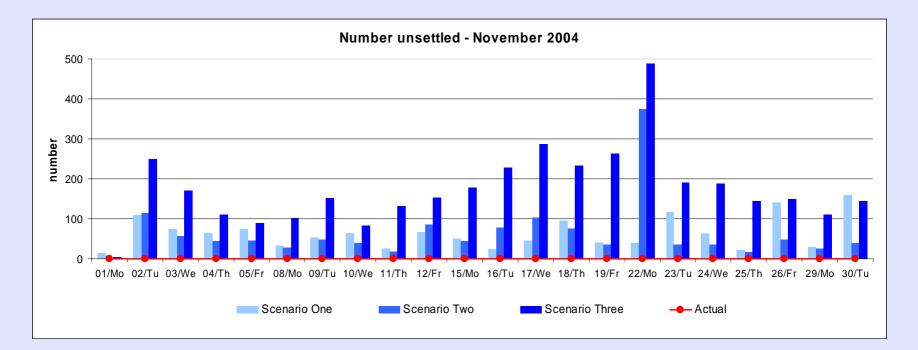
- First, we determined the nature of the operational incident
- Second, we determined the duration of the operational failure of a participant
 - One-day failure to submit payments; an exceptional but plausible shock
 - ARTIS provides business continuity arrangements
 - Re-run simulations under the assumption that back-up options would be employed effectively (a very restrictive assumption!)
- Third, selection of node(s) of the network, which is (are) affected by the operational failure based on
 - Value of liquidity concentrated (liquidity concentration channel)
 - Number and value of payments (payment concentration channel)
 - Herfindahl index of concentration of payment flows
 - Crude network analysis

Stricken accounts in the scenarios

- The three scenarios with the highest expected impact and the highest expected contagion effects are accordingly:
 - the first scenario, which assumes that the most active transfer account cannot submit payments to the system
 - the second scenario, which assumes that the most active bank cannot submit payments to the system
 - the third scenario, which assumes that the three most active banks experience operational failure simultaneously and cannot submit payments to the system.

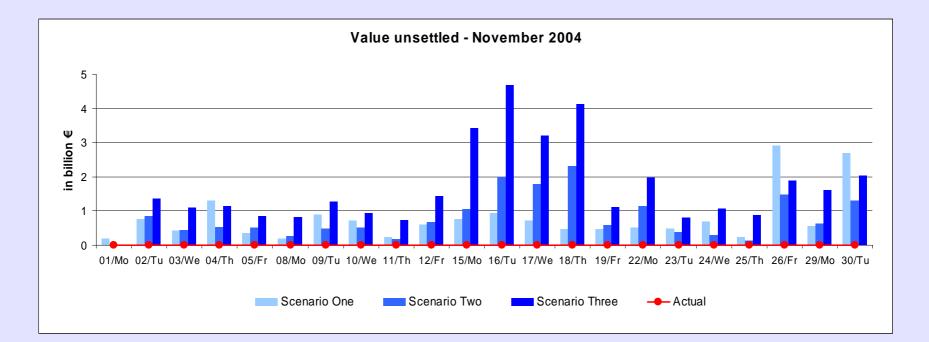
Agenda

Motivation and Objectives


The Austrian Large Value Payment System ARTIS

Stress Testing ARTIS – A Simulation Aproach

Results of the ARTIS Stress Tests

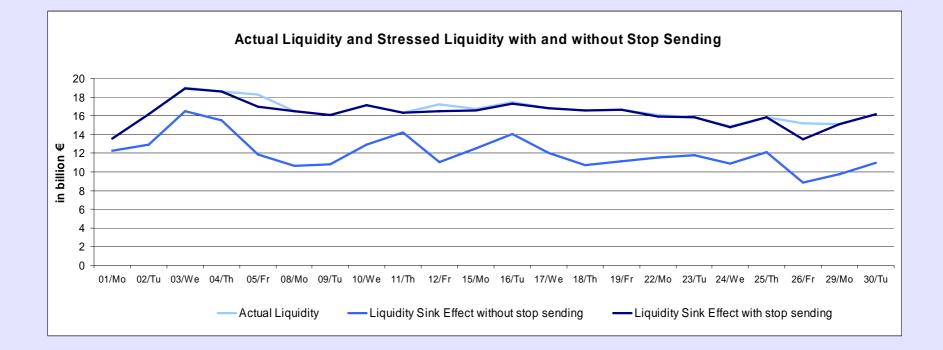

Key Findings and Conclusion

Unsettled payments in all three scenarios

- The average number of unsettled payments:
 - Scenario 1: 64.1
 - Scenario 2: 63.3
 - Scenario 3: 175.0

The value of unsettled in all three scenarios

- The average value of unsettled payments:
 - Scenario 1: 0.8 billion EUR (3.3 % of the value submitted)
 - Scenario 2: 0.8 billion EUR (2.7 % of the value submitted)
 - Scenario 3: 1.7 billion EUR (7.7 % of the value submitted)

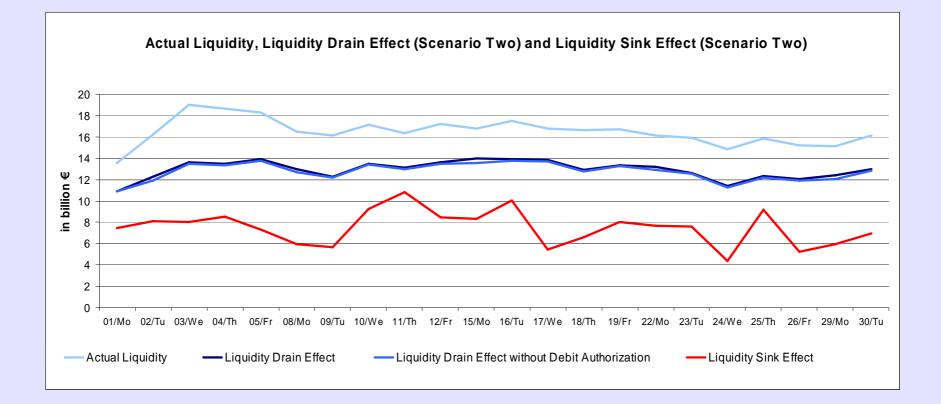

The number of banks with unsettled payments

Number of banks with unsettled payments	Actual	Scenario One	Scenario Two	Scenario Three
Daily average	0	12.14	8.73	22.77
Minimum	0	8.00	0.00	1.00
Maximum	0	18.00	12.00	30.00
Standard Deviation	0	2.42	2.81	5.87
Total	0	36.00	38.00	56.00

The stop sending rule

- Operators in TARGET can apply a stop sending rule
 - Applies to CB components
 - If imposed, payments to the stricken account are not forwarded, but held in a queue and are available to cover other payments
 - The stop sending rule can therefore reduce the liquidity sink effect
 - Ongoing transactions before imposing the stop sending rule (but after operational problems occurred) reduce the available liquidity in the system accordingly
 - Implementation: map on input data

Actual and stressed liquidity, Scenario 1

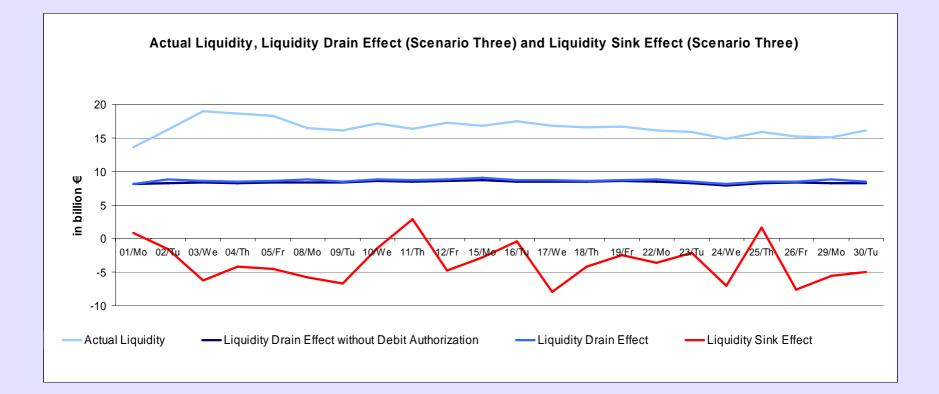

Impact of stop sending rule

Indicator	Scenario One with stop sending rule (1)	Scenario One without stop sending rule (2)	Difference (1) – (2)
Aggregate liquidity (in			
bill €)	16.28	12.05	4.23 (25.98%)*
Liquidity reduction (in			
% of aggregate			
liquidity)	1.19	26.91	-25.72*
Value submitted (in			
bill€**	22.42	26.65	-4.23 (-18.87%)
Value unsettled (in bill			
€)***	0.78	1.34	-0.56 (-71.79%)

Debit authorization

- Account holders can grant other account holders access to their account(s)
 - Used for some counter-parties with whom account holders interact very often
 - Cash supply, debit-card and e-money transactions
 - Reduces liquidity drain effect
 - Implementation: map on input data
- <u>Not</u> a crises mitigation instrument

Actual and stressed liquidity, Scenario 2



Impact of debit authorisation (Sc 2)

Indicator	Scenario Two with debit authorisation (1)	Scenario Two without debit authorisation (2)	Difference (1) – (2)	
Liquidity reduction (in				
% of aggregate				
liquidity)	21.4	22.5	-1.1%points	
Value unsettled (in bill				
\$ ***	0.8	0.95	-0.15(-15.6%)	
Ø# illiquid banks	8.7	10.3	-1.6(15.2%)	

- Slightly attenuates contagion
- Shields accounts with debit authorisation from direct impact

Actual and stressed liquidity, Scenario 3

Impact of debit authorisation (Sc 3)

Indicator	Scenario Three with debit authorisation (1)	Scenario Three without debit authorisation (2)	Difference (1) -(2)	
Liquidity reduction (in				
% of aggregate				
liquidity)	124	125.5	-1.5%points	
Value unsettled (in bill				
\$ ***	1.7	1.9	-0.2(-10.3%)	
Ø# illiquid banks	22.8	24.6	-1.8(-7.3%)	

- Slightly attenuates contagion
- Shields accounts with debit authorisation from direct impact

Comparison across scenarios

Indicator		Actual	Scenario One	Scenario Two	Scenario Three
	Aggregate liquidity (in bill €)		16.28	7.31	-3.81
Liquidity reduct	N				
aggregate liquid	ity)	0.00	1.19	54.75	121.51
	Liquidity drain				
of which	(in %-points)	0.00	0.00	21.58	47.43
	Liquidity sink				
	(in %-points)	0.00	1.19*	33.16	74.09
Value submitted (in bill€)		32.61	22.42	27.38	20.72
Without business continuity arrangements					
Value unsettled (in bill €)		0.00	0.78	0.80	1.66
Value unsettled (in % of value					
submitted)		0.00	3.3	2.72	7.68
Number of payments unsettled		0.00	64.06	63.27	174.95
With business continuity arrangements**					
Value unsettled (in bill €)		0.00	0.00	0.00	0.00
Value unsettled (in % of value					
submitted)		0.00	0.00	0.00	0.00
Number of payments unsettled		0.00	0.00	0.00	0.00

Agenda

Motivation and Objectives

The Austrian Large Value Payment System ARTIS

Stress Testing ARTIS – A Simulation Aproach

The Bank of Finland Payment System Simulator

Results of the ARTIS Stress Tests

Key Findings and Conclusion

Summary

- Contagion effect on the smooth functioning of the payment system was substantial in all three scenarios
 - System functioned smoothly even under severe stress given the existing business continuity arrangements would prove effective.
 - This is unlikely up to 4 000 payments need to be processed
- Stop sending rule
 - Substantially reduced the contagion effect
- Debit authorisation
 - Slightly attenuated contagion
 - Shielded accounts with debit authorisation from direct impact
- Policy implications
 - Quantify ELA
 - Propose new crisis mitigation instruments
 - Evaluate business continuity

Further research

- Stop sending had a substantial impact
 - Analyse policy option to extend stop sending to all accounts
- The impact of an operational incident differed widely
 - Across days
 - Across banks
 - Across scenarios
 - Further research focuses on determinants of differences