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SYSTEMICALLY IMPORTANT ACCOUNTS, NETWORK TOPOLOGY AND
CONTAGION IN ARTIS

Michael Boss, Gerald Krenn, Valentina Metz, Claus Puhr, Stefan W. Schmitz*'

The purpose of this study is the investigation of the relevance of network topology for the
stability of payment systems in the face of operational shocks. The analysis is based on a large
number of simulations of the Austrian large value payment system ARTIS that quantify the
contagion impact of operational shocks at participants’ sites. The analysis uncovers that only
few accounts are systemically important. We also find that network indicators at the node level
can have some explanatory power. Their explanatory power is higher when the analysis focuses
on the contagion measured by the number of banks with unsettled payments than in the case of
the measure based on the value of unsettled payments. It is lower though than that of the more
traditional measures of node activity (value and volume of payments). At this stage, network
indicators at the network level seem to be of limited use for stability analysis.

JEL: E50, GI10.

1 Introduction

Recent work on the stability of banking systems suggested a systematic relationship
between network topology, system stability and contagion.2 Similarly, a recent study
conjectures that network topology might be relevant for the stability characteristics of
payment systems.3 In previous research we uncovered a large variation of the contagion
impact across days, across banks, and across scenarios.” Here we investigate whether the
position of the stricken account within the network explains its contagion impact and
whether daily variations in network topology explain the variation of contagion across

days.

In Section 2 we provide a brief motivation for studying network topology in network
stability. In section 3 we present data on the network topology of ARTIS and compare it
to the respective results for FedWire (the US large value payment system) and for the
Austrian interbank market. Section 4 introduces the simulations. Based on the results we
discuss the following questions: Which accounts cause contagion in the system and on
what scale? How many are systemically important? Section 5 is devoted to the study of
the following questions: First, do network indicators on the network level on the day of
an operational failure relate to the contagion effects in the simulations? Second, do
network indicators on the node level of the stricken participant on the day of the
operational incident relate to the contagion effects in the simulations? Section 6

summarises the results.
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2 Fundamentals of Network Topology and Network Stability

Many networks in the real world (e.g. Internet, WWW, large value payment systems
such as FedWire and BOJ-NET, the Austrian interbank market) are scale-free networks.
Their degree distribution follows a power law p(k)~ k77, i.e. the probability that a node

has k degrees is k7. A few nodes have a large number of links, while most nodes have
only a few links. The network characteristics of scale-free networks are independent of
the number of nodes and links. They are robust with respect to random node removal,
but disintegrate quickly in cases of a targeted attack (the most highly connected nodes are
removed at each step). Random networks constitute a different class of networks. They
are characterised by a homogenous network structure, i.e. all nodes have a similar
number of links. Random networks are less robust against random node removal, but are
more stable with respect to targeted attacks than scale-free networks.

Albert, Jeong and Barabasi (1999, 2000) study the robustness of the World Wide Web (a
subset of the WWW with 325 729 nodes and an average degree k 3.93) and the Internet
(at the interdomain level with 6 209 nodes and k 4.59). In a stepwise procedure they
remove a fraction of the nodes and links from the network. The node removals lead to
the disappearance of all links to and from the removed nodes and to the decrease of the
connectivity of the network. Some shortest paths between nodes become no longer
available; some clusters of nodes that used to connect to the rest of the network get
disconnected. In the case of random node removal a shock is simulated by removing a
random sample of nodes. In the case of targeted attacks a shock is simulated by removing
the most highly connected nodes in the network. They find that the size of the largest
cluster of nodes in the WWW and the Internet decreases very slowly under random node
removal, but rapidly under targeted attacks. Under the former the networks disintegrate
when about 60 percent (WWW) and 80 percent (Internet) of all nodes are removed.
Under the latter the networks break down already after the removal of as few as about
0.07 percent (WWW) and 0.03 percent (Internet) of all nodes, respectively. The authors
explain the robustness results by the scale-free characteristics of the networks as most
nodes have few links. As a consequence, random node removal is likely to hit lowly
connected nodes with little implications for the connectivity of the entire network. The
heterogeneity of the nodes and their distribution are also the reason for the low
robustness with respect to targeted node removal. Already after a few rounds of removals
most of the highly connected nodes that connect clusters of lowly connected nodes have

disappeared and the network disintegrates.

How relevant are these results for the study of the stability of large value payment system

with respect to operational problems at individual participants?

In Albert et al. the stability of the network is conceptualised as the connectivity of the
remaining nodes and measured by the size of the largest cluster in the network and the
average path length of the network. As the physical network structure of ARTIS is that of
a complete network (Participants do not have to submit payments to each other via hubs;
they can do so via direct links.), connectivity is not the relevant conceptualisation of

stability. The stability problem is not that bank A cannot make a payment to bank C
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because the two are not linked anymore. The problem is that bank A might not have the
liquidity to make the payment. As connectivity relates to the flow of liquidity in the
system and the liquidity flows through hubs are higher than that through peripheral
nodes, it plays an indirect role for the analysis of stability. Therefore, our measures of the
contagion impact of shocks focus on the impact of the shock on the flow of liquidity (i.e.
on the number of accounts with unsettled payment and on the value of unsettled
payments) rather than on the disintegration of the network.

3 The Network Topology of ARTIS

The definition of the network under investigation is not trivial in empirical network
analysis. In the analysis of network topology we focus on the Giant Strongly Connected
Component (GSCC) of ARTIS.” The GSCC is the largest component of the network in
which all nodes connect to each other via directed paths (i.e. without passing any node or
link more than once). We have chosen this definition of the network for two reasons:
first, ARTIS contains a comparatively large number of accounts which are not related to
financial stability (i.e. small charities, offset accounts of OeNB’s cash distribution
subsidiary) and which are not active on most of the days in the sample. Second, we want
to ensure the comparability of our data with that reported for FedWire in Soramaki et al.

(2006) which refers to the GSCC.

Table 1: Network topology indicators (network level) in ARTIS (16 November 2005 to 16
November 2007) and in FedWire (Q1 2004) (averaged across days; network definition:
GSCC)

FedWire ARTIS

Mean Mean Median Min Max Stdv
Payments
Volume 436 000 15 380 15436 9786 25 000 2019
Value (EUR bn) 1068 48.5 46.9 22.6 84.9 10.6
Average (EUR mn) 2.55 3.2 3.0 1.9 5.9 0.7
Connectivity
Connectivity (%) 0.300 7.9 7.9 5.9 9.9 0.8
Distance Measures
Avg. Path Length 2.6 2.4 2.4 2.2 2.6 0.080
Diameter 6.6 4.4 4 4 5 0.5
Others
Clustering (%) 53.0 58.3 58.3 51.0 63.7 2.3
Average Degree 15.2 15.6 15.5 14.2 17.8 0.6
Betweenness Cent. (%) 0.8 0.8 0.6 0.9 0.1
Dissimilarity Index 0.47 0.47 0.39 0.60 0.03

Source: Own calculations (ARTIS) and Soramaiki et al. 2006 (FedWire). Value and average value for FedWire are
converted into Euro based on the USD/EUR exchange rate of 31 March 2004 of 1.21730.

In ARTIS the average volume of transactions per day is 15 380. The average value of
transactions per day comes to EUR 48.5 billion. The average transaction size amounts to
3.2 million EUR. The size of the network is defined by the number of nodes n. On

* Mathematical definitions of the network indicators see the Appendix in Schmitz, Puhr (2007) and Zhou (2006). For
comparable data on the network of all active accounts see Schmitz, Puhr (2007). For a description of the Austrian banking
system see OeNB and FMA (2004) The Austrian Financial Markets, Vienna, pp. 50 55.




average there are 133.2 accounts in the GSCC during the sample period of which 63 are
in the GSCC on all days. The active nodes are linked by an average of 1 376.1 directed
links (m).° The connectivity p of the network is captured by the number of actual directed
links relative to the number of possible directed links. Connectivity p averages 7.9
percent.

An indicator of the distance between nodes is the lowest possible number of links that
connect each node with each other in the GSCC. It is referred to as shortest path length.
We calculate the average shortest path length for each originating node by averaging
across terminating nodes and then averaging across originating nodes to derive the
average path length I of the entire network. Across days this value equals 2.4. This means
that it takes only slightly more than two links to reach any terminating node in the
network from any originating node in the network on average. Hence, the network is
compact. This is mostly due to the fact that almost all active nodes are linked to the
largest banks. This network structure is quite stable across days, as the standard deviation
is low. The maximum path length across nodes is defined as diameter D. It is calculated
by maximising across maximum path lengths which corresponds to picking an originating
node at the very fringe of the network and counting the lowest possible number of links

to the terminating node that is furthest away from it and leads to a value of 4.4 links.

How well are the nodes connected to the each other in the network? This is captured by
the average degree k of the network which is calculated by summing across all
(undirected) links originating from each node and than averaging across nodes.’ Averaged
also across days, it amounts to 15.6 in the ARTIS system. Pick a node in the GSCC on a
random day in the sample period and it can be expected to have 15.6 links originating
from (or terminating) at it. However, the most active nodes have a much larger number
of links originating and terminating at them. The maximum out-degree averages 76
across days, so that the most active node on each day has about five times as many links
originating from it than the average node. The maximum in-degree (90) is similarly much
higher as the average degree.8 The clustering coefficient provides a measure of the
average connectivity of the neighbours of all nodes in the GSCC. On average about 58
percent of the neighbours of each node are also linked. Betweenness centrality measures
how many shortest paths through the GSCC pass through the average node. The value of
8 percent is quite low and stems from the centrality of a few nodes with high
betweenness centrality and a large number of nodes with low values. The dissimilarity
index captures the relative viewpoints of the network from two neighbouring nodes. If
the network looks very similar from both nodes, the dissimilarity index is small. In the
GSCC it amounts to 0.47 which implies that on average the perspectives of the GSCC
differ substantially from any two neighbouring nodes. A lot of nodes link that otherwise
do not share many network characteristics. We interpret that as further evidence that

many of the nodes connect to the largest nodes at the centre of the network.

® The average number of nodes in ARTIS active on every day was 209.8 and the number of directed links among them was
1637.5.

" The out degree refers to the number of links originating at the node while the in degree is based on to the number of links
terminating at the node. Across the network the average out and in degree are equal to m/n.

¥ For the network of all nodes active on every day the maximum out degree is 102 and the maximum in degree is 142.



How do these values compare to the results for FedWire? When comparing the two
networks one must bear in mind that the FedWire data refers to Q1 2004. In particular
value and volume in FedWire have certainly grown since then. The comparison between
a small and a large network can yield interesting insights into the structure of payment
systems. The average number of nodes in the GSCC of FedWire (n 5 086) is about 38
times that in ARTIS which implies that the number of possible directed links in FedWire
is 1 469 times higher than in ARTIS. But the average number of directed links (m 76
614) is only about 55 times that in ARTIS so that connectivity should be lower in
FedWire by a factor of about 26 (1 469 over 55). That is exactly the ratio between
connectivity p in ARTIS (7.9 percent) and that in FedWire (0.3 percent). A conjecture
based on this observation is that the number of possible directed links grows
exponentially in payment systems, but the number of actual directed links only
proportionally. The distance measures (average path length 2.6 vs. 2.4 and diameter 6.6
vs. 4.4), however, seem to be quite independent of size, like in other small-world
networks.” The high clustering coefficients in both networks (on average 53 vs. 58
percent of the direct neighbours of each node are also linked) corroborate this finding.
Also the average degrees of both networks are very similar (15.6 vs. 15.2).

Comparisons across networks are often based on the degree distribution. In scale-free
networks it follows a Yule-Simon (or Power law) distribution p(y) . j~ for degree values
above a certain threshold. Many real world networks are said to follow a Power Law.
The first indicator of the prevalence of the Power law is that the histogram of the degree
distribution (on logarithmic scales) is a straight line with slope — 12 whereby in many
real networks _7 5 _y 5 3. The coefficient p is estimated by a maximum likelihood
estimator (e.g. Newman 2003). The respective value in Soramaki et al. (2005) is 2.11 for
k >10 for FedWire and that in Inaoka et al. (2002) is 2.3 for k > 20 for the BOJ-Net.
Boss et al. report  for the in-degree, the out-degree, and the degree distribution
separately as 1.7, 3.1, and 2.0, respectively, for k >40. For our monthly network'’
(degree range 1 to 1925 for the nodes in the GSCC over a period of 20 days) the

histogram seems to indicate a Power law distribution with ;,ML:1.4 for kK >10 (see

Graph 1a, left panel). However, Newman (2003) argues that the plot of the cumulative
distribution function (cdf, on logarithmic scales) must also be a straight line with slope
— 7+1. Newman argues that the cdf plot is superior to the histogram, because it does

preserve all the information in the data rather than throw out information by binning. In
addition, it avoids the problem of noise in the tails that emerges from binning. We plot
the cdf for the monthly network in the right panel of Graph 1a. The cdf obviously is not a
straight line and we reject the Power Law hypothesis for the ARTIS network.

° In a small world network most nodes can be reached from every other by a small number of hops or steps, although
connectivity is low and most nodes are not neighbors.

"“We conducted the same exercise for the daily, the quarterly, and the semi annual networks with the same results.



Chart la: Histogram and (reverted) cumulated distribution function (on logarithmic
scales) of the degree distribution in the monthly network in ARTIS (GSCC)
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Left hand panel: y axis number of nodes, x axis k (degrees per node); Right hand panel: y axis P(x > k),

x axis  k (degrees per node); Source: Own calculations.

It is also interesting to compare the network indicators of the ARTIS system with the two
network indicators of the Austrian interbank market presented in Boss et al. (2004) (data
covers 2000 to 2003). Interbank market transactions can be interpreted as a subset of the
transactions in ARTIS as they are settled through ARTIS. The authors find an average

path length of 2.2610.02 which is very close to the respective figure in table 1 of

2.3%0.05. That similarity arises from the fact that both, the interbank market and the
payment system, are dominated by large banks. In both markets many banks cluster
around their sectoral apex institutions.'' However, the clustering coefficient is
substantially higher in the ARTIS system than in the interbank network. Maintaining
interbank relationships is costly so that banks have to balance the advantages of
diversification with the costs of maintaining links. This is clearly not the case in the
complete physical network of the large value payment system where the marginal costs of
an additional link are zero. In addition, transactions in ARTIS are partly driven by
customer payments (roughly 20 percent of total value). These reflect the network
structure of real economic activity and that does not necessarily mirror that of the
interbank market.

4 The Simulations: Methods, Data and Results

We conducted 31 311 simulations based on 63 different scenarios for 497 transaction
days from 16 November 2005 to 16 November 2007 (excluding Austrian holidays) which

" Of the seven sectors the Raiffeisen credit cooperative, the Volksbanken credit cooperatives and the Savings Banks have a
tiering structure. They account for about 80 percent of Austrian banks in terms of the number of credit institutions and for
about 50 percent in terms of total assets (unconsolidated). In addition, there is no national automated clearing house in
Austria and the Austrian banking system relies on correspondent banking relationships to settle a range of customer payments
(e.g. credit transfers). The banks that operate in ARTIS do have direct access to the system based on their own in house
systems. Although within sectors the IT solutions are often similar, there is no evidence that operational risk is correlated

across individual banks within a sector.



yielded some 620 million simulated transactions.'” These simulations were calculated
with a self-implemented Matlab based software tool (inspired by Bank of Finland
Payment System Simulator), which was tailored to ARTIS particularities. The tool
recalculates the transactions of each day by adding incoming payments to and subtracting
outgoing payments from the respective accounts of the participants. As transactions in the
input data set provide time stamps, the simulator recalculates the balances of all
participants of the system throughout the day depending on the institutional features of
the system (e.g. settlement algorithm, queue release mechanism). The institutional
features of the system that could not be accounted for in the simulator had to be mapped
into the input data set. Since the tool cannot take into account behavioural reactions of
system participants, they must be determined exogenously. First of all, other participants
might want to stop submitting payments to the participant experiencing operational
problems. In TARGET a stop sending rule applies, if a transfer account of a central bank
in the system experiences an operational problem. In this case, no further payments are
transferred to the stricken transfer account.' Payments to other participants are not
affected. In cases of operational problems at another bank, ARTIS operators provided
evidence that in all other cases participants continue to submit payments to participants
that experience operational problems, even if the latter cannot submit payments
themselves for many hours. Second, participants could react to operational incidents by
increasing available collateral. Anecdotal evidence suggests that participants already hold
large shares of their eligible assets at OeNB. Consequently, we assume that system
participants are not increasing collateral for durations of operational incidents of up to
one day. The simulations are based on actual liquidity data for the sample period. We
interpret the sum of beginning of day balances on ARTIS accounts plus unencumbered
eligible collateral held at OeNB as the binding liquidity constraint for banks. Third, the
simulation algorithm takes into account debit authorisation by the bank for a number of
other participants in ARTIS. 1

The scenarios in Schmitz, Puhr (2007) were designed on the basis of the analysis of actual
payment flows in ARTIS focusing on the most active accounts which also featured the
highest risk concentration measures during the sample period.15 This resulted in three
scenarios: in the first, the most active transfer account'® was shocked; in the second, the

' For more details on simulations, their motivation, and their design see Schmitz, Puhr (2007). The operation of ARTIS was
discontinued after 16 November 2007, due to the introduction of TARGET?2.

B Due to the operating procedures it actually takes about 40 minutes after the detection of the operational problem at the
transfer account until a stop sending is imposed. The implementation of the rule in the simulation algorithm takes that small
delay into account.

" Participant A can grant participant B a debit authorisation according to the Terms and Conditions Governing the OeNB’s
ARTIS system (§ 9). Debit authorisation is defined as the right of participant B to initiate (certain pre agreed) payments from
the account of participant A. Debit authorisations are granted to a small number of participants for prearranged purposes
(very frequent recurring standard operations) and cannot be interpreted as crises mitigation instrument available on short
notice in the case of an operational incident.

"* The measures employed were (1.) the value of liquidity concentrated at the nodes, (2.) the number and value of payments
submitted and received (payment concentration channel), (3.) the Herfindahl index of concentration of payment flows (both
based on the number of payments and the value of payments received and submitted) as well as (4.) the monthly network
topology.

' Transfer accounts are ARTIS accounts held by other ESCB central banks at OeNB. All national TARGET components are
directly linked by transfer accounts. All transactions to and from the respective country and Austria are routed via these

transfer accounts.



most active bank account was assumed to experience operational problems; and in the
third one, the three most active bank accounts were stressed simultaneously.

In this paper we run simulations for all 50 banks that are in the GSCC on all Austrian
working days throughout the sample period and all 13 transfer accounts that form part of
the system on all days in the sample period. We assume an operational incident that hits
one account in each simulation. The operational incident is mapped into the simulation as
the incapacitation of the participant to process outgoing payments, i.e. the inability to
submit transactions for the whole day.17 This assumption is extreme but plausible.
Shorter outages of participants may lead to payment delays but not to unsettled
payments, as shown in Schmitz, Puhr (2007).

The results are graphically depicted in the four panels of chart 1. In the upper left hand
panel the number of contagious defaults per simulation (in terms of the number of banks
with unsettled payments) is depicted on the x-axis; the numbers of simulations that yield
x contagious defaults on the y-axis. It shows that about 27 percent of all simulations (8
604) do not lead to contagion at all. A further 26 percent (8 230) yield one contagious
default and 16 percent (4 919) two. About 29 percent (5 456) lead to three to five
contagious defaults and 17 percent (4 102) to more than five. Maximum contagious
defaults across the 31 311 simulations amount to 33.

The time series of average contagious defaults (in terms of the number of banks with
unsettled payments) per day is featured in the upper right hand panel. It is quite volatile
with a standard deviation of about 25 percent of the mean. This motivates the
investigation in section 5.1 where we study the question whether the variation of
network topology across days can contribute to the explanation of the fluctuations of
average contagious defaults per day.

' 1t is assumed that the resulting illiquidity of the participant is not interpreted as potential insolvency by other participants of
the payment system and the financial system at large. In addition, ARTIS provides business continuity arrangements for
participants. We tested their impact in Schmitz and Puhr (2007), but disregard them in this paper, as they are of little

relevance for the interaction between network topology and contagion.



Simulation results
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The lower panels in chart 1 show the average contagious defaults per simulation (in terms
of number of banks with unsettled payments, lower left hand panel) and the average
value of unsettled payments due to contagious defaults (lower right hand panel) per
simulation. We use this information to derive the set of systemically relevant accounts in
the following way: As argued above, connectivity is not an adequate criterion to capture
the systemic impact of an operational problem at one of the nodes in a large value
payment system. Alternatively, we suggest defining a threshold based on the average
contagion effect of an individual account. The latter can be measured in terms of the
number of contagious defaults or in terms of the value of unsettled payments in the
system. To some extent that threshold is arbitrary and depends on the risk aversion of the
supervisory authority. If we set the threshold in terms of the number of contagious
defaults at 1, i.e. only accounts that yield at least an average of one bank with unsettled
payments due to contagious default across the sample period, we find that only 39
accounts in the GSCC are systemically relevant which includes eleven transfer accounts
operated by central banks (lower left hand panel in chart 1). These 28 bank accounts
amount to twelve percent of the average of 230 bank accounts in ARTIS (during the
sample period) and to about 3 percent of the average of 850 banks in Austria. If we define
the threshold in terms of the value of contagious defaults, i.e. only accounts that cause at
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least an average value of EUR 48.5 million of unsettled payments (or 0.1 percent of
average value of transactions settled across days), we find that 24 accounts are
systemically relevant (lower right hand panel in chart 1). Seven of these are transfer
accounts and 17 bank accounts which account for about seven percent of the average of
230 bank accounts in ARTIS (during the sample period) and to about two percent of the
average of 850 banks in Austria.

Given that transfer accounts do not hold any liquidity (i.e. the liquidity drain caused by
their incapacitation is nil) and that the stop sending rule strongly reduces the liquidity
sink effect, the strong contagion impact of transfer accounts is interesting. It indicates
that payment concentration risk is more important for the contagion impact than liquidity
concentration risk. TARGET2 operates on a Single Shared Platform without the highly
contagious transfer accounts. This could increase the resilience of this critical
infrastructure with respect to operational problems (though not necessarily at the
platform level).

The results suggest that the supervision of operational risk in banks’ payment
£g p P pay
processing/ submission capacity could focus on a relatively small set of systemically

relevant banks in Austria and on their business continuity arrangements.
Approximating a probability distribution across contagious dgfau]ts per simulation

In section 3 we showed that large value payment systems can have common network
characteristics despite large differences in size. In order to provide an opportunity to
compare the simulation results across large value payment systems, we estimate the
relation between the number of simulations and the number of contagious defaults they
cause (in terms of the number of banks with unsettled payments). Chart 1 (upper left
panel) reveals that the number of simulations y that involve a certain number of

contagion events x is a rather regularly declining function in x. In this context it seems
natural to look for a simple parametric probability distribution describing the number of
occurrences of contagion events in a simulation, given that contagion actually did occur.
As such a distribution would attach positive probabilities to low probability high impact
events, it could be applied in future simulation studies for the analysis of extreme events.
As candidate distributions, we considered discretised versions of the following continuous
distributions: Exponential, Weibull and Gamma. These three distributions are defined on
the set of non-negative numbers and have one (Exponential) or two (Weibull and
Gamma) parameters. Discretising these distributions was accomplished in the following
way: The probability of observing just one contagion event was set to the probability of
observing the continuous distribution in the interval from zero to one; observing two
contagion events was related to the interval from one to two; and so on. The maximum
likelihood method was used for estimating the unknown parameters.

A graphical assessment of the adequacy of the estimated distributions shows that
exponential distributions are not flexible enough in order to describe the observed
numbers of contagion events. This is due to the fact that this distributional family only has
a scale but no form parameter. A much better fit is achieved by the Weibull and Gamma
distributions. When applying chi square tests for goodness of fit, however, it comes as no
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surprise that these distributions are rejected at any commonly used confidence level as we
are dealing with a very large number of observations (22 707)."* Nevertheless, it can be
observed that the Weibull distribution delivers a smaller value of the chi square statistic
than the Gamma, thus indicating a better fit of the former. We conclude that a reasonable
choice for describing the probability that C, the number of contagion events in a
simulation that actually show at least one contagion event, is equal to a positive integer n
given by:
P{C =n}=Wei(nla,b)—Wei(n—1la,b) forall n=>1 ’

where Wei(.| a,b) denotes the cumulative distribution function of a Weibull distribution

with parameters @ and b, defined by
Wei(x|a,b) =1—exp(—(x/a)") forall x>0 _

We thus approximate the distribution of the number of contagious defaults given that

contagion actually occured by means of a discretised Weibull distribution with 21 v =2.61

and bML =0.77.

5 The Interaction between Network Topology and Stability in
ARTIS

In this section we investigate whether the variation of network indicators at the network
level across days (5.1) and at the node level across stricken accounts (5.2) explain the
variation of contagion across days and across stricken accounts.

The selection of the appropriate measure of network topology is not trivial as the number
of available indicators is large. At the network level we calculate 44 network indicators
taking into account not only those in table 1 but also the directed and/or value/volume
weighted and/or average/maximum values for selected indicators. Similarly, the number
of available indicators at the node level comes to 71.

Boss et al. (2004) relate contagion in the interbank market to betweenness centrality at
the node level, because this measure has a higher explanatory value than the alternative
network indicators in their data set. They uncover a dented linear relationship. Banks

with betweenness centrality measures OSCB (h)=2 do not cause any contagious defaults.
C,(h)

Borgatti (2005) studies the selection of the appropriate centrality measure for various

For >2 they find a linear relationship with a slope of about 0.8.

typologies of flow processes. He classifies flows along two dimensions: the characteristics
of the route through the network and the characteristics of the transfer mode. The first
dimension encompasses paths, trails, and walks. Paths are sequences of links and nodes in
which neither links nor nodes are repeated (Shortest paths are a special case of paths.)
Trails refer to sequences in which nodes but not links may be repeated. Walks are
unconstrained sequences. The second dimension refers to the way in which the flowing
good is passed on along the route from one node to another. While a disease can be

" Due to the large sample size even small deviations of the fitted values from the observed values lead to a formal rejection of

the null hypothesis which reflects a common criticism to statistical tests (De Groot 1985).
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passed on without implying the immediate cure of the carrier (Borgatti refers to this as
parallel duplication), liquidity is transferred so that the initial holder has to part with it
(referred to as transfer). What does that imply for the flow of liquidity in ARTIS? In a
physically complete network banks do not have to make payments to other banks via
third parties. They transfer directly to the ultimate receiver. However, the flow of
liquidity does not stop there. It can be transferred to any other node in the network
(including the submitter of the first payment). Where liquidity ultimately ends up, is
beyond the control (and interest) of the initial submitter of a payment. That implies that
liquidity flow follows a walk rather than a path or a trail. Given that betweenness
centrality is based on the share of all shortest paths through a node, it is not a good
measure of centrality in the study of liquidity flows. Degree centrality is more suitable for
this purpose.

We present our results in terms of four network indicators for three reasons: First, we
believe that given the nature of liquidity flows degree centrality is the appropriate
measure; second, we want to ensure a high degree of comparability of our results with
other papers that use different network indicators (i.e. betweenness centrality), third, we
want to investigate whether network indicators in general add value to the more
traditional measure used in comparable simulation studies (i.e. the size of the individual
node in terms of value and volume of transactions). Therefore we focus on the measures
value and volume as well as on the network indicators degree, average path length,

betweenness centrality and dissimilarity index in each of the foilowing two subsections.
5.1 Network Level

In chart 2 we depict the daily values for the value (left hand panel) and the volume of all
payments (right hand panel) submitted to ARTIS on the y-axis and the number of
contagious defaults (in terms of the number of banks with unsettled payments — daily
averages across scenarios) per day on the x-axis. The variation of value explains 2 percent
and the variation of volume accounts for 8 percent of the variation of the contagion
impact per day.

Chart 2

Value and volume (network level) per day versus average number of contagious defaults per day
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The explanatory value of the variables value and volume is low. Do network indicators
perform any better? In chart 3 we look at the following indicators (in and out,
unweighted, undirected): degree, average path length, betweenness centrality and
dissimilarity index. Similarly to chart 2 the daily number of contagious defaults (in terms
of banks with unsettled payments — daily averages across scenarios) is depicted on the x-
axis and the daily values of the respective network indicator are shown on the y-axis in

each panel.
Chart 3
Selected network indicators (network level) per day versus average
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The average path length (15 percent) and betweenness centrality (13 percent) have the
highest explanatory values. The daily variation in degree accounts for 10 percent of the
variation in contagion and that of the dissimilarity index for only 3 percent. Although the
explanatory power of three of the network indicators is higher than that of value and
volume, the levels are still low. The highest explanatory power of any of the remaining
39 indicators is 15.4 percent (average number-weighted clustering coefficient), while a
number of indicators have no explanatory power at all. We conclude that daily variations
in network structure are of limited use in the stability analysis of ARTIS. However, that
does not preclude that structural differences across networks might influence their
relative resilience. But as shown above, even large value payment systems which display

considerable differences in size share notable structural commonalities.
5.2 Node Level

In this subsection we study the large dispersion of contagion effects caused by different
nodes (see lower panels in chart 1). Do the different positions of the nodes (that
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experience the operational shock) in the network account for this variation? In chart 4 we
plot the value and volume of payments of the stricken node in each simulation against its
contagion effect in terms of number of contagious defaults (in terms of the number of
banks with unsettled payments) i.e. each sub-graph contains 31 311 data point. In
addition, the data points of the three most active banks (Bank A, B, and C) and of the
most active transfer account (Transfer Account 1) are coloured (see chart 4 legend) while
those of all other Bank Accounts and of all other Transfer Accounts are black and grey,
respectively. The variations of value and volume across simulations explain 73 percent
and 68 percent of the variation of the contagion impact across simulations. The slopes
have the expected signs: more active nodes cause more contagion. The differentiation
among simulations according to the shocked account reveals a pronounced grouping in
both panels. In the right hand panel it also points to structural differences in contagion
impact not accounted for by variations in volume. Transfer Account 1 and Bank B tend to
group below the regression line (i.e. they causes more contagion than estimated by their
volumes of transactions) and Banks A and C to group above the regression line (i.e. they

cause less contagion than estimated by their volumes of transactions).

Chart 4

Value and volume (node level) per stricken account versus number of contagious defaults per simulation

w
N
®

Value (in bn EUR)
Volume (in th)
~
.

«

R
0
s
- »
’0-‘
*
g
.
>
o
D oyt oAl
G0 S SN0
AR
*
* o
.0
*
*
L3

.
SE+08 "., 17529 79912

R® 06762

*
y 7E+08x
R' 07273

10 15 20 25 30 35 0 5 10 15 20 25 30 35

Number of contagious defaults (in terms of the number of banks with unsettled payments)

@ Bank C 4 Transfer Account 1 #® other Bank Accounts other Transfer Accounts ® Bank B @ Bank A
Source: OeNB.

In chart 5 we plot four network indicators (degree, average path length, betweenness
centrality and dissimilarity index) of each stricken node against its contagion effect in
terms of number of contagious defaults (i.e. each sub-graph contains 31 311 data points).
In addition, the data points of Banks A, B, and C and Transfer Account 1 are
differentiated in the same way as in chart 4. The explanatory values of all four network
indicators are quite high; the simplest measure degree yields an R? of 64 percent,
variations in average path length across simulations account for 59 percent of the variation
of the number of contagious defaults across simulations. The more complex measures
betweenness centrality and dissimilarity index yield R2%s of 52 and 62 percent,
respectively. These values are in the order of magnitude of the reported interaction
between betweenness centrality and contagious defaults for the Austrian interbank
market (Boss et al. 2004). The signs of the slopes are in line with expectations:

simulations in which more active and more central nodes are shocked feature a higher
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contagion impact. The remaining 65 network indicators yield explanatory values between
nil (number-weighted average path length based on payments received) and 77 percent
(relative volume of payments received). The results demonstrate that network indicators
at the node level can indeed explain large parts of the variation in contagion across
stricken accounts. However, they seem to add little to the high explanatory values of the
traditional measures of activity (value and volume). Furthermore, the large set of
available indicators and the huge differences in their explanatory values pose the problem
of data mining. The differentiation according to the stricken account confirms the
pronounced grouping evident also in chart 4. In all four panels simulations based on
Transfer Account 1 cluster at the right hand side of the regression line, while those based
on Bank C and to a lesser extent those of Bank A lie to its left. This finding points at
structural differences in contagion impact which are not accounted for by measures of
activity or network indicators and which warrant further research.

Chart 5

Network indicators (node level) per stricken account versus number

of contagious defaults per simulation
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We also investigate the interaction between network topology and network stability for
another measure of contagion, i.c. the value of unsettled payments. Again we start with
the analysis of the explanatory of node size (value of value and volume of payments
originating at the node) (chart 6). Variations in value explain 54 percent and volume 39
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percent of the variation in contagion. Both values are lower than the respective results in
chart 4.

Chart 6
Value and volume (node level) per stricken account versus value of contagious defaults per simulation
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How well do the network indicators at the node level fare in comparison? The
explanatory values are similar for the four network indicators (degree 28 percent,
average path length 25 percent, betweenness centrality 24 percent and dissimilarity index
29 percent, chart 7) and they are considerably lower than the respective values for the
measures of size in chart 6. If contagion is measured by the value of unsettled payments,
network indicators are clearly dominated by the traditional measures of size. However,
the grouping of contagious defaults according to the three most active bank accounts and
the most active transfer account are also apparent in charts 6 and 7. Comparing the
results for the two measures of contagion, number of banks with unsettled payments
(charts 4 and 5) versus value of unsettled payments (chart 6 and 7), reveals that contagion
under the latter measure is much harder to explain by the more traditional variables
(value and volume of payments) and by network indicators. But relatively speaking
network indicators do even worse. In future work, we will focus on the investigation of
the variations in the value of contagion in a multivariate setting in which we combine
control variables (e.g. beginning of day liquidity at individual nodes) with network
topology indicators at the network and at the node level.
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Chart 7

Network indicators (node level) per stricken account versus value of

contagion per simulation
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In order to corroborate our finding that network indicators at the node level do not add
much value to stability analysis, we present the correlations between the traditional
measures of activity (value and volume) and selected network indicators in table 2. The
data reveals that various indicators of centrality (average path length, degree,
connectivity, betweenness centrality and dissimilarity index) are highly correlated with
value and volume.

Table 2: Correlations between network indicators (node level)

Volume Value Avg.PL Degree Conn. Clust. Btw. C. Dissim.
Volume 100% 89% 77% 84% 83% 57% 89% 85%
Value 100% 70% 76% 75% 52% 77% 78%
Avg. PL 100% 96% 97% 62% 79% 85%
Degree 100% 99% 72% 85% 95%
Conn. 100% 72% 85% 93%
Clust. 100% 56% 78%
Btw. C. 100% 87%
Dissim. 100%

Source: OeNB. Average Path Length (Avg. PL), Connectivity (Conn.), Clustering Index (Clust.), Betweenness
Centrality (Btw. C.), Dissimilarity Index (Dissim.).

The analysis suggests that network indicators provide little value added in the stability
analysis of large value payment systems with respect to operational shocks at a
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participant. In future research we will extend the analysis from a univariate to a

multivariate framework.
6 Summary

The analysis of the network indicators of ARTIS shows that the network is compact. This
is mostly due to the fact that almost all active nodes are linked to a small number of
accounts at the centre of the network (the largest banks and the most active transfer
accounts). This network structure is quite stable across days. The comparison between
the ARTIS system and the much larger FedWire network yields interesting insights into
the relationship between size and structure of payment systems. The distance measures,
the average degree, and the clustering coefficient seem to be independent of size, like in
other small-world networks. A comparison of the network indicators of the ARTIS
system with those of the Austrian interbank market reveals that the distance measures are
very similar but the clustering coefficients differ substantially. That similarity arises from
the fact that the interbank market is dominated by a few large nodes in the centre of the
network, too.

We conducted 31 311 simulations based on 63 different scenarios for 497 transaction
days from 16 November 2005 to 16 November 2007 (excluding Austrian holidays).
Although the scenarios focus only on the banks and on the transfer accounts in the GSCC
on all days, more than a quarter of all simulations do not lead to contagion (in terms of
the number of banks with unsettled payments) at all, and two fifth yield one or two
contagious defaults. Based on two conservative thresholds of contagion impact we find
that only a very small number of accounts are systemically important. If we regard only
accounts that yield at least an average of one contagious default across the sample period
as systemically important, we find that only 28 bank accounts are systemically relevant,
but almost all transfer accounts operated by central banks. If we define systemic
relevance as contagion impact of at least 0.1 percent of the average value of transactions
settled across days, we find that 17 bank accounts and seven transfer accounts are
systemically relevant. In both cases only seven to twelve percent of all bank accounts in
ARTIS and two to three percent of all Austrian banks are systemically relevant. The
simulation results suggest that the ARTIS system is remarkable stable with respect to
operational incidents at one of its participants. The strong contagion impact of the
transfer accounts is an interesting feature revealed by the simulations and suggests that
the removal of transfer accounts by the single shared platform in TARGET 2 can improve
resilience relative to the old TARGET system.

The time series of average contagious defaults per day is quite volatile. We find that the
variation of network structure across days does not contribute much to the explanation of
the variation of contagion across days. At this stage, network indicators at the network
level seem to be of limited use for stability analysis.

Network indicators at the node level can have explanatory power. In the simulations
some of them are correlated with the contagion impact of an operational shock to a node.
Their explanatory power is higher when the analysis focuses on the contagion measured
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by the number of banks with unsettled payments than in the case of the measure based on
the value of unsettled payments. It is questionable at this stage that they contain much
additional information compared to value and volume which traditionally were the focus
of stability analysis in simulation studies of operational risk in large value payment
systems. Furthermore, the large number of available network indicators at the node level
and the huge differences in their explanatory power pose the problem of data mining. In
future research we plan to explore the large data set compiled in the simulations to
investigate the explanatory power of network indicators at the network and at the node
level in a multivariate framework which allows controlling for other explanatory
variables such as beginning of day liquidity at the network and at the node level.
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