

EUROJÄRJESTELMÄ EUROSYSTEMET

Discussion of Modelling, simulation and optimization of interbank settlements by Donatas Bakšys

Bank of Finland Payment and Settlement simulation seminar Helsinki 29 August 2007

Matti Hellqvist

Outline

- Summary
- Discussion of the cost structure
- Other observations

The presentation in nutshell

- Stochastic generation of transactions with distributions estimated from real data
- Cost structure for the liquidity management of an intermediary in payment system
- Algorithm for stochastic optimization of liquidity management costs:
 - Adaptive Monte Carlo estimator for cost function gradient
- All this integrated in to a Java class library

Cost structure revisited

The cost structure of agents in the model is essential:

- It includes most of the asumptions made
- It gives the incentives to the agents
- should be transparent, intuitive and, if possible, calibrated with real data.

$$D_i = RE_i + F_i + B_i + TT_i + AC_i$$

where:

- D_i total costs of *i*-th agent;
- RE_i premium of satisfaction of reserve requirements;
- F_i penalty of violation of reserve requirements;
- B_i costs of short time loans;
- TT_i losses due to freeze of finance;
- AC_i operacional costs.

Cost structure revisited, the easy terms

 RE_i – premium of satisfaction of reserve requirements; F_i – penalty of violation of reserve requirements;

- Interest with average refinancing rate
- Penalty, if account balance is below given level
 - The penalty in the model is calculated for individual periods not based on an average balance over number of periods.

 AC_i – operational costs.

- Fixed unit cost of a transaction
 - Here increase in operational costs vs. volume is linear.
 With ICT you could expect strong economies of scale instead.

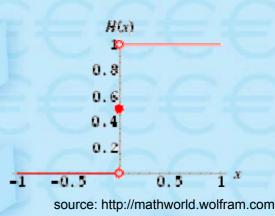
Cost structure revisited, more tricky terms

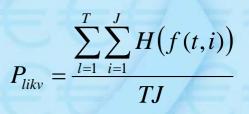
 $B_{i} = -STL \cdot \sum_{l=1}^{I} \min\left(0, K_{i}^{l-1} + \delta_{i}^{l} + G_{i}^{l}\right) - \text{costs of short time loans;}$ Overnight interest rate End of day balance $\Rightarrow B_{i} \text{ is the cost of overnight loan from central bank (?)}$ $TT_{i} = IBR \cdot \sum_{t=0}^{T} G_{i}^{l} - \text{losses due to freeze of finance;}$

Interbank rate Realised deposit or withdraw

 \Rightarrow TT_i is the actual cost of short term loans from interbank market (?)

"probability of system liquidity"


$$\sum_{l=1}^{T}\sum_{i=1}^{J}H\left(\min\left(0,K_{i}^{l-1}+\delta_{i}^{l}+G_{i}^{l}\right)\right)$$


T

- defined as $P_{likv} = \frac{l=1}{2}$
- used as a constraint in the optimization $P_{likv} \leq \alpha$
- ⇒ describes the average probability for banks to end up in negative end of day balance (?) i.e.

Likelihood of overnight lending from CB

- Shouldn't it have also J in the nominator?
- and record the negative values of EOD balance?
- Is this additional constraint needed? Penalty cost of overnight lending is already included in the model.

f(t,i) = -EODbalance = $= -(K_i^{l-1} + \delta_i^l + G_i^l)$

Other observations

- Game theory aspect
 - How is it included in the cost stucture?
 - Is it a one shot game solved with iterative process?
- Indirect costs?
 - Delaying of payments, reputation risk etc. Are these considered?
- Estimated Poisson-Lognormal model for transactions
 - How well do these distributons fit?
 - Were any others tested?
- Stochastic optimisation:
 - Could it benefit from a more sofisticated method for nonlinear programming? (SQP, IP-methods, heuristics)
- Policy implications for CB or rules of thumb for the banks?

Additional notes

- Is the estimated matrix of intencities in paper (table 1) incomplete?
 - Participants 0, 2 and 6 seem to be liquidity sinks (outwards intencities zero, inwards >0)
- Some proposals for terminology (in the paper mainly)
 - Application ~ transaction?
 - Balances of settlement day (δ) ~ net value of transactions?
 - The cost terms as discussed above
- Proposals for the notation
 - simplify!
 - Eg operational costs are these needed if all the payments are anyway settled? (Are they?)
 - Definitions of the variables
 - in the paper eg "K" is used since eq. 9 without a definition, "N" in eq. 3 lacks definition, Φ on slide 11 similarly...
- Increased comparison and references to litterature of payment system modelling would benefit the reader.