Discussion of Marco Galbiati and Kimmo Soramäki's

Dynamic model of funding in interbank payment systems

By Fabien Renault (Banque de France)

Outline of the discussion

1. "Dynamic model of funding in interbank payment systems": Sum-up
2. Discussion of the model's assumptions
3. Possible applications in terms of policy and oversight for the Central Banks

Model Sum-Up

- Funding game: banks' decisions
- Each bank i has to choose its liquidity level a_{i}
- Bank i faces costs associated with its liquidity a_{i}
- Bank i also faces delay costs that depend on a_{i} and also on $\left(a_{k}\right)_{k \neq i}$
- Each bank i sets a_{i} so as to minimize its total costs
- Nash equilibrium is reached when no

Learn about Bayesian updates and Nash equilibriums !! bank can gain by unitarily changing its liquidity level a_{i}, the $\left(a_{k}\right)_{k \neq i}$ being fixed

- The equilibrium in the game is thus the combination of the best individual strategies.

Model Sum-Up

- Funding game: pay-off matrix
- Simulation result: bank i's delay only depends on a_{i} and $\sum_{k=1, k e z i}^{N} a_{k}$
- Assumption: All banks are the same
- Consequence: they will all make the same choice (0 or 1)
- In the example, banks don't care about delay: as long as there is more than zero liquidity in the system (things can settle) they have high welfare Bank i

Bank i
chooses 0
liquidity
chooses 1 liquidity

Nobody provides liquidity: nothing settles, everybody loses a lot

All other banks
choose 0
All other banks choose 1

Bank i: -10 Other banks: -10	Bank i: -3 Other banks: 0	Bank i provides liquidity, the other banks free ride, bank i loses The other banks provide liquidity,
Bank i: 0 Other banks: -3	Bank i: -2 Other banks: -2	Eneryone provides liquidity

Question 1: This is a pure hawk-dove payoff matrix. In the funding model, is the liquidity increase from $(\mathrm{N}-1)$ to N sufficient to increase the other banks' welfare from -3 to -2 ?

Model Sum-Up

- Funding game:

- Repeated funding game with learning process
- Bayesian learning process:
- Bank i starts with believing equal probability for other banks' actions (1-1)
- Then it makes sense to choose 1 (lower average cost). Bank i chooses 1
- As all banks are the same, it means that all banks choose 1.
- Bank i observes that the other banks choose 1 and updates its beliefs (1 more dot in the 1 case)

Bank i's beliefs regarding
the other banks

Average	Average
cost: -5	cost: -2.5
Bank i chooses 0 liquidity	Bank i chooses 1 liquidity
Bank i: -10 Other banks: -10	Bank i: -3 Other banks: 0
Bank i: 0 Other banks: -3	Bank i: -2 Other banks: -2

Model Sum-Up

- Funding game:

- Repeated funding game with learning process
- Bayesian learning process:
- Bank i starts with believing 33\% for other banks choosing 0 (1-2)
- Then it makes sense to choose 1 (lower average cost). Bank i chooses 1
- As all banks are the same, it means that all banks choose 1.
- Bank i observes that the other banks choose 1 and updates its beliefs (1 more dot in the 1 case)

Model Sum-Up

- Funding game:

- Repeated funding game with learning process
- Bayesian learning process:
- Bank i starts with believing 25% for other banks choosing 0 (1-3)
- Then it makes sense to choose 1 (lower average cost). Bank i chooses 1
- As all banks are the same, it means that all banks choose 1.
- Bank i observes that the other banks choose 1 and updates its beliefs (1 more dot in the 1 case)

Model Sum-Up

- Funding game:

- Repeated funding game with learning process
- Bayesian learning process:
- Bank i starts with believing 20\% for other banks choosing 0 (1-4)
- Then it makes sense to choose 0 (lower average cost). Bank i chooses 0
- As all banks are the same, it means that all banks choose 0.
- Bank i observes that the other banks choose 0 and updates its beliefs (1 more dot in the 0 case)

Model Sum-Up

- Funding game:

- Repeated funding game with learning process
- Result:
- All banks choose 1
- All banks choose 1
- All banks choose 1
- All banks choose 0
- All banks choose 1...

Bank i's beliefs regarding the other banks

A mixed Nash equilibrium is reached in which :

- All banks choose 1 with 78 \% chance
- All banks choose 0 with 22 \% chance

Bank i's beliefs regarding the other banks			All other choose 0	Average cost: -5	Average cost: -2.5 Bank i chooses 1 liquidity
All other banks	All other banks			Bank i chooses 0 liquidity	
choose 0	choose 1			Bank i: -10	Banki i - 3
- -	- - - -			Other banks: 10	Other banks. 0
		66 \%	All other banks choose 1	Bank i: 0 Other banks: -3	Bank i: -2 Other banks: -2

Discussion of the model's assumptions

- Question 2 (for game theorists):

- The model is based on the following assumptions
- All banks are similar
- They have limited intelligence: their expectations are only based on their previous observations
- As each bank has only observed "all other banks choose 1 " or "all other banks choose 0", each bank expects it to continue...
- ... hence the "all other banks" against "bank i" matrix
- However the initial assumption: "Bank i starts with believing there is 50% chance for all other banks choosing 0 and 50% chance for all others choosing $1^{\prime \prime}$ is extremely strong:
- ... Much stronger than the "all banks are similar" assumption
- All banks being similar in their behaviour does not mean all the realizations of their actions will be similar
- If one throws 10 similar dices, it is unlikely that all dices will yield the same figure
- As they have never witnessed anything else, the banks will continue to assume an "all 0 " or "all 1"
- Conclusion: it would be nice to drop the "all banks behave the same", and investigate the N -player game... Maybe starting with $\mathrm{N}=3$

Discussion of the model's assumptions

- Bank's cost function

$$
\operatorname{Cost}_{i}=\alpha_{i} a_{i}+\beta_{i} \text { Delay }_{\text {emitted by i }}
$$

- Do banks care only about the settlement delay of their sent payments ?
- Probably not as receiving a payment allows a bank to credit one of its customers. A safer bet would be:

$$
\operatorname{Cost}_{i}=\alpha_{i} a_{i}+\beta_{i} \text { Delay }_{\text {emitted by } i}+\gamma_{i} \text { Delay }_{\text {received by } \mathrm{i}}
$$

- Are all banks similar ?
- The cost of liquidity will depend on a bank's obligatory reserve and portfolio
- The cost of delay will depend on a bank's activity
- Introducing heterogeneity in the preferences is next step...
- Moreover, the fact that bank i's delay only depends on a_{i} and on $\sum_{k=1, k \neq i}^{N} a_{k}$ is a consequence of the complete isotropic network...

Possible applications in terms of policy and oversight

- A reasonable delay function...

Delay Vs funds (as presented by Galbiati and Soramäki)

Delay Vs funds (fitted)

$$
\text { Delay }_{i}=0.2 \times e^{-\frac{a_{i}}{s}} \times e^{-\frac{<j>}{t}}=f\left(a_{i}\right) \times g\left(\sum_{k=1}^{N} a_{k}\right)
$$

Possible applications in terms of policy and oversight

- Total Welfare against Individual Welfares...

$$
\operatorname{Cost}_{i}=\alpha_{i} a_{i}+\beta_{i} \times f\left(a_{i}\right) \times g\left(\sum_{k=1}^{N} a_{k}\right)
$$

$$
\frac{\partial \operatorname{Cost}_{i}}{\partial a_{i}}=\alpha_{i}+\beta_{i} \times f^{\prime}\left(a_{i}\right) \times g\left(\sum_{k=1}^{N} a_{k}\right), \dot{A}^{\prime} \beta_{i} \times f\left(a_{i}\right)^{\prime} \times g^{\prime}\left(\sum_{k=1}^{N} a_{k}\right)=0
$$

$$
\frac{\partial \text { Total Cost }}{\partial a_{i}}=\alpha_{i}+\beta_{i} \times f^{\prime}\left(a_{i}\right) \times g\left(\sum_{k=1}^{N} a_{k}\right)_{i}^{4} \sum_{k=1}^{N} \beta_{k} f\left(a_{k}\right){ }^{\prime} g^{\prime}\left(\sum_{k=1}^{N} a_{k}\right)=0
$$

The social planner will take into account the externalities created
by bank i's decision

Possible applications in terms of policy and oversight

- Total Welfare against Individual Welfares...
- The combination of the best individual strategies will lead to a smaller total welfare than what a social planner would achieve.
- Question 3 (to Marco \& Kimmo) : In your model (with heterogeneous banks) can the Central Bank, by charging less for promptly settled payments, or by imposing a settlement schedule (f.ex. 60\% settled before 12.00), increase the total welfare ?
- Question 4 (to the Overseers in the audience) : Is it part of the Central Bank's role ?

Possible applications in terms of policy and oversight

- Banks' trade-off between delays and liquidity costs
- Your situation as a system operator:
- The banks in your system use a total liquidity of 100
- Resulting in a total liquidity cost of $80 . .$.
- ...and a total delay cost of 50.
- Total cost for the banks is thus 130.
- A new offsetting algorithm has been designed
- It dramatically reduces the total delay for a given level of liquidity in the system
- After the algorithm has been implemented:
- The banks in your system use a total liquidity of 50
- Resulting in a total liquidity cost of 40 ...
- ...and a total delay cost of 70.
- Total cost for the banks is thus 110.

Possible applications in terms of policy and oversight

- Banks' trade-off between delays and liquidity costs
- Before: Cost for the banks 130, Total Delay 50
- After: Cost for the banks 110, Total Delay 70
- Result:
- The banks are happy...
- ... Your boss is not and says the risks have increased
- Question 4 (to Marco \& Kimmo): Could your model predict this outcome for a reasonable delay function ??
- Question 5 (to the Overseers in the room): WWOD ??
- What Would the Overseer Do? Keep the new algorithm or not?
- CPSS Core Principle IV: 'The system should provide prompt final settlement on the day of value..."
- CPSS Core Principle VIII: 'The system should provide a means of making payments which is practical for its users and efficient for the economy"

Conclusions

- Unifying the simulation approach and the game theory approach is of great interest
- Very promising start
- Bank heterogeneity would be a good next step towards more realism
- Some oversight and policy applications
- The behaviour of the banks in practice is sometimes very hard to predict (and model)...

