How to measure the unsecured money market? The Eurosystem's implementation and validation using TARGET2

Luca Arciero, **Ronald Heijmans**, Richard Heuver, Marco Massarenti, Cristina Picillo and Francesco Vacira

Simulator seminar

Helsinki Finland

29-30 August 2013

Outline

Introduction

Research question

TARGET2

Basic principle

Algorithm implementation and validation

Results

Conclusions

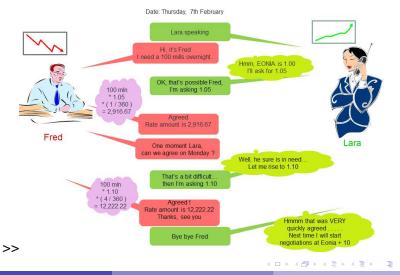
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Why identify money market transactions?

- Monetary policy: focus on well functioning interbank markets (current crisis).
- No complete data set available and have to rely on banks to provide data (LIBOR scandal).
- Monitoring: money market transactions as early warning indicators (for liquidity stress).

Research question

- How can unsecured interbank loans be identified from TARGET2 payment transaction?
- This paper aims at defining an identification algorithm suitable for the whole euro area, for maturities up to 1 year.


TARGET2

- European Real Time Gross Settlement (RTGS) System.
 - Each payment is settled immediately (Real Time) and individually (Gross).

< 回 > < 回 > < 回 >

- participants (numbers of 2011):
 - Direct participants: 1100 (mainly commercial banks).
 - Indirect participants: 3378 (only commercial banks).
- Settles euro transaction with a large average value.
 - Daily turnover \pm EUR 2,300 billion.
 - Daily number of transactions \pm 350,000.
 - Average transaction value: EUR 6.6 million.

Example

Resulting Money Market payments (the only visible part)

- Thursday: Lara to Fred 100,000,000.00
- Monday: Fred to Lara 100,012,222.22
- From these two transactions, rate and maturity have to be calculated.
- Rates lie around EONIA (Euro Overnight Index Average).

Core of the algorithm

Matching of . . .

Payment on day t from participant A to B amount X (rounded number) Payment on day t + 1 from participant B to A amount X (plus a plausible interest rate)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Furfine (1999) was the first to develop an algorithm.

- US overnight market.
- Corridor 50 bp above and below the federal funds rate.
- Minimum loan size USD 1 million and increment 100,000.
- Heijmans et al. (2010) (DNB Working Paper 276)
 - Dutch market (in euro).
 - Corridor 50 bp above and below EONIA/EURIBOR. Temporarily increased lower bound to 100 bp.
 - Minimum loan size EUR 100,000 and increment 100,000.
 - Minimum interest rate: 5 bp.
 - Maturities up to 3 months.

- Demiralp et al. (2006): US market.
- Hendry and Kamhi (2007): Canadian market.
- Guggenheim et al. (2010): Swiss market.
- Akram and Christophersen (2010): Norwegian market.
- Whetherilt et al. (2010): British market.

General criticism

- Is the algorithm correct?
- No check with real life data (due to availability).
- Currency regions might need a different implementation.
- Also within euro area, the optimal algorithm for each country may differ.

→ ∃ →

Matching is never 100 % perfect

- Type 1 error (false positive).
 - ► I Payment transaction wrongly classified as interbank loan.

- **A B A A B A A B A**

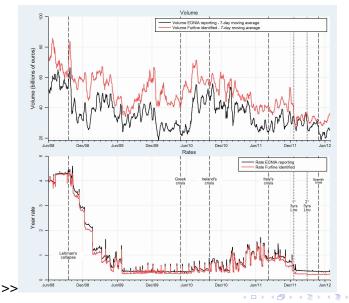
- Type 2 error (false negative).
 - I True interbank loan wrongly rejected.
- Type 3 error (wrong assignment maturity).
 - I Wrongly assigned to a duration.

Validation algorithm US market

- Armantier and Copeland (2012).
- Simultaneously worked on validation of the "Furfine" algorithm. (not coordinated).
- They find 81% Type 1 error and 23% Type 2 errors.
- Partly due to some participants in their system which create this 'noise'.
- Partly due to being too radical about their Type 1 errors.
 - e.g. 3 same loan values of 1 million with one refund option.
 - You do not know which of the three to take, but they are the same and lead to the exact same conclusions.

< 回 > < 三 > < 三 >

Tested algorithms (5 versions)


- The minimum loan value: 1 million euros.
- Loan values are rounded to: 10 thd , 1 mio, 10 mio , 100 mio , 1,000 mio euros (increment).
- Two types of corridors:
 - ECB (marg.lending and deposit rate) +/- 0-25 bps
 - EONIA/EURIBOR +/- 25-50-100 bps.
- Interest rates must be multiples of half a basis point, i.e. the third decimal digit is either 0 or 5.
- Multiple matches: the most plausible duration is chosen on the basis of the maturity frequencies for unique matches.
- Distinguish between intra-group and extra-group loans based on the SWIFT BIC directory information.

Data sources

- TARGET2:
 - June 2008 to October 2012.
- e-MID:
 - Privately owned (Italian) electronic money market system for interbank loans.
- EONIA: (Euro OverNight Index Average).
 - Daily quotes of all panel banks (± 44 large banks active in euro area).
 - Quotes contain total lending value and weighted average interest rates.

A (10) A (10)

EONIA panel data

2

EONIA panel data

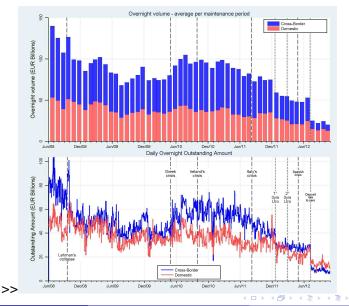
- Interest rates found by algorithm matches very well with EONIA.
- The volume reported to EONIA is roughly 33% less than identified by our algorithm. (Will decrease soon due to newly available information.)
- Identified volume can be larger than EONIA because:
 - Overidentification.
 - Tomorrow next and spot next (not in EONIA).
 - Rollovers.
 - Intra group transactions (not reported to EONIA, but not always possible to distinguish them).
 - Transactions concluded on behalf of a client.
- Identified volume can be lower than EONIA because:
 - Loans settled through other euro large value payment system (EURO1).

e-MID data

	Total automatically settled e-MID trades (A)	Matched transactions (B)	Validation rate (C=B/A)	Total false negative rate (F=D+E)	A component of total false negatives: Wrong matched (G=γ F)
ECB0	222, 568	211,613	95.1%	4.92%	0.47%
ECB25	222,568	220,513	99.1%	0.92%	0.26%
EONIA25	222,568	194,464	87.4%	12.63%	1.08%
EONIA50	222, 568	212, 436	95.4%	4.55%	1.08%
EONIA100	222, 568	218, 201	98%	1.96%	0.73%

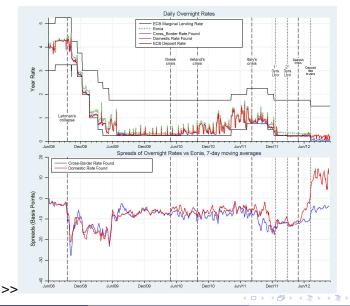
Result validation

- Type 1 error(upper limit) \sim 33% (will decrease soon, due to additional available information).
- Type 2 error \sim 2%.
- Type 3 error \sim 1%.


How to use outcome of algorithm?

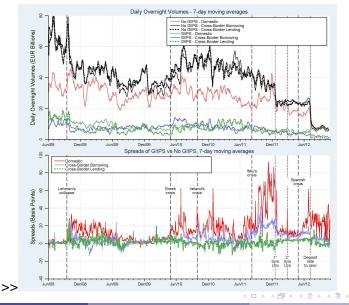
Euro area level:

- EONIA is made up of a small group of (large) banks.
- Possibility to check whether banks are honest about their quotes (LIBOR scandal).
- In contrast to EONIA spreads in rates and amount of loans.
- Similar to EONIA, EURIBOR can be defined based on real market activity.
- Regional level: GIIPS vs non-GIIPS.
- Country level: effect of monetary policy on each individual country.
- Individual bank level.


Results

Euro area level:

э


Euro area level:

э

Results

Regional level:

Conclusions

- Best performing version is EONIA/EURIBOR +/- 100 bps.
- Algorithm performs well up until 3 months.
- Also performance 6 and 12 months is quite good.
- A data base of unsecured loans is available within ESCB.
- Data base offers great analysis opportunities at different levels.