Forecasting Intraday Throughput of Large Value Payment System Participants Using Neural Networks: A Preliminary Approach

Patrick Joseph M. Sadornas Bangko Sentral ng Pilipinas / De La Salle University

DISCLAIMER: Views expressed by the author do not necessarily reflect the views of the Bangko Sentral ng Pilipinas or De La Salle University.

Agenda

- Introduction
- Research Problem
- Machine Learning
 - Artificial Neural Networks (ANN)
- Data Set Used
- Forecast Evaluation
- Experiment Results
- Conclusion
 - Work in Progress

Introduction

- Recent financial crisis led to new regulatory standards issued by the BCBS
- Principles for Sound Liquidity Risk Management and Supervision (2008)
 - Qualitative principles
- Monitoring Tools for Intraday Liquidity Management (2013)
 - Quantitative monitoring
 - A key aspect to monitor: intraday throughput
 - Percentage of outgoing payments (relative to total value of payments for the day) within each hour of the business day

BCBS Report Template

• Intraday Throughput

Time	Cumulative sent	% sent
08:00	450	32.14
09:00	550	39.29
10:00	750	53.57
11:00	750	53.57
12:00	750	53.57
13:00	1050	75.00
14:00	1050	75.00
15:00	1300	92.86
16:00	1400	100.00
17:00	1400	100.00
18:00	1400	100.00

Research Problem

• How to derive and forecast throughput information using LVPS transaction records?

• Significance

- Use of derived information for regulatory monitoring
- Use forecast for estimating liquidity requirements (individual and system-wide)
- Both derived (actual) and forecast information may be used for further analytical work
 - Simulations
 - Agent-based models

Machine Learning

- Mitchell (1997):
 - "A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*."
- Problem Breakdown
 - E: LVPS transaction records
 - T: Prediction of throughput information
 - P: Forecast error

Machine Learning for Time Series Forecasting

- Ahmed et al. (2010)
 - Claimed that machine learning models have been gaining acceptance as an alternative to classical statistical models
 - Compared various machine learning models for time series forecasting and found one of the best results from multilayer perceptron (simple neural network)
- Krollner et al. (2010)
 - Surveyed literature in machine learning and artificial intelligence used to forecast stock market movements
 - Dominant technique found: artificial neural networks

Artificial Neural Networks

• Model of a Neuron (Haykin, 1999)

Artificial Neural Networks

- Architecture
 - the manner in which the neurons in the network are connected to each other
 - several types are available, but the most commonly used is multilayer feedforward networks (or multilayer perceptrons)

Artificial Neural Networks

- Designing a Neural Network (Haykin, 1999)
 - Selection of a neural network architecture
 - Phase 1: Subset of examples are used to train the network by means of suitable algorithm (learning)
 - Using a training data set
 - The network 'learns' every time it is presented with new input through forward activation flow and weight adjustments through backward error propagation (Josef, 1996)
 - Phase 2: Tested with data not seen before and its performance evaluated (generalization)
 - Using a test (out of sample) data set

ANN Implementation Used

- 📿 Environment
- nnetar from forecast package by R. Hyndman
 - Relies on caret package by M. Kuhn
 - Relies on **nnet** package by B. Ripley
 - Feed-forward neural network with a single hidden layer and lagged inputs for forecasting singlevariable time series
- Experiments varied number of lagged inputs and number of nodes within the hidden layer between experiments

Data Set Used

- Philippine Payments and Settlement System
 - PhilPaSS: real-time gross settlement system used in the Philippines
 - 161 participants as of February 2013 (BSP, 2013)
 - (universal/commercial banks, thrift banks, rural banks, quasi-banks, 3rd party system providers)
- Used 1 month of transaction data
 - Selected 5 participants with the highest value of outgoing payments for the month
 - Transaction data per participant aggregated and cast as hourly cumulative outflows from 9:00 AM to 6:00 PM
 - 9 time buckets per day
 - Included transactions for 21 business days
 - 189 data points per participant
 - Data set divided into 80% training set and 20% test set
 - Training 17 days
 Test 4 days

Forecast Evaluation

- Mean Absolute Scaled Error (MASE)
 - proposed by Hyndman and Koehler (2005)
 - scales the absolute error based on the mean absolute error (MAE) from a benchmark method
 - using a naïve method as benchmark, the scaled error is computed as follows:

$$q_{t} = \frac{e_{t}}{\frac{1}{n-1}\sum_{i=2}^{n}|Y_{i} - Y_{i-1}|}$$

 scaled error is less than one if it arises from a better forecast than the average one-step benchmark forecast

Forecast Evaluation

- Mean Absolute Scaled Error (MASE) (cont'd)
 - the MASE is simply computed as

 $MASE = mean(q_t)$

 when MASE is less than 1, the proposed method gives, on average, smaller errors than the onestep errors from the benchmark method

Participant	Number of Lagged Inputs	Number of Hidden Units	MASE		
А	27	4	0.91		
В	18	3	0.45	First iteration	
С	36	10	0.89		
D	36	26	0.78		
E	18	3	0.50		
Destisionst	Number of	Number of	MASE		
Participant	Lagged Inputs	Hidden Units			
Α	27	1	0.44		
В	36	3	0.44	Second iteration	
С	36	7	0.82		
D	45	1	0.40		
E	27	1	0.42		
Dorticipant	Number of	Number of	MASE		
Participant	Lagged Inputs	Hidden Units	IVIAJE		
A	27	1	0.44		
В	36	3	0.44	Third iteration	
С	36	9	0.79		
D	45	1	0.40		
E	27	1	0.42		

Experiment Results

Experiment Results

 Additional runs were performed to examine performance for longer forecast windows (2 to 4 days)

Participant	1-Day Forecast	2-Day Forecast	3-Day Forecast	4-Day Forecast
А	0.44	0.83	0.75	0.73
В	0.44	0.52	0.62	0.69
С	0.79	0.61	0.90	0.79
D	0.40	0.63	0.63	0.70
E	0.42	0.43	0.47	0.56
Average	0.50	0.60	0.67	0.69

Actual vs. Forecasts

Conclusion (So Far)

- ANNs show potential for forecasting throughput information of individual participants
- Some participants easier to model than others
 - Contributory factors may include variety of services offered, diversity of client base, and volume of transactions
- Generally approximates the cycle of the throughput data but forecast errors remain significant
- ... more work to be done!

Work in Progress

- Continuous model refinement
- Determining effect of training data size
- Predicting total transaction per hour vs. cumulative (throughput) values
- Determining features other than lagged values (time of day, day of week, etc.)
- Use of other neural network architectures

Thank you for listening.