

Payment System Participant Reactions Under Stressful Conditions: An Agent-Based Approach

27-28 August 2015—Bank of Finland 13th Payment and Settlement System Simulator Seminar Matti Hellqvist (European Central Bank & Bank of Finland) Argyris Kahros (European Central Bank)

Disclaimer: The presentation does not necessarily reflect the views of the ECB or the Bank of Finland

Outline

- Project goal
- ABM approach
- Practical Implementation
- Some simple behaviours
- Simulation results
- Conclusions
- Future work

Project goal

- To set up framework to combine (simple) ABM and LVPS settlement process within BoF-PSS2
- To implement a few plausible (simple) behaviours
- To see what impact they deliver on simulation results preferably in stressed situation

 can be used to study liquidity management by banks, or to model it

Bank of Finland, 19 May 2003

8

ABM APPROACH - THEORY

www.ecb.europa.eu

Submission algorithm is available as open source code. It can be modified as a user module

The model is structured according to the ERA-scheme, Terna (2000) <u>http://web.econ.unito.it/terna/ct-era/ct-era.html</u>

PRACTICAL IMPLEMENTATION

www.ecb.europa.eu

Selected framework:

- JAVA Agent Development framework
 - Open source with LGPL licence
 - Hardware independent, scalable, parallelizable, embeddable
 - Standards for agent interaction (FIPA)
 - More a Multi-agent system (MAS) than ABM tool...
 - Linkages to AI libraries exist
 - <u>http://jade.tilab.com/</u>

Some Simple Behaviours

- Cautious Participants
 - Banks withhold payments in internal queues when liquidity is below some threshold value
 - Banks abandon cautious behaviour when liquidity is restored
 - Postponing can be focused on defined payment types

- Free-Riding Participants
 - Banks rely only on incoming liquidity for payments

Some Simple Behaviours

- ABM Simulations:
 - All banks exhibit same level of caution: Cautious behaviour turn-on/turn-off (by % initial liquidity)
 - 20%/{40%,60%,80%,100%}
 - 30%/{50%,70%,90%}
 - 40%/{60%,80%,100%}
 - 50%/{70%,90%}
 - 60%/{80%,100%}
 - 70%/90%
 - 80%/100%
 - Only largest one, two and three participants (by avg. tran. value) exhibit cautious behaviour:
 - 20%/40%; 30%/50%; 40%/60%; 50%/70%; 60%/80%; 70%/90%; 80%/100%
- Control Simulations:
 - Normal (i.e., non-agent-generating) simulations for setup above with two initial levels of liquidity (A and B)
 - Largest one, two and three participants have no initial liquidity

Simulation Details

- All simulations were performed using dummy data provided by the BoF
 - 18 participants
 - 778 transactions
 - No credit, only initial liquidity levels
- Two levels of initial liquidity were used for all ABM and control runs
 - Lower and Upper bounds provided by BoF
- Simulation results were probed using the following indicators:
 - Total value settled
 - Number of transactions settled
 - Number of queued transactions
 - Total value of queued transactions
- Quick note: ABM simulations ran on average 80% more slowly, regardless number of created agents

SIMULATION RESULTS

www.ecb.europa.eu

Settled Amounts in Euros: Low Liquidity

Settled Amounts in Euros: High Liquidity

Number of Settled Transactions: Low Liquidity

Number of Settled Transactions: High Liquidity

Total Number of Queued Transactions: Low Liquidity

Total Number of Queued Transactions: High Liquidity

Upper Threshold (% of DBAL)

www.ecb.europa.eu

Settled Amounts in Euros: Low Liquidity

Stressed Control Simulations:

No liquidity for: Largest 1 – 5.57e+09 Largest 2 – 9.89e+08 Largest 3 – 1.66e+08

Settled Amounts in Euros: High Liquidity

Stressed Control Simulations:

No liquidity for: Largest 1 – 6.64e+09 Largest 2 – 2.91e+09 Largest 3 – 2.45e+09

Number of Settled Transactions: Low Liquidity

Stressed Control Simulations:

No liquidity for: Largest 1 - 521 Largest 2 - 293 Largest 3 – 99

Stressed Control Simulations:

No liquidity for: Largest 1 – 771 Largest 2 – 649 Largest 3 – 603

Stressed Control Simulations:

No liquidity for: Largest 1 – 489 Largest 2 – 598 Largest 3 – 717

Total Number of Queued Transactions: High Liquidity

Stressed Control Simulations:

No liquidity for: Largest 1 – 119 Largest 2 – 229 Largest 3 – 303

Total Value of Queued Transactions: Low Liquidity

Stressed Control Simulations:

No liquidity for: Largest 1 – 6.59e+09 Largest 2 – 7.43e+09 Largest 3 – 7.70e+09

Stessed Control Simulations:

No liquidity for: Largest 1 – 4.83e+09 Largest 2 – 5.48e+09 Largest 3 – 6.14e+09

Conclusions

- Cautious behaviour on the part of participants relieves main system's queue and challenges banks' internal queues
- Too much caution on the part of participants, especially larger ones, can spell trouble for the system
- Behaviour matters little when the system is flooded with liquidity

ABM method conclusions

- BoF-PSS2 architechture permits (only some) agent behaviours as user made modules
 - Reactions on/filtering of incoming events
 - Timed regular agent status reviews
 - Tailored ABM reactions initiated by distinct settlement events or logics...
 - …located in closed source parts of BoF-PSS2
- ERA scheme incompatible with JADE (?)
- JADE overhead is non-negligible but tolerable

Future Work

- Make code more efficient to improve performance
- Apply ABM approach to real data
- Build in other realistic behaviours

Extra slides

Value-Weighted Settlement Time: High Liquidity