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Abstract 

 

Interbank payment and settlement systems establish conditions for the circulation of financial funds 

in the market and guarantee the distribution of assets. Non-cash payments are intensively growing 

in the payment and settlement market. Modern electronic systems of interbank payments are 

introduced to satisfy this need. Interbank payment and settlement sector is very sensitive to changes 

in the market. This calls the demand to foresee adaptation of the payment and settlement system in 

the dynamic environment. The technological renewal of the payment and settlement system was 

aimed at increasing fund turnover as well as complying with the requirements applied with regard 

to payment systems. Such challenges make the subject of modelling and analysis of financial flows 

topical in interbank systems. The article presents a stochastic model for the interbank payment and 

settlement system and analyses possibility for optimisation of system costs. The results of 

application of the model developed to the analysis of the real flow of payments in the payment 

system are given. 

 

 

1. Introduction 

 
Interbank payment and settlement sector is very sensitive to changes. Interbank payment and 

settlement systems establish conditions for the circulation of financial funds in the market and 

guarantee the distribution of assets. The main purpose of such systems is to warrant a fast and 

rational turnover of settlements to balance payments and to reduce the movement of money supply. 

Active introductions of the means of electronic data transfer in banking and concentration of a great 

part of settlements at the centres of interbank payments were related with the  creation of an 

automated system of clearing. Any change in such a system can have a great influence on the 

finance and capital markets. A change in the system can influence the development of national 

economy. Therefore by the interbank payment and settlement systems and their participants special 

requests are presented. These systems should provide the principles of stability, efficiency, and 



security. Participants of the system must satisfy the requirements of liquidity and capital adequacy 

measures. It invokes a requirement for the increased supervision and control of parameters of the 

system and its participants. The owner, operator, and supervisor of such a system by default are the 

central bank. It installs a request for the participants of the system, conducts supervision over their 

performance and takes measures that guarantee a stable system operation.  

The systems of payments can be divided into that of discrete clearing and real-time systems. In 

the systems of discrete clearing, payments are made in the set intervals of time. In the real-time 

systems, payments are made continuously. Non-cash payments are growing in the market of 

payments. Recently non-cash payments have been growing in the market of payments in Lithuania. 

Compared to 2001, the volume of payment transactions has grown up to 240 per cent. The increase 

of electronic settlements market influenced the development of researches of the mentioned area. 

The Bank of Lithuania has designed and implemented a new real-time payment system LITAS 

which replaced the discrete clearing payment system TARPBANK that has been operating since 

1993. A substantial renewal of the payment system in Lithuania was prompted by the 

implementation of the new banking technologies and was aimed at increasing funds turnover and 

complying with the requirements applied with regard to payment systems in the European Union. 

After the implementation of the new real-time payment system, the value of processed payment 

calls in this system was gradually growing. 

Introducing electronic technologies in the area of financial services, it is necessary to solve 

the tasks of processing and managing of settlement flows in order to minimize the costs of 

settlements and liquidity, credit and systemic risks. The solving of these objectives is related with 

the analysis of electronic settlement data problems and the effective usage of management 

technologies. Due to the fact that electronic settlement systems are very different, the typical tasks 

of modeling and optimization can be brought over, whose methods of solving can be used in the 

variants areas of settlement. 

Over the past few decades, an electronic service in different areas has increased 

significantly. Using the information technologies (IT), the market of financial services has been 

developing very fast. The development of electronic settlements, electronic money and e-business 

has demanded theoretical and experimental research in this area. Most of the researches of 

payments and settlement systems are related to the monetary policy managed by national central 

banks and international financial institutions, which are interested in the stability of economic 

development. The researches of payments and settlement systems are developed in one of the 

following three categories: descriptions of current structure, analysis of the risks associated with 

these systems and central bank policy issues, and comparisons of settlement systems. The studies of 

current structure descriptions consist of exploring of the centralized settlement systems. The 



scientific researches also explore the efficiency of net and gross settlements systems. The analyses 

of efficiency of net and real-time gross settlement systems are insufficient, therefore to model and 

explore these systems is a topical task. A gradual increase in number of interinstitutional 

settlements influenced the mentioned tasks. 

The Payment and Settlement systems consist of the system operator and participants of the 

system (banks, unions of credit, and other institutions of finance and credit). These systems can be 

analyzed as hierarchical suites of interacting participants, which pursue their own policy by 

different criteria on the basis of the wholesome function. The major distinction between different 

interbank payment systems is whether a system is operating on a net or gross basis, or payments are 

processed individually in the batches. The most common three pure implementations of these 

principles are: real-time gross settlement (RTGS), time-designated net settlement (TDNS), and 

continuous or secured net settlement (CNS). By perfecting the processing of settlements and/or 

developing algorithms for solving gridlocks, or by applying the tools of refinancing and using 

reserves of requirements one can change the efficiency of settlement systems. The settlement 

systems in use have evolved mostly independently of one another in different countries. Until recent 

time there has been little effort to harmonize or standardize these systems. The globalization of 

financial invoked a necessity to harmonize and standardize the work of different systems and to 

develop the researches of this area. 

Due to high sensitivity and possible effects on the economic and social environment, the 

systems of payment are in fact not the subject to experiment changing parameters in the real 

environment. Practical experiments in an active system are very risky. They demand for modeling 

their operation through a system by creating its mathematical model. The Bank of Finland (BoF-

PSS1, BoF-PSS2, Leinonen and Soramaki, 2003), The Bank of Sweden (RIX system, Pettersson, 

2003), The Bank of France (Paris Net Settlement (PNS) large-value payment system, operated by 

the CRI (Centrale des Règlements Interbancaires, Mazars and Woelfel, 2005), The Bank of Austria 

(ARTIS, the Austrian Real-Time Interbank Settlement system, Schmitz and Puhr, 2006) and The 

Bank of England intensively work in this area. We could not manage to find a similar research, 

analysing the situation in the market of payments of Lithuania. Therefore, in this article, we present 

a model of the payment and settlement system by the example of the Clearinghouse of the Bank of 

Lithuania. 

Sensitivity of the sector of interbank payments and settlements to changes requires to foresee 

the adaptation of the payment to changes in settlement systems and impossibility to experiment by 

changing parameters in the real payments and settlement systems since scarcity of the research on 

modeling the Lithuanian interbank payments makes this subject of investigation topical both in 

theory and in practice. 



The object of investigation of this article is the systems of settlement modeling and simulation. 

The objective of the article is to present a model of the payment and settlement system and 

survey the possibility of statistical optimization of settlements costs. 

The methods of the article are a systematic analysis of literature, practical analysis of the 

payment and settlement system, graphic and monographic analysis, analysis of real flow of 

payments in the payment system LITAS, and modelling of the interbank payment and settlement 

system. 

 

2.1 Modeling of interbank settlements 

2.1.1 Modeling data 

 

We simulate payments flow of the interbank payment and settlement system. The system 

consists of J  agents, who execute payments between themselves. We call by agents the participants 

of a system: banks, foreign banks branches, credit unions, and other financial or clearing institution 

members of the payment and settlement system. The participants send applications to the payment 

and settlement system. Each application is described in the system by the name of a sender, name of 

the addressee, moment of delivery of the application, and the volume of the transaction.  

The receipt of real data is bound up with a problem of confidentiality. Usually the 

institutions which take part in interbanking operations avoid to reveal the data of transactions. 

Exceptionally, it is possible to receive encoded data. 

We consider the anonymous data of the interbank settlement session of a typical labour day 

presented by the Bank of Lithuania. These data consist of 74637 applications of 11 participants of 

the Payment and Settlement System. The data include the code name (number) of a participant of 

the payment and settlement system, time of delivery of the applications, volume of the applications 

and the flow of applications. Further we use the term “payment” instead of “payment order” for 

simplicity. 

 

2.1.2 Poisson-lognormal model of interbank payments 

 

To model interbank payments, the Poisson-lognormal model is applied, which is presented 

in this chapter. The calibration method of this model using real data of a settlement system is 

presented there. The method for simulating settlement system costs and liquidity has been 

constructed; components and computing methods of basic costs are presented. The task of 

optimization and management of electronic interbank settlement systems that determine deposit 

sums and values of requirements reserve has been shaped. An analytic example that illustrates 



solution of the mentioned task is presented, too. The method for differentiating the function of 

average settlement costs is presented and the algorithm for estimating the gradient of costs function 

is realized. The algorithm of statistical modeling and stochastic optimization of interinstitutional 

settlement costs and risk of liquidity with a desired accuracy has been developed by the presented 

methodology. The payments flow of the interbank payment and settlement system is simulated. The 

system consists of J  agents which execute payments between themselves. According to the 

Poisson-lognormal model we consider the flow of applications of the i th agent to the j th one, 

following from the Poisson distribution with intensities ijλ , 1 ,i j J≤ ≤ , where λ  is general 

intensities of settlement flow, ip  is possible when a payment is generated by the i th agent, ijr  is a 

conditional probability for the payment to be sent to the j th one, if the payment was generated by 

the i th agent, where 
1 1

1, 1
J J

i ij
i j

p r∑ ∑
= =

= = , 1 i J≤ ≤ . Since the settlement flow is Poisson, the 

intensity of settlement flow, was generated by the i th agent, can be computed as follows: 

 
,i ipλ λ= ⋅  (1) 

 

and the intensity of settlement flow sent by the i th agent to the j th one is equal to: 

 
,ij i ijp rλ λ= ⋅ ⋅  (2) 

 

1 ,i j J≤ ≤ . 

The volumes of transactions are assumed to be lognormal with the parameters μ , 2σ , 

where μ  is the average of the normal logarithm of application sums, 2σ  is the standard deviation 

of the normal logarithm of application sums. The results of statistical investigations do not 

contradict the distribution of values by the mentioned law. The given results can be adapted if 

transactions of settlement flows are distributed by different parameters of the average and standard 

deviation, or by other distributions. The created algorithms can be adapted to the values distributed 

by the gamma distribution, stability distribution, or autoregressive models. 

 

2.1.3 Calibration of model 

 

Real data of the payment and settlement systems were used during the simulation. The real 

data of one application of the payment and settlement system ( ), , , ,y ID a b t p=  consists of: 

• the number of application ID ; 



• the name or code of participant a , which sends applications; 

• the name or code of participant b , which receives applications; 

• time and date t  of submission of an application; 

• volume of an application p . 

 

The data of applications are usually queued by time and date. A fragment of the settlement 

process data of participants 11J =  is presented in Figure 1. The participants are coded by 

symbols , , ,A B KK . The time of submission is denoted by date and by time of submission expressed 

in seconds. The volumes of applications denote the currency of a settlement written in hundreds. 

 

 
Figure 1. The fragment of real settlement process data 

 

The general parameters of modeling are given by using data presented above. The intensity 

of settlement flow is computed by the formula: 

 

N

N
t

λ = , (3) 

 

where z  is the general value of settlement applications, zt  is time of submission of the z th 

application. Let 
ij

z  be the number of payments from bank i  to bank j . The probabilities of 

generating settlements can be estimated as follows: 

 

i
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= , (5) 

 

1 ,i j J≤ ≤ . 

The parameters of lognormal distribution of settlements are computed by the formulas: 

Trans ID Payer Receiver  Date Time Sum 
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In Table 1, the matrix of intensities generation per minute is presented. The parameters of 

the lognormal transaction volume are as follows: µ=813.7 and σ=2.189 

 

Table 1.  Matrix of intensities generations (number of applications / minute) 
 

j/i 0 1 2 3 4 5 6 7 8 9 10 

0 0.0000 0.0555 0.0000 0.0049 0.0205 0.0014 0.0000 0.0014 0.0021 0.0014 0.0410 

1 0.0000 0.0000 0.0000 0.2053 2.1398 0.1565 0.0000 0.1473 0.3943 0.1395 3.9189 

2 0.0000 0.6161 0.0000 0.0099 0.2798 0.0240 0.0000 0.0272 0.0353 0.0148 0.5783 

3 0.0000 0.2063 0.0000 0.0000 0.0572 0.0039 0.0000 0.0039 0.0113 0.0025 0.1226 

4 0.0000 1.3340 0.0000 0.0325 0.0000 0.0297 0.0000 0.0420 0.0834 0.0272 1.1111 

5 0.0000 0.0544 0.0000 0.0011 0.0177 0.0000 0.0000 0.0004 0.0035 0.0004 0.0339 

6 0.0000 0.3300 0.0000 0.0078 0.1561 0.0099 0.0000 0.0148 0.0173 0.0078 0.2063 

7 0.0000 0.2445 0.0000 0.0035 0.1491 0.0053 0.0000 0.0000 0.0127 0.0046 0.3437 

8 0.0000 0.3681 0.0000 0.0131 0.0703 0.0067 0.0000 0.0071 0.0000 0.0071 0.2240 

9 0.0000 0.1346 0.0000 0.0035 0.0343 0.0028 0.0000 0.0021 0.0071 0.0000 0.0714 

10 0.0000 5.2183 0.0000 0.1724 2.5009 0.1604 0.0000 0.1915 0.3282 0.1208 0.0000 

 

The Poisson distribution of application flow was tested according to the Shapiro-Wilk 

criterion (Shapiro and Wilk, 1972). The assumption on log normality of transaction volume was 

tested according to the asymmetry criterion (D’Agostino and Pearson, 1973). 

 

2.2 Simulation and optimization of settlements costs 

2.2.1 Simulation of settlements costs 

 

In order to study the policy of credit and liquidity risk control, we consider a probability of 

expending the correspondent account and operational costs of settlements. 

The total cost of settlements of the i th agent during one period consists of several parts: 
 

i i i i i iD RE F B TT AC= + + + + , (8) 
 



where iRE  is a premium for deposit, iF  is pay of nonconformity of reserve requirements, 

iB  is the cost of overnight loans, iTT  is a possible bank loss due to the freeze of deposit (possible 

profit of withdrawal) in a correspondent account, iAC  is the operation cost. 

The i th participant of the system gets the premium iRE  for the positive balance of the 

correspondent account or pay penalty iF , for default of reserve requirements. The amount of 

premium iRE , is represented by the formula: 

 

( )
1
max ,

100 360

T l
i i

l
i

RR K r
RE =

⋅
=

⋅

∑
, 

1

lT

l

LRr
T=

= ∑  (9) 

 

where lLR  is the interest rate of refinancing transactions, iRR  is the sum of reserve requirements, 

which determines the central settlement institution by the i th agent. 

The amount of penalty of the agent iF , is represented by the formula: 

 

( )
1

max 0,

360 100

T l
i i

l
i

RR K r p
F =

⎛ ⎞
− ⋅ +⎜ ⎟

⎝ ⎠=
⋅

∑
, 

(10) 

 
where p  is the added percentage item that increases the interest rate of refinancing transactions in 

computing penalty. 

If a participant of the system lacks of assets to carry out settlements, the Central bank can 

grant an overnight loan. The participant of the system of the overnight loan must pay the interest 

rate. 

The income of a participant of the system, taking into consideration the expressions of the 

correspondent account, penalty, and premium of deposit in recurrent manner, can be compute. The 

income of participant of system can be computed by formula: 
 

( )1

1
min 0,

T l l l
i i i i

l
B STL K Gδ−

=
= − ⋅ + +∑ , (11) 

 

where l
iδ  is the balance of the settlement day l  that may be positive or negative and is computed 

by the formula , , , ,

1 1 1 1

l lz zij jiJ Jl l k l k l k l k l
i ij ij ji jiij

j j k k
p C p Cδ ξ

= = = =

⎛ ⎞
⎜ ⎟= = −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ . 



Let us analyze how banks can manage settlement costs by depositing (or withdrawing) 

assets on the correspondent account. We consider the policy when banks deposit or withdraw 

certain fixed sums l
i

X . When computing operational costs, one has to take in account that a bank 

cannot withdraw more than the sum, present on the correspondent account. Thus, after simple 

considerations, the deposit or withdrawal are computed as follows: 
 

( )1 1max , max ,0l l l lG X Ki i i iδ
⎛ ⎞− −= − +⎜ ⎟
⎝ ⎠

, (12) 

 

The system loses the liquidity if the sum of a part of the correspondent account of some agents 

is negative and the agent needs to use some tools for recovery of the liquidity: 

1 0l l lK Gi i iδ− + + < , (13) 

 

The frequency of liquidity loss is computed as follows: 

( )1min 0,
1 1

T J
l l lH K Gi i i

l iPlikv T

δ⎛ ⎞− + +⎜ ⎟
⎝ ⎠

= ==

∑∑
, 

(14) 

 

where ( )⋅H  is the Heaviside function. 

A possible loss freezes the deposit (possible profit of withdrawal) in the corresponding account, 

which is expressed by the formula (Mayers, 1990): 

0

T l
i it

TT IBR G
=

= ⋅ ∑ , (15) 

 
where IBR  is the interest rate of interbank loan market. 

The Operating costs of the i th agent are computed assuming that cost of one operation is 

fixed to φ : 

,
1 1

T J l
i i j

t j
AC zφ

= =
= ⋅ ∑ ∑ , (16) 

 

The payment and settlement system is characterized by a probability of losses of liquidity 

likvP  given in (14) and the total settlement costs: 

1

J
D Di

i
=

=
∑ , (17) 

 



2.2.2 Statement of optimization of settlement costs 
 

Denote the cost of transactions during one period by ( )iiii XDD δ,= , which is a random 

function in general, depending on the deposit iX  and the vector of balances of the correspondent 

account ),,,( 21 T
iiii δδδδ K= . 

Denote the expected cost during one period as 

( ) ( ),i i i i iL X ED X δ=  (18) 

 

The system is efficiently if the general cost is lower. In the presented model, the agent is 

acting independently and its objective function depends only on the parameter iX . Therefore, to 

characterize the efficiency of the whole system we can use the objective function (18) equal to the 

sum of the average costs of settlements. The objective function, from the viewpoint of a participant 

of the settlement system, is minimized by selecting the volume of deposit iX  under the fixed 

reserve requirements: 

0
( ) min

X
L X

≥
→  (19) 

 

where ( ) ( )
1

J
i i

i
L X L X

=
= ∑  

Sample 1. Let us analyze an example that illustrates how deposits and reserve requirements 

are chosen. For simplicity, we assume that the settlement period is one day and the day balance is 

distributed by Gaussian law with the parameters 5.0=μ  and 5.0=σ  (in standard units). Let us 

take LBR=5 per cent, IBR=9 per cent, STL=10 per cent. 

In Figure 4, the dependence of costs of settlements ( )RRXD ,,δ  on the deposited amount 

X , with an adequate day balance δ  and fixed reserve requirements RR , is illustrated. 

 

Figure 2. Dependence of the costs of settlements on the sum of deposit and day balance 



2.2.3 Modeling and regulation of liquidity of settlement system 
 

The dependence shows that the function of current costs is periodically linear. The function 

has a minimal point according to the interest rate. The function of average costs ( )RRXL ,  and the 

gradient of the function ( )RRXQ ,  in this example can be calculated analytically. 

In Figure 3 dependence of average costs and its gradient on the sum of deposit X  is 

calculated means of the programming system MathCad. 

Figure 3. The dependence of: a) the average costs of settlements, and b) the gradient of the 

objective function on the sum of deposit 

Then the average income of a settlement institution (clearing house) BP  can be computed 

as follows: 
 

( ) ( )( )∑
=

−=
J

i
iiii TTRRXLRRXBP

0
,,  (20) 

 

The selection of policy of the system participants and its management is formulated as a task 

of game theory, where all the agents of a settlement system aspire to minimize their processing 

costs ( ),i i iL X RR  by choosing deposit or withdrawal sums iX , and settlement institution 

minimizes incomes BP  by choosing the reserve requirements ( )1 2, , , JRR RR RR RR= K  under the 

condition, that the frequency of liquidity loss likvP  will not be higher than the appointed volume α . 

Then the task of stochastic optimization with a restriction on the frequency can be 

formulated as follows: 

( ) ( )( )
RR

J

i
iiii TTRRXLRRXBP min,,

0
→−= ∑

=
 (21) 

 

a) b) 



*( , ) min ( , )i i i i i i
Xi

L X RR L X RR=  (22) 

 

( )*,P X RRlikv α≤  (23) 

 

2.3 Simulation of payments flow and settlements costs 

2.3.1 Simulation of payments flow 

 

The flow of payments was analyzed on the line of time divided into equal time intervals and 

grouped to periods T  (Figure 4). Since the costs of settlements are calculated for the periods of 30 

days, typically a time interval is assumed to be one day, while period T  is 30 days. 

Figure 4. The line of time for submission of payments applications 

 

Let us consider the flow of a settlement period. Thus, every agent generates the flow of 

payments, which is delivered to other participants. For Jji ,...,1, = , let l
ij

z  be the number of 

payments from bank i  to bank j  per day l , Tl ≤≤1 . Times lk
ijt ,  of applications of each participant 

where generated according to 

 
, 1, ,k l k l k l

ij ij ijt t τ−= +  (29) 
 

where ( )
ij

lk
ij λ

ζτ ln, −
= , ζ  is uniformly random in the interval [0,1], if l

ijzk ≤≤1 , ji ≠ . 

 

The value of the amount of applications was generated by the lognormal law: 

 
( ), ,expk l k l

ij ijp μ σ η= + ⋅
 (30) 

  
where the averages μ  and standard deviation σ  were estimated according to the calibration of real 
data (6), (7) and lk

ij
,η  is a standard normal variable. 
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T  
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T

...

l
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The day net balance of bank i  is the total sum of money that other banks send to the bank i  

minus the total sum of money that the bank i  sends to other banks and can be computed as follows: 

, , , ,

1 1 1 1

l lz zij jiJ Jl l k l k l k l k l
i ij ij ji jiij

j j k k
p C p Cδ ξ

= = = =

⎛ ⎞
⎜ ⎟= = −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ . 

 

2.3.2 Statistical simulation of expected settlements costs 

 

Let assume that: 

( ) ( ) ( )( )xgxgxg 21 ,min=  (24) 

 

where, ( )xg1  and ( )xg2  are the generalized differentiable functions. Then a subgradient is computed 

as follows (Michalevich et al., 1987): 

( ) ( ) ( ) ( )
( ) ( ) ( )⎩

⎨
⎧

>∂
≤∂

=∂
xgxgifxg
xgxgifxg

xgx
212

211

,
,

 
(25) 

 

Note that the subgradient is coincidental with the gradient of the function differentiable in a 
usual sense. 

Using this approach we, find subgradients of the functions ( )xK t
i  and ( )xGt

i . Hence we 
have: 

 

( ) ( ) ( )1 1, ( ) ( ) 0

0,

l l l l lK x G x if K x G xl x xi i i i iK xx i
otherwise

δ− −⎧∂ + ∂ + + ≥⎪∂ = ⎨
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(26) 
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0, 0, 0

, 0

1,

l lif x Ki i
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δ
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⎪
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⎪
⎪
⎩  

(27) 

 

Using these formulas and (24), we can compute the subgradient ( )i
n
ix xD δ,∂ . Since the 

random vector iδ  is absolutely continuous, it is easy to make sure that the expectation of the 

subgradient of the cost function yields us the gradient of expected costs (Ermoliev at el., 1995): 

 



( ) ( )iiix
i

ii XDE
dX

XdL
δ,∂=

 
(28) 

 

Let N periods of settlement performance be simulated and random vectors of incomes and 

outcomes ni ,δ , Nn ≤≤1 , Ki ≤≤1 , be generated. Thus, the statistical estimate of settlement costs 

is the average cost: 

 

( ) ( ),
1

1 ,
N

i i i i nin
L X D X

N
δ

=
= ∑%

 
(31) 

 

The Monte-Carlo estimator of the gradient of the objective function (28) is obtained by 

virtue of: 

 

( ) ( ),
1

1 ,
N

i i x i i i n
n

Q X D X
N

δ
=

= ∂∑
 

(32) 

 

Denote the vector of agent impact on its correspondent account as ( )JXXX ,,1 K= . The 

quality of a settlement system can be defined by the total expected cost 

( ) ( )
1

J
L X L Xi i

i
=

=
∑% %

. 

During the simulation the sampling variance can be computed: 

 

( )( )22
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d X D L X

N =
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(33) 

 

where ( )∑
=

=
J

i
niii

n XDD
1

,,δ , Nn ≤≤1 , as well as the JJ ×  sampling covariance matrix: 
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(34) 

 



where nη  is a vector with the components ( )niiix
n
i XD ,,δη ∂=  and η  is a vector with the 

components ( )iii XQ=η , Nn ≤≤1 , Ji ≤≤1 . 

 

2.4 Stochastic optimization of settlements costs 

 

The statistical optimization procedure for minimizing the costs has been developed using the 

approach of stochastic nonlinear programming by the Monte-Carlo estimators. Let some initial 

vector of agents’ deposits ( )00
2

0
1

0 ,,, JXXXX K=  be given, and a random sample of income and 

outcome vectors be generated. Let the initial sample size be N0. Now, the Monte-Carlo estimators 

of the gradient of expected costs are computed according to (32). Next, the iterative stochastic 

procedure of gradient search could be introduced: 
 

( )( )1 1t t
i iX X Q Xρ+ = ⋅ − ⋅ , (35) 

 

where 0>ρ  is a certain step-length multiplier. 

Let us consider the choice of the sample size during iterations. Note that there is no great 

necessity to compute estimators with a high accuracy on starting the optimization, because then it 

suffices only to approximately evaluate the direction leading to the optimum. Therefore, one can 

obtain not so large samples at the beginning of the optimum search and later on increase the size of 

samples so as to obtain the estimate of the objective function with a desired accuracy only at the 

time of decision making on finding the solution of the optimization problem. We pursue this 

purpose by choosing the sample size at every next iteration inversely proportional to the square of 

the gradient estimator from the current iteration. 

( , , )1
1( ) ( ( )) ( ( )) '

tJ Fish J N JtN
t t tQ X A X Q X

γ

ρ

⋅ −+ =
−⋅ ⋅ ⋅

, (36) 

where ( , , )tFish J N Jγ −  is the γ -quintile of the Fisher distribution with ( , )tJ N J− degrees of 

freedom. It has been proved that the choice of step length ensures the convergence to determination 

of the task of optimization, with the respective choice of parameters γ  and ρ (Sakalauskas, 2000, 

2002). The step length ρ  could be chosen experimentally. 

We introduce minimal and maximal values Nmin and Nmax to avoid great fluctuations of 

sample size in iterations. 

A possible decision should be examined at each iteration of the optimization process on 

optimal solution finding. Since we know only the Monte-Carlo estimates of the objective function 



and that of its gradient, we can test only the statistical optimality hypothesis. Since the stochastic 

error of these estimates essentially depends on the Monte-Carlo sample size, a possibly optimal 

decision could be made, if, first, there is no reason to reject the hypothesis of equality of the 

gradient to zero, and, second, the sample size is sufficient to estimate the objective function with the 

desired accuracy. 

Note that the distribution of sampling averages iL~ and iQ  can be approximated by the one- 

and multidimensional Gaussian law (Bhattacharya and Ranga Rao, 1976, Gotze and Bentkus, 

1999). Therefore it is convenient to test the hypothesis of equality to zero of the gradient by means 

of the well-known multidimensional Hotelling T2-statistics (Krishnaiah and Lee, 1980). Hence the 

optimality hypothesis could be accepted for some points tX  with estimate μ−1 , if the following 

condition is satisfied: 

1( ) ( ( )) ( ( )) ( ( )) ( , , )
t t t t

tN J Q X A X Q X Fish J N J
J

μ
−− ⋅ ⋅ ⋅

≤ −  (37) 

Next, we can use the asymptotic normality again and decide whether the objective function 

is estimated with a permissible accuracy ε , if its confidence bound does not exceed this value: 

εηβ ≤⋅ tt
N NXd t /)(  (38) 

where βη  is the β  -quintile of the standard normal distribution and standard deviation tN
d  is 

defined by (33). Thus, the procedure (35) is iterated adjusting the sample size according to (36) and 

testing conditions (37) and (38) at each iteration. If the latter conditions are met at some iteration, 

then there are no reasons to reject the hypothesis on the optimality of the current solution. 

Therefore, there is a basis to stop the optimization and make a decision on the optimum finding with 

a permissible accuracy. If at least one condition out of (37), (38) is violated, then the next sample is 

generated and the optimization is continued. Since the method of stochastic optimization with 

frequency 35 converges in the optimization process, it will be stopped after generating the final 

number of Monte-Carlo samples. 

The Poisson distribution of application flow was tested according to the Shapiro-Wilk 

criterion (Shapiro and Wilk, 1972). The assumption on log normality of transaction volume was 

tested according to the asymmetry criterion (D’Agostino and Pearson, 1973). The presented method 

may be generalized by shock effect and distribution of values by gamma or Pareto distributions and 

autoregressive models. The model allows the proposal of simulation method for estimating the 

settlement costs and risk of liquidity, according to the instructions of the central bank. The given 

model of settlements and that of simulating costs allow us to present a policy of management of the 

correspondent account by depositing (or withdrawing) a fixed sum of assets. The constructed 



method of optimization for management of the correspondent account of participants allows 

minimizing the costs of settlements. The explored settlement systems management policy of the 

central bank allows us to minimize the general settlement costs and choose the reserve requirements 

for participants of the system on condition of the necessary frequency of liquidity loss. 

 

3. System of modeling, simulation, and optimization of settlements 

 

In the simulation process only a partial processing of the settlement system is simulated and 

a few selected criteria are analyzed (i.e. liquidity, queuing et al.) because the full simulation is 

complicated.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The system of modeling, simulation, and optimization of settlements 
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The BoF-PSS2 simulator is a tool for making a variety of analyses of the payment system. The 

simulator is not a deterministic econometric optimization model, but rather a heuristic tool for 

analyzing systems that are too complex for deterministic models. 

During the simulating process of settlement systems the real settlements environment is 

simulated. 

The presented system (Figure 5.) comprises all the basic parts of modeling, simulation 

and optimization of settlement processing. 

The system consists of the following parts: 

• the subsystem of analysis; 

• the subsystem of simulation and optimization. 

The data in real time are scanned in the part of statistical analysis. These data are 

used to calibrate the settlement model and compute the parameters. 

Major parts of the simulation and optimization subsystem are: 

• generating of settlement flow; 

• simulation of the settlement process of a day; 

• analysis of costs and liquidity of one period; 

• statistical simulation and optimization of system parameters. 

In the part of generating the settlement flow a fixed number of applications is generated by 

using the generator of random numbers. In the part of simulation of the settlement process are 

simulated by viewing the address of applications and liquidity characteristics the times of 

transactions. In the subsystem of analyses of costs and liquidity, the settlement costs and the fixed 

loss of liquidity are computed. In the part of optimization, different strategies of management of the 

correspondent account of participants and the central bank are explored. 

 

4. Results of simulation and optimization 

 

The results of simulation and optimization of the settlement system by the Monte-Carlo 

method are presented in this chapter. The model is calibrated using the real data of the settlement 

system. 

The parameters of the calculation of settlement costs are as follows: 

0.10STL =  - interest rate of a short-term loan; 

0.08IBR =  - interest rate of interbank loan market; 

0.05LBR =  - interest rate of refinancing transactions; 

2.5r =  - added penalty percentage item; 



30T =  - length of a period. 

In Figures 8 - 11, we present the examples of dependences of settlements costs iL~  and  

derivatives of the cost function ( )ii XQ~  with respect to the variable iX  for the first and second 

agents (i=1,2), estimated by the Monte-Carlo method, which illustrates the existence of the 

minimum point (N=5000). In these figures we can see that the change of derivatives is concerted 

with the increase and decrease of cost functions in Figures 7 and 9. Analogous dependences are 

similar for other agents. 
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Figure 7. Dependence of settlement costs 1

~L  on the sum of 

deposit 1X , N=5000 
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Figure 8. Dependence of the derivative ( )11

~ XQ  on the deposit 

1X , N=5000 
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Figure 9. Dependence of settlement costs 2

~L  on the sum of 

deposit 2X , N=5000 
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Figure 10. Dependence of the derivative ( )22

~ XQ  on the 

deposit 2X , N=5000 

 

For procedure of optimization it has been set that an iteration consists of no less than 

min 500N = , initial number of iteration of periods 0 500N = , the quintile of the standard normal 

distribution 0.95β = , the quintile of the Fisher distribution to test the hypothesis of equality to zero 

0.95γ = , 1ρ = . The distribution of day balance was approximated by lognormal distribution, when 

the time of simulation is reduced. 

In Table 1 and Figures 6-10, we present the results of settlement costs optimization through 

the approach described above. The optimization required 62 iterations and 144 459 Monte-Carlo 

trials in total. In the second and third column of Table 1 the initial sums of costs and deposited sums 

of participants are presented. 
 



Table 2.  The results of optimization of settlement costs 
No. of 
agent 

Costs of settlements 
(number of the iteration 
= 0), LTL 

Costs of settlements 
(number of the iteration 
=62), LTL 

Deposit sum (number 
of the iteration =0), 
106LTL 

Deposit sum 
(number of the 
iteration =62), 
106LTL⋅ 

1 18292,4±150,5 18167,0±19,0 2,71 2,73 
2 243183,9±1159,5 241641,8±144,1 36,20 36,40 
3 102995,0±909,8 100477,5±83,8 14,80 15,10 
4 37527,3±524,9 36206,6±51,6 5,25 5,45 
5 156596,1±807,2 155361,6±91,1 23,20 23,50 
6 16343,1±435,2 10510,2±17,0 1,40 1,57 
7 55480,1±675,5 52718,4±46,8 7,70 7,93 
8 48146,4±636,6 46277,6±52,3 6,80 7,00 
9 120797,1±974,3 118070,5±88,8 17,50 17,80 

10 30794,2±873,5 22294,6±34,7 3,00 3,33 
11 16841,9±1438,8 13128,0±139,7 1,30 1,71 

Total 76999,7±361,2 74077,6±62,0 119,86 122,52 
 

In Figure 11, the dynamics of general settlement costs is presented which illustrates the 

decrease of costs during optimization (from 76999 LTL to 74083 LTL). In Figure 12, the 

dependence of the general sum of deposits is presented, which also illustrates the convergence of 

the optimization process. Figures 14-17 also illustrate the dependencies of settlement costs and the 

deposited amount for the first and last agent. Figure 13 shows the dynamics of the Monte-Carlo 

sample size during the optimization, which illustrates the adjustment of this size according to (36). 
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Figure 11. Dependence of the general settlement costs tL~  on the 
number of iterations. 
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Figure 12. Dependence of the sum of deposits on the number 

of iterations 
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Figure 13. Dependence of the sample size tN  on the number of 
iteration. 
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Figure 14. Dependence of the settlement costs tL1
~

 on the 
number of iterations 
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Figure15. Dependence of the deposit tX1  on the number of 
iterations. 
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Figure 16. Dependence of the settlement costs tL2
~

 on the 
number of iterations 

 

3.62E+07 
3.63E+07 
3.63E+07 
3.64E+07 
3.64E+07 
3.65E+07 
3.65E+07 
3.66E+07 
3.66E+07 

1 21 41 61

Number of an iteration

D
ep

os
ite

d 
su

m
 

 
Figure 17. Dependence of the deposit tX 2  on the number of 
iterations 

 

 

The algorithm and software allow calibrating a model of Poison-lognormal of settlements 

flow on real time of simulation as well as generating general and particular settlements flow of 

system participants. The presented algorithm for statistical modeling of settlement costs and 

frequency of liquidity and its realization software allows the simulation of the processing system of 

settlements by computer following the settlement instructions of the central bank. The calculating 

experiment has showed the correspondence between the values fond by the given algorithm of 

stochastic differentiation and intervals of increases and decreases of the objective function. The 

stochastic algorithm created for optimization costs of settlements by Monte-Carlo estimations 

allows solving the task of optimization by estimating the permissible confidence interval with the 

necessary accuracy of the objective function and testing the hypothesis on equality to zero of the 

gradient by statistical criteria. The created methods and algorithms are realized as the Java class 

library and are adapted to the existing simulator class libraries. The class library may be applied in 

the simulation of models of settlement systems hawing the different methods of processing as well 

as the solution of gridlocks and modeling of values of settlement flows. 



5. Conclusions 

 

The growth of non-cash payments, and the need to execute real-time payments invokes new 

challenges to electronic systems of the interbank clearing. Simulation and optimization of 

transaction costs illustrate an opportunity for banks to maximize the future profit. In this situation it 

is especially important to study the strategies of management by banks of their correspondent 

accounts in Clearing house. In this paper, we analyze how banks can manage settlement costs by 

depositing (or withdrawing) assets on the correspondent account. We consider the policy when 

banks deposit or withdraw certain fixed sums. The stochastic optimization method to regulate the 

correspondent agent account has been developed by Monte-Carlo estimators and investigated by 

computer simulation.  

The outcome of the performed simulation shows that applying the given model of the 

income of a Clearinghouse as well as information technologies it is possible to optimize the 

parameters for management of risks of the credit, liquidity, and operational costs. 

The statistical Poisson-lognormal model of electronic settlement flows has been created as 

well as the methodology for calibrating the settlement flow model has been developed and adapted 

to the analysis of real time settlement data 

The methodology of modeling interbank settlement flows by the Monte-Carlo estimator has 

been developed following to instructions of Central Bank 

The algorithm of stochastic optimization of settlement costs, a view on settlement costs and 

liquidity risk has been created 
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