From PNS to TARGET2: the cost of FIFO in RTGS payment systems

4th Bank of Finland Seminar on Payment and Settlement Simulation (Helsinki, 22-23 August 2006)

> Fabien RENAULT Payment Systems Department Banque de France

> > EUROSYSTÈME

BANQUE DE FRANCE

Presentation Layout

- I. Offsetting algorithms
- II. Bilateral optimization
 - a) Standard offsetting algorithms (PNS/TARGET2)
 - b) Non-Fifo advanced algorithms
- III. Multilateral optimization
 - a) Standard offsetting algorithms (PNS/TARGET2)
 - b) Non-Fifo advanced algorithms
- IV. Application 1 : Settlement of an AS after a disaster
- V. Application 2 : Mitigating the consequences of a technical default in the French LVPS PNS

Offsetting algorithms

- Introduced in RTGS to lower the liquidity needs of the system in normal operation
- Can also be used in order to mitigate crisis situation
- Balance computational time / efficiency
- FIFO ("First In First Out") or not FIFO ?
 - PNS and T2 Already not FIFO in many ways
 - MUST in PNS / Normal payments in T2
 - FIFO only valid on a bilateral basis
 - FIFO not algorithm dependant

Bilateral optimization Standard offsetting algorithms

- Same in PNS and in TARGET2
- 2 equivalent constraints (position and bilateral limit)
- Pure FIFO
- Starts with all payments selected and unselect the last payment of the participant in deficit

	А	В
Position	10	10
Queued payments	500	20
between A and B	20	20
	20	20
	20	20

 No payment settled with PNS/T2 algorithm

- Greedy algorithm (Güntzer et al., 1998)
- Non-FIFO
- Starts with all payments selected
- Unselect all payments from the participant in deficit.
- Reselect the payments from the biggest to the smallest.

	А	В
Position	10	10
Queued payments	500	20
between A and B	20	20
	20	20
	20	20

Success

- Greedy algorithm gives the best solution (in value) for superincreasing payment values.
- If the payment queued are not superincreasing, Greedy will not necessarily provide a good solution.

	Α	В
Position	5	5
Queued navments	140	20
between A and B		20
		30
		100

 No payment settled with Greedy algorithm

- 1st tentative to improve on Greedy:
- Greedy++ : after each Greedy iteration, call a subfunction looking for the best solution using the 10 payments closest to the error. (Test every possibility, 1024 in total)

	А	В
Position	5	5
Queued payments	140	20
between A and B		20
		30
		100

 Greedy++ : error 30, send the 10 closest payments to the subfunction.

Payment 30 is unselected. Success

- 2nd tentative to improve on Greedy:
- Las Vegas Greedy : As in Greedy, consider payments in decreasing order.
- When appropriate, select a payment with a given probability. Run the algorithm several times.

	А	В
Position	5	5
Queued payments	140	20
between A and B		20
		30
		100

Las Vegas Greedy: probability to select 30: 30/(20+20) 25% chance to give the good solution. After 10 tries: 95%

Bilateral optimization Efficiency of the algorithms: Value

Efficiency test: 2 participants A and B.

- 100 payments queued from A to B. 100 payments queued from B to A.
- Payments generated randomly (lognormal PNS). Average over 5000 distributions.
- Net receiver has no liquidity. Net emitter has α% of the value needed to settle all payments. Measure the settled value as a % of the maximum possible.
- Las Vegas: stop after 5 unsucessful tries in a row.

Bilateral optimization Efficiency of the algorithms: Volume

Efficiency test: 2 participants A and B.

- 100 payments queued from A to B. 100 payments queued from B to A.
- Payments generated randomly (lognormal PNS). Average over 5000 distributions.
- Net receiver has no liquidity. Net emitter has α% of the value needed to settle all payments. Measure the settled volume as a % of all payments.
- Las Vegas: stop after 5 unsucessful tries in a row.

Multilateral optimization Standard offsetting algorithms

PNS/T2 multilateral algorithm

- Unselect all payments violating bilateral limits
- Find the participant with the smallest negative virtual position
 - If it exists, inactivate the smallest payment whose
- value is higher than the deficit.
 Otherwise inactivate the payment
- Otherwise inactivate the payment with the highest value.
- Inactivate the most recent payment from this participant.

Multilateral optimization Standard offsetting algorithms

PNS: The payment of value 100 (the smallest whose value is higher than the deficit 70) is unselected. Failure
 TARGET2: The most recent payment is unselected.

Multilateral optimization Advanced non-FIFO offsetting algorithms

- Some ideas to improve on the current PNS algorithm
- Favour liquidity transfers towards the center by removing peripherical participants
- Multilateral PNS Las Vegas
 - Same in construction as PNS
 - Starting participant in deficit chosen randomly
 - Payment inactivated chosen randomly (using appropriate probabilities)
- Multilateral Greedy Las Vegas
 - Starting participant in deficit chosen randomly
 - All payments from the considered participant unselected and considered for re-selection in the decreasing order of their value (using appropriate probabilities)

Multilateral optimization Advanced non-FIFO offsetting algorithms

OPM 10-10

- Choose a bank with a negative virtual position
- For each of the outgoing payments of this bank calculate a coefficient depending on:
 - How close the payment is to the deficit of the bank
 - Whether unselecting the payment makes the bank's virtual position positive
 - Whether unselecting the payment creates or amplifies another bank's deficit
- The payment with the highest coefficient is unselected

Settlement of an urgent AS during a crisis. Scenario

- Settlement of AS after an operational problem.
- Zero liquidity in the system (pre-disaster positions not accessible, f.ex Regional disaster in T2).
- 1 highly urgent ancillary system ("all or nothing", 10 participants) waiting to be settled...
- A certain number of lower importance payments between the AS participants (generated randomly according to a lognormal law m=4.4, σ=1.6)
- Aim: reduce the liquidity needs of the AS participants in a net debit position.

Settlement of an urgent AS during a crisis. Scenario

- 9 participants with an AS position of +11M
- 1 participant with an AS position of -100M
- Let the multilateral optimisation algorithm select some of the N queued payments in order to reduce the liquidity needs of the participant in a net debit position
- Here liquidity ratio=38%

Settlement of an urgent AS during a crisis. Results

Liquidity ratio vs algorithm and number of low priority payments available Average over 100 randomly generated distributions

Number of low priority queued payments available

PNS structure

PNS

- Privately owned large value payment system
- March 2006:
 - 17 participants
 - Between €45 and €90 billions settled per day
 - Around 20 000 payments per day
- Real-time gross system with bilateral limits and optimization algorithms

Principle

- The biggest participant faces operational problems
 - It is unable to send payments...
 - But it still receives payments from the other participants
 - And thus turns into a "liquidity trap"
- Simulations
 - Real data used
 - BdF's simulator reproduces exactly the behavior of PNS (data, entry mechanism, optimization algorithms...)
- Measured consequences of the technical default...
 - Increase in settlement delay
 - Rejected payments at the end of the day

Advanced algorithms in the case of a default

- Simulations were made to assess the impact of advanced offsetting algorithms on the system, in case of the technical default of the biggest participant (17 march 2006)
 - Normal PNS
 - PNS' FIFO bilateral optimization replaced by Greedy
 - PNS' FIFO bilateral optimization replaced by Greedy++
 - PNS' FIFO bilateral optimization replaced by Las Vegas Greedy
 - PNS' multilateral optimization replaced by M-Greedy-LV
 - PNS' multilateral optimization replaced by M-PNS-LV
 - PNS' multilateral optimization replaced by OPM 10-10

- Results
- 17 March, technical default of the biggest participant
- Various algorithms in replacement of PNS'
 - Bilateral (Las Vegas: stop after 5 unsucessful tries in a row)
 - Multilateral (Las Vegas: stop after 5 unsucessful tries in a row)

Rejected payments (value)

Rejected payments (volume)

- Results
- 17 March, technical default of the biggest participant
- Various algorithms in replacement of PNS'
 - Bilateral (Las Vegas: stop after 5 unsucessful tries in a row)
 - Multilateral (Las Vegas: stop after 5 unsucessful tries in a row)

Delay indicator (value)

Delay indicator (volume)

Insight providing example

- Technical default of the biggest participant 17/03/2006
- Focus on the bilateral relation between 2 participants

•	Payments
	rejected at the
	end of the day
	by PNS

- Payments settled with Greedy++
- Payments settled with Greedy

	Α	В
Cash position €	3.5 M	22.5 M
Queued payments between A and B	160 M	1 000 M
	313 M	3 500 M
	956 M	87 M
	1 500 M	
	2 000 M	
	51 M	-
	180 M	and a set

Conclusion

- Optimization algorithms can in some cases:
 - Lower the settlement delay
 - Lower the value of the rejected payments
- Two different approaches
 - Non-Fifo algorithms in replacement
 - Non-Fifo algorithms only as a final optimization before rejection
- However this effect is very case-dependent
 - Sometimes the final optimization brings nothing, as PNS algorithms have already settled many payments (2 cases out of 6)

General conclusion

Today: liquidity rich systems

- Free providing of intraday liquidity against collateral
- No need for more advanced algorithms in normal operation (although increase in settlement speed non negligible)
- Under special circumstances
 - Technical default / Liquidity crisis
 - Can help mitigate the consequences
 - Settle a highly urgent AS faster
 - Lower the number of rejected payments during a crisis
- Calculation time
 - Greedy faster than PNS, OPM 10-10 not significantly slower, LV 3 times slower
- Non-Fifo advanced algorithms
 - Could be useful in some circumstances
 - Still a lot of room for improvements

References

- Efficient algorithms for the clearing of interbank payments. Güntzer M., Jungnickel D., Leclerc M., European Journal of Operational Research (1998), 212-219
- Gridlock Resolution in Interbank Payment Systems. Bech M., Soramäki K., Bank of Finland Discussion Papers, 9, 2001
- An optimization algorithm for the clearing of interbank payments. Shafransky,
 Y., Doudkin, A., European Journal of Operational Research, (2006) 743-749

Analysis, by simulation, of the impact of a technical default of a payment system participant. An illustration with the PNS system. E. Mazars, G. Woelfel. Liquidity, risks and speed in payment and settlement systems – a simulation approach (2005), Bank of Finland

BANQUE DE FRANCE

EUROSYSTÈME