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Liquidity Stress Detection

Liquidity stress:

• Experienced by banks when faced with an unexpected liquidity shock.
• Short-term payment obligations can no longer be met.
• Can have severe consequences (e.g., a bank run, takeover, …).

Data-driven stress detection:

• Financial market infrastructures generate a wealth of data.
• Analyze historic payment behavior using machine learning.
• Determine whether a bank likely faces liquidity stress.
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Unsupervised Learning

General approach:
• Build a model from unlabeled data to learn the
characteristics of normal payment behavior.

• Apply the model on new data and search for cases
in which the model fails to describe behavior.

Type of models:
• Autoencoders [Triepels et al., 2017]
• Principal Component Analysis [León, 2020]

Drawback: it is hard to infer what these models learn. In addition, they
potentially detect anomalies that are not the result of liquidity stress but noise.
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Supervised Learning

General approach:
• Build a model from labeled data to
learn the characteristics of a stressed
and non-stressed bank.

• Apply the model on new data and
identify stress periods.

Previous work:

• Liquidity stress detection [Heuver and Triepels, 2019]

Drawback: it is difficult to obtain high-quality labels of liquidity stress.
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Research Question

Our work is an extension of the work by [Heuver and Triepels, 2019].

We use Recurrent Neural Networks:

• Operate on sequences of data.
• Learn patterns of a stressed and non-stressed bank over time.

Improved data:

• Based on data of 3 additional banks (10 in total).
• Better stress labels by applying active learning.

Do these improvements result in beter liquidity stress detection?
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Problem Definition

Let T =< t1, t2, · · · > be an ordered set of time intervals (i.e., days).

For each bank j , we have a sequence of vectors and labels:

• Feature vector x(i)
j describes the payment behavior of the bank at ti .

• Label y(i)
j ∈ {0, 1} indicates whether the bank faced liquidity stress at ti .

Our goal is to build a model that estimates the probability:

P
(
y(i)

j = 1
∣∣x(i)
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j , . . .

)
(1)
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Multi-Layer Perceptron (MLP)

Used in [Heuver and Triepels, 2019] which served as our benchmark model.

Each x(i)
j is processed through a hidden layer

with rectified units:

h(i)
j = f

(
Whx(i)

j + bh
)

(2)

The output of the network is:

ŷ(i)
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)

(3)

This is an estimate of:
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Long Short-Term Memory (LSTM)

Has a similar architecture as the MLP network but processes each x(i)
j though a

recurrent layer that maintains a hidden state over time.

The output of the recurrent layer is:

h(i)
j = g

(
h(i−1)

j ,x(i)
j
)

for i > 0 (5)

The layer consists of a number of LSTM units
[Hochreiter and Schmidhuber, 1997].

The output ŷ(i)
j is an estimate of:
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(2)
j

8



Dataset

Key properties:

• Includes 10 banks that are known to have faced liquidity stress.
• Includes 76 features that describe payment behavior.
• Data is aggregated on a daily basis.
• Spans over 14 years.

Compiled from three systems of the Eurosystem:

• TARGET2 (T2)
• Collateral Management System (CMS)
• Minimum Reserve System (MRS)
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Data Sources and Features

Type Feature Source

Account
Balance

• End-of-day account balance
• Minimum account balance

T2

Payments

• Total net value of payments
• Total net number of transactions
• Net payment time within the day weighted by value
• Net payment time within the day weighted by the number of transactions

T2

Money
Market

• Total number of counterparties
• HHI-index [Hirschman, 1945] of the number of money market counterparties
• Difference between average interest rate and EONIA weighted by loan value

T2

Collateral
• Average haircut applied to the total collateral value
• Total value of collateral before the haircut
• Total value of collateral after the haircut

CMS

Minimum
Reserve

• Difference between end-of-day balance and minimum reserve requirement MRS
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Stress Codes

For each bank, we searched online on Wikipedia and several national and
international financial newspapers for evidence of liquidity stress.

We assigned a stress code to each day:

1. No stress: if no evidence of liquidity stress at the bank could be found.
2. Possibly stress: if we could find some evidence of liquidity stress at the
bank but which was not that severe.

3. Stress: if we could find clear evidence of liquidity stress at the bank.
4. Bankrupt: if the bank is bankrupt or taken over by another institution.
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Stress Labels

Accordingly, we labeled the data as follows:

y(i)
j =

1, if the stress code is 3 (stress)
0, if the stress code is 1 (no stress)

(7)

Note that:

• Days at which the stress code was 2 (possibly stress) were not labeled and
only used for out-of-sample prediction.

• Days at which the stress code was 4 (bankrupt) were removed.
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Active Learning

We used a form of active learning to narrow down the possibly stress periods.

Update Stess Codes

Train
LSTM Network

Detect Liquidity Stress

Search for
Evidence
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Nested Cross Validation

Bank A Bank B . . . Bank I Bank J

Itr. 1 Test Val . . . Train Train

Itr. 2 Val Test . . . Train Train

...
...

...
...

...
...

Itr. 9 Train Train . . . Test Train

Itr. 10 Train Train . . . Val Test
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Results

Key observations:
• The LSTM network detects liquidity
stress better than the MLP network.

• It learns patterns of liquidity stress that
generalize well to banks whose data the
network has not seen before.

• It detects liquidity stress quite some
time before the stress became known to
the general public.

Cross Entropy*

Bank MLP LSTM

A 0.020499 0.000022
B 0.095966 0.085779
C 0.045841 0.000058
D 0.000348 0.000008
E 0.028470 0.000018
F 0.535325 0.028626
G 0.021893 0.045540
H 0.000370 0.071381
I 0.140433 0.523239
J 0.014404 0.000011

Mean 0.090355 0.075468
SD 0.162577 0.160614

*A lower score indicates better performance.
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Estimates of Bank E by the MLP Network
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The background colors represent the stress codes obtained from the news analysis. The network
has not seen this bank before and does not have access to the stress codes.
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Estimates of Bank E by the LSTM Network
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The background colors represent the stress codes obtained from the news analysis. The network
has not seen this bank before and does not have access to the stress codes.
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Results (Cont.)

Key observations:
• The MLP network performed better than
the LSTM network on banks G and H.

• These banks had very short and abrupt
periods of stress.

Cross Entropy*

Bank MLP LSTM

A 0.020499 0.000022
B 0.095966 0.085779
C 0.045841 0.000058
D 0.000348 0.000008
E 0.028470 0.000018
F 0.535325 0.028626
G 0.021893 0.045540
H 0.000370 0.071381
I 0.140433 0.523239
J 0.014404 0.000011

Mean 0.090355 0.075468
SD 0.162577 0.160614

*A lower score indicates better performance.
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Results (Cont.)

Key observations:
• The liquidity stress of banks B and I
could not be reliably detected.

• We suspect the quality of stress labels
of these banks is insufficient.

• Or, the stress is different from the stress
faced by other banks in the dataset.

Cross Entropy*

Bank MLP LSTM

A 0.020499 0.000022
B 0.095966 0.085779
C 0.045841 0.000058
D 0.000348 0.000008
E 0.028470 0.000018
F 0.535325 0.028626
G 0.021893 0.045540
H 0.000370 0.071381
I 0.140433 0.523239
J 0.014404 0.000011

Mean 0.090355 0.075468
SD 0.162577 0.160614

*A lower score indicates better performance.
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Conclusions

An LSTM network seems well suited to detect liquidity stress.

Our approach could be usefull to detect liquidity stress at an early stage.

Future work:

• Expand dataset with more (healthy and non-healthy) banks.
• Improve quality of stress labels by natural language processing.
• Generate explanations for stress predictions.
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Questions?
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Cross Entropy vs AUPRC

Cross Entropy:
• The average distance between each
estimated ŷ(i)

j and target y(i)
j .

AUPRC:
• Precision of a model averaged over all
possible decision thresholds.

Liquidity stress is so rare that the AUPRC
yields biased results for some banks.

Cross Entropy AUPRC

Bank MLP LSTM MLP LSTM

A 0.020499 0.000022 0.84 1.00
B 0.095966 0.085779 0.72 0.72
C 0.045841 0.000058 0.93 1.00
D 0.000348 0.000008 1.00 1.00
E 0.028470 0.000018 0.99 1.00
F 0.535325 0.028626 0.05 0.16
G 0.021893 0.045540 0.64 0.40
H 0.000370 0.071381 1.00 0.30
I 0.140433 0.523239 0.08 0.02
J 0.014404 0.000011 0.66 1.00

Mean 0.090355 0.075468 0.69 0.66
SD 0.162577 0.160614 0.36 0.40
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