
/38

nigel.smart@kuleuven.be

Private Liquidity Matching using MPC
Shahla Atapoor, Nigel P. Smart and Younes Talibi Alaoui

ia.cr/2021/475 23.07.2021

/38

 Introduction and Background
• RTGS systems
• Liquidity of banks
• GridLock Resolution Problem (GRP)

 Problem statement
• Decentralized RTGS system

 Our Contribution
• Main idea
• Algorithms

 Sources Open & Destinations Open (SODO)
 Sources Open & Destinations Secret (SODS)
 Sources Secret & Destinations Secret (SSDS)

• Performance
 Runtimes of three different algorithms
 Simulation result

Outline:

COSIC (Computer Security and Industrial Cryptography group) 2

/38 COSIC (Computer Security and Industrial Cryptography group) 3

Payment Systems: Real Time Gross Settlement Systems (RTGS)

RTGS:

This is the back bone of modern banking.
Transactions are settled individually and
immediately at real time if the source has
enough liquidity.

• Real Time = Immediately
• Gross = Individually
• Settlement = Debiting money from the

source account and crediting to the
destination account.

10

A

B C
Central Bank

/38

Payment Systems: Real Time Gross Settlement Systems (RTGS)

COSIC (Computer Security and Industrial Cryptography group) 4

10

Upside: RTGS systems mitigate the effects caused by a failing bank not being able to settle its payments,
as opposed to netting systems where the settlement happens at the end of the day.

Downside: problems with some of liquidity cases.

• No queue

• GridLock

• DeadLock

/38

 Examples: No queue in Payment Systems.
• Transactions execute immediately
• Each individual bank has enough liquidity to complete the transactions

Payment Systems: Liquidity of Banks-No queue

COSIC (Computer Security and Industrial Cryptography group) 5

/38

 Examples: GridLocks in Payment Systems.
• Transactions could complete, if we looked at the global view of what is owed to who.
• The system does have enough liquidity.

Payment Systems: Liquidity of Banks- GridLock

COSIC (Computer Security and Industrial Cryptography group) 6

/38

 Examples: DeadLocks in Payment Systems.
• There is not enough liquidity in the system to complete the transactions.

Payment Systems: Liquidity of Banks- DeadLock

COSIC (Computer Security and Industrial Cryptography group) 7

/38

Payment Systems: Real Time Gross Settlement Systems (RTGS)

COSIC (Computer Security and Industrial Cryptography group) 8

10

If enough liquidity in the system transactions clear instantly.

What to do in case transactions are pending:
• Option 1: The parties involved need to inject more liquidity into the system.
• Option 2: Liquidity Saving Mechanisms (LSM) can be employed such as Multilateral Netting:
 Consists of simultaneously offsetting multiple transactions.
 Permits to unblock some of the pending transactions if net positions of the respective sources are

positive.
 This problem is called the Gridlock Resolution Problem..
 This process is generally carried out by a central entity

Question: Can we remove the central entity for Option 2?

/38

Payment Systems: GridLock Resolution Problem (GRP)

COSIC (Computer Security and Industrial Cryptography group) 9

10

GridLock Resolution’s Problem (GRP) ≡ A discrete optimization problem

Aims to maximize the number of transactions to be settled subject to:
• The balances of the participants should not be negative.
• The priority of settling the payments preferred by banks should be preserved.

/38 COSIC (Computer Security and Industrial Cryptography group) 10

 Solution: Namely, maximizing the number of payments, to be picked from the queue of each bank.

• Under the assumption that the transactions are strictly ordered.

1) Include all queued payments in the solution.

2) Calculate balances for all the banks,
• If there is at least one negative balance then execute step 3.
• If all the balances are positive then stop.

3) Take all banks with a negative balance and remove their last transaction from the queue of the
solution. Repeat step 2 until no such banks remain

Payment Systems: Solution to the GRP [Bech and Soramäki, 2001]

/38

 Introduction and Background
• RTGS systems
• Liquidity of banks
• GridLock Resolution Problem (GRP)

 Problem statement
• Decentralized RTGS system

 Our Contribution
• Main idea
• Algorithms

 Sources Open & Destinations Open (SODO)
 Sources Open & Destinations Secret (SODS)
 Sources Secret & Destinations Secret (SSDS)

• Performance
 Runtimes of three differnt algorithms
 Simulation result

Outline:

COSIC (Computer Security and Industrial Cryptography group) 11

/38 COSIC (Computer Security and Industrial Cryptography group) 12

𝑥𝑥1

𝑥𝑥4

𝑥𝑥2

𝑥𝑥3

European Central Bank (ECB) Systems: Motivation

There is an interest in removing the need for the central authority:
• For example could the role of the central bank be provided

by Distributed Ledger Technologies?

This would be a problem as to solve the GRP we need banks to
exchange all transaction information:

• Bank’s A and B would need to disclose their bilateral
transactions to bank C.

• This is not in their business interests to do so.

Solution
• Decentralize the RTGS system by allowing the GRP to be

solved using a secure distributed algorithm.

/38

Payment Systems: Requirements of Decentralized RTGS

COSIC (Computer Security and Industrial Cryptography group) 13

A secure decentralized RTGS system will have three main
requirements:

Correctness: while settling a transaction, the amount debited from
the source is the same as the amount transferred to the
destination.

Fairness: The LSM process implemented should not favor a
participant over the others.

Security: Transaction information between two entities should not
leak to a third.

Our solution looks at three different definitions of information in the
third security requirement.

/38

 Introduction and Background
• RTGS systems
• Liquidity of banks

 Problem statement
• Decentralized RTGS system

 Our Contribution
• Main idea
• Algorithms

 Sources Open & Destinations Open (SODO)
 Sources Open & Destinations Secret (SODS)
 Sources Secret & Destinations Secret (SSDS)

• Performance
 Runtimes of three different algorithms
 Simulation result

Outline:

COSIC (Computer Security and Industrial Cryptography group) 14

/38

Our Contribution: An Efficient Multi-Party Computation (MPC) Protocol

COSIC (Computer Security and Industrial Cryptography group) 15

An MPC based solution to perform the liquidity optimization for
decentralized RTGS systems.

Task of managing the RTGS system assigned to a set of entities.

The payments instructions and balances will remain hidden as
long as those entities do not collude.

The entities will be capable of obliviously running a multilateral
netting process.

/38

Preliminary: Multi-Party Computation (MPC)

COSIC (Computer Security and Industrial Cryptography group) 16

Let F(.) be a function represented with a binary/an
arithmetic circuit.

Definition: Parties are computing F(.) on shared data
y = F(x1, x2, x3, x4).

Security Requirements:
• Security and integrity of computation.
• Parties learn nothing from the other parties inputs

but the correct output.

10

𝒙𝒙𝟏𝟏

𝒙𝒙𝟒𝟒

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

/38

Linear Secret Sharing Schemes (LSSS):

• Secret is shared linearly, e.g. x=x1+x2+⋯+x𝑛𝑛.

• We write [x].

• Linear operations (e.g. addition) can be done locally.

• Non-linear operations (e.g. multiplication) requires communication.

Our Setting: We Use LSSS

COSIC (Computer Security and Industrial Cryptography group) 17

/38

We are using MPC based Shamir Secret Sharing with Abort.

Secret [x] is shared linearly using an (n,t)-threshold, e.g. Shamir:

• Value x is shared by finding a polynomial f of degree t with f(0) = x

• Share to player i is the value xi = f(i)

• Abort: if a party cheats, the other parties detect this and abort the computation (since we select t< n/2)

Our Setting: We Use LSSS

COSIC (Computer Security and Industrial Cryptography group) 18

/38

Introduction: MPC Protocol: Offline Phase

COSIC (Computer Security and Industrial Cryptography group) 19

We are using two phases: Offline and Online phase

Offline Phase

Beaver triples: [a], [b], [c] with c = a*b.

Beaver triples are generated before the protocol starts.

This “offline” phase is function independent.

/38

Introduction: MPC Protocol : Online Phase

COSIC (Computer Security and Industrial Cryptography group) 20

To add:

Additions are free
Given two secrets x= f(0), y = g(0)

Their sum is shared by the polynomial h(x) = f(x)+g(x).
• z = x + y = h(0) = f(0) + g(0)

Share of z is given by
• zi = h(i) = f(i) + g(i) = xi + yi

This allows us to compute any linear function.

/38

Introduction: MPC Protocol: Online Phase

COSIC (Computer Security and Industrial Cryptography group) 21

To Multiply :

Supose you have Beaver triples: [a], [b], [c] with a = b* c

• Open r = [x] – [a]
• Open s = [y] – [b]
• Compute [z] = [x] * [y] = r * s + s * [x] + r * [y] + [c]

This last operation is a linear operation, and hence can be done
using the previous slides techniques.

/38

Three Versions of MPC Algorithms:

COSIC (Computer Security and Industrial Cryptography group) 22

MPC in ECB Systems: Pipeline

Source = Name of source bank
Destination = Name of destination bank
Amount = The value being transferred
Bank Balances always remain secret

/38 COSIC (Computer Security and Industrial Cryptography group) 23

Our Contribution: Solution to the GRP with MPC- Initial Challenge of SODO

We want to compute the balances after all transactions have
completed [BU

i] given input balances [Bi].

Let [xt] denote a variable which indicates whether a transactions
in the queue should be included.

Initially [xt] =1 for all transactions in the queue.

We then execute:
• For all i in [1,…,n] do

• [Si] = Σ [a] * [xt] where sum is over all transactions t =
(s,[a],r) with source i.

• [Ri] = Σ [a] * [xt] where sum is over all transactions t =
(s,[a],r) with destination i.

• [BU
i]= [Bi] - [Si] + [Ri].

1) Include all queued
payments in the solution.

2) Calculate balances for all
the banks,

• If there is at least one
negative balances then
execute step 3.

• If all the balances are
positive then stop.

3) Choose the bank with the
negative balance and
remove from the last
payment in queue for this
bank from the solution.
Repeat step 2.

/38 COSIC (Computer Security and Industrial Cryptography group) 24

Our Contribution: Solution to the GRP with MPC- Initial Challenge of SODS

If the destination is secret we need to alter the sum for [Ri].

Using a naïve ORAM implementation we demux the index i via a
demux array [Ct,i], where t is a transaction and i is the index for the
destination.

We then execute:
• For all i in [1,…,n] do

• [Si] = Σ [a] * [xt] where sum is over all transactions t =(s,
[a], [r]) with source i.

• [Ri] = Σ [a] * [xt] * [Ct,i] where sum is over all transactions
t = (s, [a], [r])and all i.

• [BU
i]= [Bi] - [Si] + [Ri].

1) Include all queued
payments in the solution.

2) Calculate balances for all
the banks,

• If there is at least one
negative balances then
execute step 3.

• If all the balances are
positive then stop.

3) Choose the bank with the
negative balance and
remove from the last
payment in queue for this
bank from the solution.
Repeat step 2.

/38 COSIC (Computer Security and Industrial Cryptography group) 25

Our Contribution: Solution to the GRP with MPC- Initial Challenge of SSDS

If the source is secret we need to alter the sum for [Si].

Use another demux array [Wt,i], where t is a transaction and i is the
index for the source.

We then execute:
• For all i in [1,…,n] do

• [Si] = Σ [a] * [xt] * [Wt,i] where sum is over all transactions
t =([s], [a], [r]) with source i.

• [Ri] = Σ [a] * [xt] * [Ct,i] where sum is over all transactions
t = ([s], [a], [r])and all i.

• [BU
i]= [Bi] - [Si] + [Ri].

1) Include all queued
payments in the solution.

2) Calculate balances for all
the banks,

• If there is at least one
negative balances then
execute step 3.

• If all the balances are
positive then stop.

3) Choose the bank with the
negative balance and
remove from the last
payment in queue for this
bank from the solution.
Repeat step 2.

/38 COSIC (Computer Security and Industrial Cryptography group) 26

1) Include all queued
payments in the solution.

2) Calculate balances for all
the banks,

• If there is at least one
negative balances then
execute step 3.

• If all the balances are
positive then stop.

3) Choose the bank with the
negative balance and
remove from the last
payment in queue for this
bank from the solution.
Repeat step 2.

Our Contribution: Solution to the GRP with MPC – Challenges in SODO, SODS & SSDS

• First, define an array [h] with the size of the number of parties.

• Then, calculate the balances. If the balance of bank i is positive set
hi to be 0. Otherwise set hi to be 1.

 [hi] = [BU
i] < 0 There are special MPC protocols to do this

comparison.

• Then to determine if we have a negative balance among the banks,
we compute

• [z] = Π (1- [hi])
• Open [z] to reveal it
• If z = 1, all the balances are positive and we already solved the

problem.
• If z= 0, it means that there is at least one negative balance and

we should goto step 3.

/38 COSIC (Computer Security and Industrial Cryptography group) 27

Our Contribution: Solution to the GRP with MPC – Challenges in SODO, SODS & SSDS

How to remove the last transaction of the bank with the negative
balance without leaking any information?

• We need to go over all transactions:

 For v which is the number of transactions that are included in the
queue do:

For i = 1, …, v-1

[xi] = ([xi] * [xi+1]) * [hi] + [xi] * (1 - [hi])

[xv] = [xv] * (1 - [hv])

 This will set to 0 only the xi for banks i for which the current
balance is negative, and therefore, their last transaction is
removed from the queue.

1) Include all queued
payments in the solution.

2) Calculate balances for all
the banks,

• If there is at least one
negative balances then
execute step 3.

• If all the balances are
positive then stop.

3) Choose the bank with the
negative balance and
remove from the last
payment in queue for this
bank from the solution.
Repeat step 2.

/38

 Introduction and Background
• RTGS systems
• Liquidity of banks
• GridLock Resolution Problem (GRP)

 Problem statement
• Decentralized RTGS system

 Our Contribution
• Main idea
• Algorithms

 Sources Open & Destinations Open (SODO)
 Sources Open & Destinations Secret (SODS)
 Sources Secret & Destinations Secret (SSDS)

• Performance
 Runtimes of three different algorithms
 Simulation result

Outline:

COSIC (Computer Security and Industrial Cryptography group) 28

/38

Runtimes of SODO and SODS, where n is the number of banks and m is the number of transactions to be
processed. The runtimes are in second.

COSIC (Computer Security and Industrial Cryptography group) 29

MPC in ECB Systems: Performance- SODO & SODS

/38

Runtimes of SSDS, where n is the number of banks and m is the number of transaction to be processed. The
runtimes are in second.

COSIC (Computer Security and Industrial Cryptography group) 30

MPC in ECB Systems: Performance- SSDS

/38 COSIC (Computer Security and Industrial Cryptography group) 31

The previous performance results give one times for ONE execution of the algorithm.

But in practice we care about clearing the results over a day of execution.

The value m will vary during the day.
• Depending on the transactions sizes, amounts and liquidity in the system.

So to get real run times we need to simulate a day’s execution and see if the throughput can cope with the
number of transactions and the number of items m in the queue.

To perform the simulation we use a simulation methodology given by Soramäki and Cook in 2013.

MPC in ECB Systems: Performance- Simulation

/38 COSIC (Computer Security and Industrial Cryptography group) 32

Methodology of Soramäki and Cook in 2013:
• Transaction graphs follow a scale free distribution

• We want to sample (s,a,r) values for the transactions where:
 s = name of source bank
 a = amount
 r = name of receiving bank

• The network contains an initial set of n0 banks that are supposed to send and receive transactions more than
the other banks
 Each bank b has a preferential attachment vb.
 To start the preferential attachment vb for the n0 initial banks is 1, and for the remaining banks it is 0.
 Whenever q transactions are generated (q is a parameter to define), we switch the preferential attachment

to 1 for one of the banks that are still not yet included.
 Whenever a bank sends/receives a transaction, its preferential attachment grows.

MPC in ECB Systems: Performance- Simulation

/38

The algorithm proceeds as follows:

• For k = n0 + 1,…, n
 For l = 1, …, q

o The source bank s ∈ {1, …, n} is selected with the probability for j ∈ {1, …, n}, vs/ Σ vj.
o The destination bank r ∈ {1, …, n} is selected with the probability for j ∈ {1, …, n}, vr/ Σ vj.
o If we obtain s = r then a new value of r is sampled in the same way, until s ≠ r.
o Update the preferential attachment for both the source and destination, by adding α = 0.1 to vs and vr.
o The amount a is sampled by taking a value x from the normal distribution with mean 1 and standard

deviation 0.2, and then setting a = d*exp(x). Where d is the minimum of the in-out degrees of the
source and destination nodes s and r.
o Thus bigger banks make bigger transactions amounts.

 Set the preferential attachment to be 1 for one of the banks for which vb is still equal to 0

COSIC (Computer Security and Industrial Cryptography group) 33

MPC in ECB Systems: Performance- Simulation

/38

To simulate the execution we need to define how much liquidity is in the system.

This is controlled by a simulation parameter β ∈ [0,1].

For the initial balances of the banks:

Calculate the lower and upper bounds of liquidity for each bank as follows:

• The lower bound Li for bank i refers to the minimal initial balance that will allow the bank to settle all its
transactions at the end of the time window.

• The upper bound Ui refers to an initial balance that will allow the bank to settle immediately all its
transactions without having to be placed in the queue U for the gridlock execution.

Finally, the initial balance of bank i we set equal to Bi = β * (Ui - Li).

COSIC (Computer Security and Industrial Cryptography group) 34

MPC in ECB Systems: Performance- Simulation

/38

First generate transactions using the distribution of the simulator.

Distribute them over one hour at uniform time intervals.

Clearing them using our algorithms using 2 versions:
1. In the first version we take the transactions one by one.
2. In the second version whenever we take transactions, we enter all the ones that arrived whilst we were

executing the previous GRP step.

At the end of the processing of the hour we calculate:
• E: the Excess which is the time it took us to clear all transactions minus one hour.

 E = 0 is perfect. The MPC variant results in no delay.
• D: the Delay which is the average delay in terms of executed time vs entered time for each transaction.

 D = 0 is perfect. There is no delay for any transaction.

COSIC (Computer Security and Industrial Cryptography group) 35

MPC in ECB Systems: Performance- Simulation

/38

In the SODO and SODS cases, transactions could be cleared in effectively real time, with no delay due
to the secure nature of the processing.

COSIC (Computer Security and Industrial Cryptography group) 36

MPC in ECB Systems: Performance- Simulation

 Runtimes in seconds corresponding to 1hour of an RTGS, where the transactions are coming from simulation. n shows the
number of banks, M shows the total number of transactions, and a value β controlling the amount of liquidity in the system. E
and D given to 0 decimal places accuracy.

/38

In the case of SSDS, we find a significant delay being introduced, which depends on the number of banks, the
number of transactions per hour, and the overall liquidity within the system.

COSIC (Computer Security and Industrial Cryptography group) 37

MPC in ECB Systems: Performance- Simulation

/38

• MPC can be used to emulate the party managing the RTGS system.
 The calculation for the GRP algorithm to do the multilateral netting can be distributed.

• The performance of the RTGS system is penalized due to the nature of MPC protocols, E.g.
 For conditional branching, we need to evaluate both branches.
 Memory accesses should not leak information, which results in a drop in performance.

• However, using MPC to distribute RTGS systems is still viable:
 For the cases of SODO and SODS.
 For SSDS there is a significant delay in clearing the transactions.

COSIC (Computer Security and Industrial Cryptography group) 38

Conclusion

/38

Thank You!

nigel.smart@kuleuven.be

	Private Liquidity Matching using MPC� �Shahla Atapoor, Nigel P. Smart and Younes Talibi Alaoui
	Outline:
	Dia numero 3
	Payment Systems: Real Time Gross Settlement Systems (RTGS)
	Payment Systems: Liquidity of Banks-No queue
	Payment Systems: Liquidity of Banks- GridLock
	Payment Systems: Liquidity of Banks- DeadLock
	Payment Systems: Real Time Gross Settlement Systems (RTGS)
	Payment Systems: GridLock Resolution Problem (GRP)
	Dia numero 10
	Outline:
	Dia numero 12
	Payment Systems: Requirements of Decentralized RTGS
	Outline:
	Our Contribution: An Efficient Multi-Party Computation (MPC) Protocol
	Preliminary: Multi-Party Computation (MPC)
	Our Setting: We Use LSSS
	Our Setting: We Use LSSS
	Introduction: MPC Protocol: Offline Phase
	Introduction: MPC Protocol : Online Phase
	Introduction: MPC Protocol: Online Phase
	MPC in ECB Systems: Pipeline
	Dia numero 23
	Dia numero 24
	Dia numero 25
	Dia numero 26
	Dia numero 27
	Outline:
	MPC in ECB Systems: Performance- SODO & SODS
	MPC in ECB Systems: Performance- SSDS
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	MPC in ECB Systems: Performance- Simulation
	Conclusion
	Thank You!

