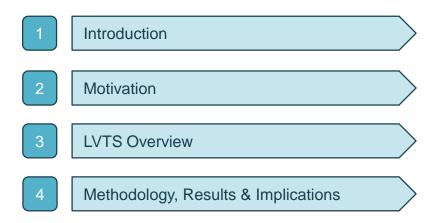
Examining the Costs of Increased Collateral Coverage in the Large Value Transfer System*

Bank of Finland Simulator Seminar 28-29 August 2014


*Preliminary results. Views expressed do not necessarily represent the Bank of Canada.

> L. Embree and V. Taylor Financial Stability Department Bank of Canada

www.bank-banque-canada.ca

Outline

1. Introduction

Introduction

- LVTS is <u>equivalent</u> to a real-time gross settlement system (RTGS)
- We use the BoF Simulator to simulate fully collateralized LVTS payments, similar to an RTGS
 - Purpose: Estimate change in collateral requirements
- Also include queuing to reflect potential liquidity savings

1. Introduction

3

- On average, the increase in collateral requirements could be covered by participants' existing collateral if including "excess" collateral
- Some participants could face lower collateral requirements

2. Motivation

Motivation

 \mathcal{O}

CPSS-IOSCO Principles for Financial Market Infrastructures An FMI should maintain sufficient financial resources to cover its credit exposure to each participant <u>fully</u> with a high degree of confidence.

✓ LVTS observes the Credit Risk Principle because of the Bank's residual guarantee

Planning for the "Next Generation" payments system is also underway

3. LVTS Overview

6

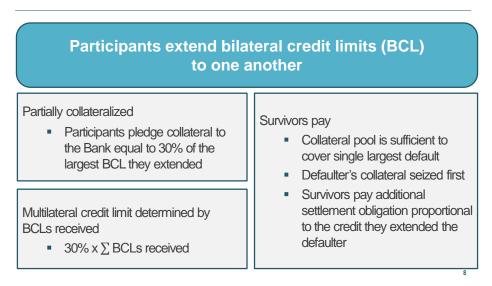
Large Value Transfer System (LVTS)

Key Points

- Canada's RTGS-equivalent system for interbank payments
 - Payments final and irrevocable
 - Multilateral net settlement end of day
- 16 direct participants, including Bank of Canada
- Two payment streams
- Always sufficient collateral to cover single largest default
- Bank of Canada residual guarantee

3. LVTS Overview

Tranche 1 Payments


Participants pledge collateral to the Bank to determine their T1 intraday credit limit (dollar-for-dollar)

Fully Collateralized	Defaulter pay	
 Similar to an RTGS 	 The Bank would seize the defaulter's collateral to cover its T1 net debit position 	

BANK OF CANADA BANQUE DU CANADA 3. LVTS Overview

7


Tranche 2 Payments

Collateral Allocation

- Participants allocate collateral to T1, T2 and "excess"
- Excess collateral not part of LVTS collateral pool

3. LVTS Overview

9

Average Daily Payments

T2 payments more collateral efficient than T1

Average Daily	T1	Т2	Total
Value	\$39b	\$115b	\$154b
Volume	403	32,797	33,200
Collateral pledged	\$12b	\$5b	\$17b
Collateral per \$payment	\$0.32	\$0.04	\$0.11

Source: BOC and CPA data for April 2014. Values in CAD.

Jumbo Queue

- Payments that cannot pass risk control tests and exceed a threshold value (\$100m) are placed in T1 or T2 queue
- Queued payments re-tested when:
 - a payment is received and/or credit increases
- Jumbo queue algorithm
 - FIFO netting algorithm runs every 15 minutes.
- Unsettled payments rejected after 35 minutes
- Participants encouraged to not rely on the central queues

BANK OF CANADA BANQUE DU CANADA 3. LVTS Overview

11

3. LVTS Overview

Residual Guarantee

- The Bank is responsible for ensuring LVTS will settle under <u>all</u> circumstances.
- The Bank provides an explicit guarantee (enshrined in legislation) to settle the system if there are
 - multiple defaults on the same day and
 - the collateral pool is insufficient to cover the shortfall

Methodology

- BoF Simulator modified for LVTS design and risk controls
- Submit all LVTS payments in T1 (i.e., move T2 payments to T1)
- Estimate daily change in collateral requirements for each participant
- Sample period: July December 2013 (126 days)

BANK OF CANADA BANQUE DU CANADA 4. Methodology, Results and Implications

13

4. Methodology, Results and Implications

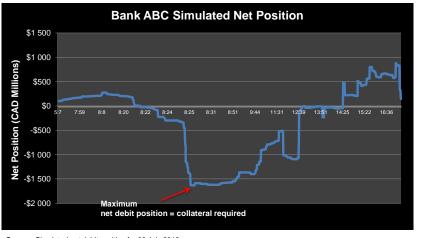
Methodology

Base Case	Case 1 Simulation	Case 2 Simulation
 Historical data for comparison Payments in T1 and T2 	 All payments in T1 No credit limits 	 All payments in T1 Credit limits = T1+T2 collateral pledged in base case All payments, regardless of value, eligible for the queue
	→ Payments settle when submitted	→ Allow queuing for liquidity management
	→ Simulated collateral required: largest net debit position	→ Simulated collateral required: largest net debit position + coverage of rejected payments

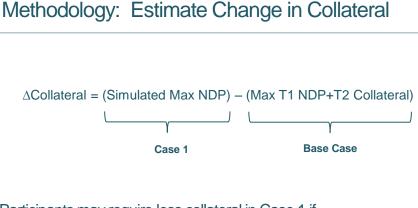
Main Caveat

BANK OF CANADA BANQUE DU CANADA

- Simulations based on historical data and do not reflect expected change in payment behaviour. Presumably, participants would
 - Re-order payments to make better use of incoming funds
 - Increase payment coordination with other participants
 - Rely on queue
- Results are rough estimates that may motivate future research



4. Methodology, Results and Implications


15

4. Methodology, Results and Implications

Methodology: Case 1

Source: Simulated net debit position for 03 July 2013.

Participants may require less collateral in Case 1 if

- combining T1 and T2 payments results in improved netting and the participant's net position does not go as far negative, and/or
- base case T2 collateral is high given actual payments sent

BANK OF CANADA BANQUE DU CANADA

BANK OF CANADA BANQUE DU CANADA

4. Methodology, Results and Implications

4. Methodology, Results and Implications

Simulation Results: Case 1

On average, collateral required in Case 1 is greater than base case

Δ Collateral	Average Daily	Minimum	Maximum	St. Dev
System	+\$413m	-\$12.5b	\$9.5b	\$1.2b
Big 6	+\$799m	-\$12.5b	\$9.5b	\$1.6b
Small (9)	+\$154m	-\$3.3b	\$2.2b	\$534m

Larger participants more likely to face increase in collateral required

	% of Days Increased	Average Daily Increase	Minimum Increase	Maximum Increase	St. Dev
Big 6	80%	\$1.3b	\$12.6m	\$9.5b	\$1.0b
Small (9)	47%	\$488m	\$393k	\$2.2b	\$565m

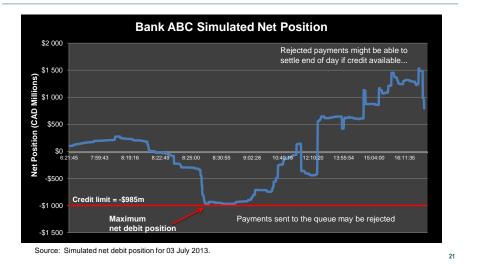
Simulation Results: Case 1 Collateral as a % of Base Case Collateral

Case 1 collateral requirements would require use of Excess collateral

		% Base Case Collateral Including Excess	% Days Excess Collateral Sufficient
Big 6	165%	62%	93%
Small (9)	95%	46%	91%

19

4. Methodology, Results and Implications


Simulation Results: Collateral Per \$ Payment

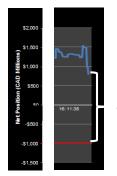
Bank*	Case 1	Base Case	Difference
А	\$0.35	\$0.12	\$0.23
В	\$0.34	\$0.13	\$0.21
С	\$0.40	\$0.20	\$0.20
D	\$0.16	\$0.08	\$0.08
E	\$0.13	\$0.07	\$0.06
F	\$0.09	\$0.06	\$0.03
G	\$0.23	\$0.21	\$0.02
Н	\$0.08	\$0.08	\$0.00
I	\$0.21	\$0.21	-\$0.01
J	\$0.16	\$0.17	-\$0.01
K	\$0.11	\$0.19	-\$0.08
L	\$0.21	\$0.30	-\$0.09
М	\$0.22	\$0.36	-\$0.15
N	\$0.08	\$0.53	-\$0.45
Average	\$0.20	\$0.19	\$0.00

* Big 6 banks denoted in blue font.

Methodology: Case 2

4. Methodology, Results and Implications

Methodology: Estimate Change in Collateral


Methodology: Collateral for Rejected Payments

- Payments that do not pass initial risk controls enter a FIFO by-pass queue
 - Payments rejected from the queue if not settled within 30 minutes
- To estimate collateral required for rejected payments, check if the rejected payments could settle at the end of day:
 - If yes, no additional collateral needed
 - If no, the value that exceeds the position and credit would need to be collateralized

	K OF CANADA QUE DU CANADA
--	------------------------------

4. Methodology, Results and Implications

Methodology: Collateral for Rejected Payments

Available credit

- Rejected payments could settle at end of day up to the value of available credit.
- If this EOD credit insufficient, additional collateral needed to settle the rejected payments.

Rejected Payments

	Value of Rejected Payments (Average Daily)*	Collateral for Rejected Payments (Average Daily)*	% Days Rejected Fully Covered by EOD Credit
System	\$584m	\$429m	66%
Big 6	\$1.1b	\$615m	67%
Small (9)	\$211m	\$156m	65%

*Including zeroes.

25

BANK OF CANADA BANQUE DU CANADA 4. Methodology, Results and Implications

Simulation Results: Case 2

• On average, less collateral required than Case 1

∆ Collateral	Average Daily	Minimum	Maximum	St. Dev
System	+\$180m	-\$12.5b	+\$8.2b	\$1.1b
Big 6	+\$457m	-\$12.5b	+\$8.2b	\$1.6b
Small (9)	-\$4.3m	-\$3.2b	+\$3.5b	\$337m

Fewer days of increase than Case 1 and smaller average increase

	% of Days Increased	Average Daily Increase	Minimum Increase	Maximum Increase	St. Dev
Big 6	72%	\$1.1b	\$212	\$8.2b	\$1.3b
Small (9)	37%	\$204m	\$70k	\$3.5b	\$378m

Simulation Results: Case 2 Collateral as % of Base Case Collateral

Case 2 collateral requirements less likely to require use of Excess collateral

		% Base Case Collateral Including Excess	% Days Excess Collateral Sufficient
Big 6	116%	45%	95%
Small (9)	69%	34%	97%

27

4. Methodology, Results and Implications

Simulation Results: Collateral Per \$ Payment

Bank*	Case 2	Base Case	Case 2 Difference	Case 1 Difference
А	\$0.14	\$0.12	\$0.02	\$0.23
В	\$0.12	\$0.13	-\$0.01	\$0.21
С	\$0.39	\$0.20	\$0.20	\$0.20
D	\$0.13	\$0.08	\$0.05	\$0.08
E	\$0.10	\$0.07	\$0.02	\$0.06
F	\$0.08	\$0.06	\$0.02	\$0.03
G	\$0.22	\$0.21	\$0.01	\$0.02
Н	\$0.10	\$0.08	\$0.02	\$0.00
I	\$0.14	\$0.21	- \$0.07	-\$0.01
J	\$0.19	\$0.17	\$0.02	-\$0.01
K	\$0.10	\$0.19	- \$0.09	-\$0.08
L	\$0.22	\$0.30	-\$0.08	<u>-\$0.09</u>
М	\$0.13	\$0.36	-\$0.23	-\$0.15
Ν	\$0.09	\$0.53	-\$0.44	-\$0.45
Average	\$0.15	\$0.19	-\$0.04	\$0.00

* Big 6 banks denoted in blue font.

Implications

- Impact varies by participant
- Queuing reduces collateral needs through more efficient netting
- The increase in collateral requirements is manageable when compared to total collateral pledged, including excess

BANK OF CANADA BANQUE DU CANADA 4. Methodology, Results and Implications

29

30

4. Methodology, Results and Implications

Questions for further consideration

- Who should bear the cost of sending payments?
- Given participant's existing collateral demands, how would stakeholders (BoC, CPA, participants) view the changes in collateral requirements?

Thank you!

Contact Information: lembree@bankofcanada.ca vtaylor@bankofcanada.ca

www.bank-banque-canada.ca