Simulation of participant-level operational disruption in Swiss Interbank Clearing:

Significant systemic effects and implications of participants' input behaviour

Martina Glaser Philipp Haene Swiss National Bank

Payment and settlement simulations seminar Helsinki, 28 August 2007

Contents

- 1 Description of Swiss Interbank Clearing
- 2 Simulation of member-level disruption
- 3 Factors influencing systemic effects
- 4 Contingency measures
- 5 Conclusions

3/23

Description of SIC

- 2 Simulation of member-level disruption
- 3 Factors influencing systemic effects
- 4 Contingency measures
- 5 Conclusions

Swiss Interbank Clearing System (SIC)

- no-frills RTGS with centralized queue, FIFO
- used for large and small value payments

 Daily values settled	179 bn	318 bn
(2006, CHF)	(av.)	(max.)
 Daily number of trx	1.3 mio	3.8 mio
(2006)	(av.)	(max.)
 Average transaction size (2006, CHF) 	~140 000	
 Median transaction size (May 2004, CHF) 	~600	

5/23

Member structure in SIC

Two large members with more than 50% of values (SNB payments excluded)

Concentration of values in SIC

Effective liquidity and liquidity bounds in SIC

Average value settled per day in May 2004: CHF 166 bn

Business days May 2004

Comparison of liquidity levels

Country	Payment	Smulation	Lower	Upper	Effective	Effective	Reference
	system	period	bound to	bound	liquidity to	liquidity to	
			value	to value	value settled	upper bound	
			settled	settled	(liquidity ratio)		
Switzerland	ac	<i>M</i> ay 2004	2%	25%	7%	28%	na
Denmark	DN Inquiry	4 th quarter	11%	37%	—	_	BECH/SORAMÄKI (2005a)
	and Transfer	1999					
	System						
Finland	BoF-RTGS	Last 100	4%	27%	_	_	BECH/SORAMÄKI (2005a)
		days in					
		2000					
Norway	NCS	10 days in	5%	27%	70%	259%	ENGE/O/ERU (2006)
		October					· · · ·
		2005					
Sweden	RIX	First half	_	24%	20%	83%	SVERIGES RIKSBANK (2003)
		2004					
UK	0-HAPS	February	-	-	_	Approx. 150%	BEDFORD' MILLARD' YANG
	Sterling	2004					(2004)

\rightarrow SIC settles with relatively low liquidity levels

1 – Description of Swiss Interbank Clearing (SIC)

Simulation of member-level disruption

- 3 Factors influencing systemic effects
- 4 Contingency measures
- 5 Conclusions

Assumptions for simulations with BoF-PSS2

Operational disruption of a large SIC member:

- → SIC member is assumed to fail at the moment when the largest potential liquidity sink develops during the day
- After disruption, the SIC member can not enter payments during the rest of the day
- But payments already entered by the disrupted member (queued payments) are settled if liquidity is available
- Other members stop making payments to disrupted member only 2 hours after the disruption

Illustration systemic effect

Implications of participant disruption

Average effect of two largest SIC participants, May 2004

Implications disruption of a smaller participant

Effect of participant with large number of payments but lower values, May 2004

- 1 Description of Swiss Interbank Clearing (SIC)
- 2 Simulation of member-level disruption

Factors influencing systemic effects

- 4 Contingency measures
- 5 Conclusions

Factors driving size of systemic effect

Factors stemming from the system

- Member structure
- Liquidity levels in the system
- Payment system design

Random factors

- Timing of disruption (simulation assumption)
- Behaviour of participants
 - Reaction time of non-disrupted members (simulation assumption 120')
 - Input behaviour

Input behaviour of banks: Queue management (A)

Input behaviour of banks: Queue management (B)

Input behaviour of banks: Queue management (C)

Queue management influences size of theoretical liquidity sink

Input behaviour of banks: Timing of input (A)

Input behaviour of banks: Timing of input (B)

Input behaviour of banks: Timing of input (C)

Timing of input influences size of theoretical liquidity sink

Size of theoretical liquidity sink and systemic effect (averages May 2004)

	Theoretical lie	Systemic effect						
	% of system turnover	% of effective liquidity in SIC	% of total payments value					
Different large participants								
Early input	7 %	106 %	16 %					
Staggered input	10 %	151 %	29 %					
Same large participant								
Early input	5 %	77 %	3 %					
30' later input	8 %	116 %	21 %					

- 1 Description of Swiss Interbank Clearing (SIC)
- 2 Simulation of member-level disruption
- 3 Factors influencing systemic effects

Contingency measures

5 – Conclusions

Measures taken by SNB to contain systemic risk

Preventive measures (Requirements)

- Maximum downtime of system 2hrs
- Maximum downtime of critical members: 4hrs
- Redundant data centres and communication networks
- Incentives for early inputs and early settlement (progressive fee structure)

Reactive measures

- Option to postpone clearing stop
- Access to intraday liquidity, wide range of collateral accepted
- Possibility for SNB to initiate on-behalf-payments
- Interbank alarm and crisis organisation to co-ordinate industry reaction
- Backup procedures for physical data input (tapes)

Potential additional measures to contain systemic risk

- Influence input behaviour of critical members
- Limiting liquidity sink through bilateral or multilateral sender limits
- Introduce optimisation mechanisms (ongoing bilateral or multilateral offsetting)
- Enhancement of existing interbank alarm and crisis organisations including network carriers

- 1 Description of Swiss Interbank Clearing (SIC)
- 2 Simulation of member-level disruption
- 3 Factors influencing systemic effects
- 4 Contingency measures

Conclusions

Conclusions

- Vulnerability of a very liquidity-efficient system
- Importance of measures already taken by the Swiss National Bank
 - to prevent operational failures
 - incentive for early payment order input with progressive fee structure
 - to limit the systemic effect with provision of intraday liquidity, on behalf payments, interbank alarm and crisis organization
- Crucial role of the input behaviour of major participants

 \rightarrow possibility to mitigate systemic effects by adjusting the input behaviour of major participants

• Next step:

 \rightarrow Analyse optimal member input behaviour:

- of a single member with all other members' behaviour given
- of multiple members

The End