Predicting Liquidity Flows Between Banks Over Time using a Constrained Linear Dynamic System

Ron Triepels¹² Hennie Daniels¹³

¹CentER Tilburg University

²De Nederlandsche Bank

³Rotterdam School of Management Erasmus University

August 25, 2016

Introduction

Financial intermediation:

- Banks are constantly executing payments
- Facilitate financial market operations
- Provide payment services to individuals and companies

Liquidity problems:

- Caused by disruptions to the financial intermediation
- Occur without (long-term) warnings
- Impact an entire financial system (by a domino effect)

Supervision of banks:

- Performed by supervising authorities (e.g. DNB or ECB)
- Understand liquidity flows between banks
- Anticipate potential liquidity problems

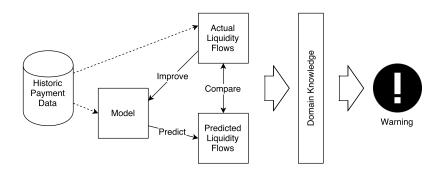
Payment Data

Payment data constitute a valuable source of information to spot signs of liquidity problems.

They include five basic features:

- Sending bank
- Receiving bank
- Amount of liquidity
- Settlement date
- Payment type

Our Approach to Detect Liquidity Problems



Modeling Liquidity Flows

There are many ways in which liquidity flows between banks are being modeled.

Contagion Analysis:

- Use a matrix to define liquidity flows
- Populate matrix from balance sheet data or payment data

Agent-based Models:

- Model banks as agents
- Specify decision rules that mimic payment behavior of banks

Simulation Models:

- Resettle historic payments in a simulator
- BoF-PSS2 simulator

Notation

Let $B = \{b_1, \ldots, b_n\}$ be a set of banks and $T = \langle t_1, \ldots, t_k \rangle$ be an ordered set of time intervals.

Liquidity flows are modeled by:

$$\mathbf{A}^t = \begin{bmatrix} a_{11}^t & \cdots & a_{1n}^t \\ \vdots & \ddots & \vdots \\ a_{n1}^t & \cdots & a_{nn}^t \end{bmatrix}$$

Inflow of b_i :

$$\mathbf{a}_{i\leftarrow}^t = \begin{bmatrix} a_{1i}^t \\ \vdots \\ a_{ni}^t \end{bmatrix}$$

Outflow of b_i :

$$\mathbf{a}_{i o}^t = egin{bmatrix} a_{i1}^t \ dots \ a_{in}^t \end{bmatrix}$$

Conservation of Liquidity

Banks cannot transmit more liquidity than they have available at any moment in time:

$$\mathsf{inflow}(t) = \sum_{l=1}^n a_{li}^t = \sum_{m=1}^n a_{im}^{t+1} = \mathsf{outflow}(t+1)$$

Accumulated savings of banks are calculated by:

$$a_{ii}^{t+1} = a_{ii}^t + \sum_{l \neq i} a_{li}^t - \sum_{m \neq i} a_{im}^{t+1}$$

Banks participate in a closed payment system:

$$\sum_{l=1}^{n}\sum_{m=1}^{n}a_{lm}^{t}=C$$

Regression Model for a Single Bank

We construct a regression model for each bank b_i that independently predicts $\hat{\mathbf{a}}_{i\rightarrow}^{t+1}$:

$$\hat{\mathbf{a}}_{i\rightarrow}^{t+1} = \Theta^i \mathbf{a}_{i\leftarrow}^t + \epsilon_{i\leftarrow}^t$$

where, Θ^i is a n by n matrix of non-negative model parameters, and $\epsilon^t_{i\leftarrow} \sim \mathcal{N}(0,\Sigma)$ is a column vector of n error terms.

Theorem (Conservation of Liquidity)

$$\sum_{m=1}^n \mathbb{E}(\hat{a}_{im}^{t+1}) = \sum_{l=1}^n a_{li}^t \quad \textit{iff} \quad \sum_{j=1}^n \theta_{jl}^i = 1 \qquad \textit{for} \quad l=1,\dots,n$$

Aggregated Dynamic System

The regression models of the banks define a linear dynamic system that maps y^t to y^{t+1} :

$$\mathbb{E}(\hat{\mathbf{y}}^{t+1}) = \mathbf{M} \cdot \mathbf{y}^t$$

where, $\mathbf{y}^t = \text{vec}(\mathbf{A}^t)$ is a n^2 column vector consisting of all columns of \mathbf{A}^t vertically enumerated.

M = PD is a n^2 by n^2 stochastic matrix, where:

- P is a permutation matrix
- $D = diag(\Theta^1, ..., \Theta^n)$ is a block diagonal matrix

Estimation of the Parameters

The elements of the Θ^i matrices in M can be estimated from historic payment data. We do this by minimizing the squared errors of each regression model separately:

$$f(\hat{\Theta}^i) = \sum_{t=1}^{k-1} ||\hat{\mathbf{a}}_{i\rightarrow}^{t+1} - \hat{\Theta}^i \mathbf{a}_{i\leftarrow}^t||^2$$

Taking in account the constraints:

$$\begin{array}{ll} \underset{\hat{\Theta}^{i}}{\text{minimize}} & f(\hat{\Theta}^{i}) \\ \text{subject to} & \hat{\theta}^{i}_{jl} \geq 0 & \text{for} \quad j,l=1,\ldots,n \\ \\ \text{and} & \sum_{i=1}^{n} \hat{\theta}^{i}_{jl} = 1 & \text{for} \quad l=1,\ldots,n \end{array}$$

Moving Average Model (Baseline Model)

We compare the dynamic system with a moving average model.

For each bank b_i , we independently predict $\mathbf{a}_{i\rightarrow}^{t+1}$ as:

$$\hat{\mathbf{a}}_{i\rightarrow}^{t+1} = \frac{1}{w} \sum_{j=0}^{w-1} \mathbf{a}_{i\rightarrow}^{t-j}$$

where, w is the window size.

In this context, a_{ii}^t denotes the liquidity transmitted by b_i at t between subsidiary accounts.

Evaluation Setup

Baseline model:

■ Moving Average Model (*MA*)

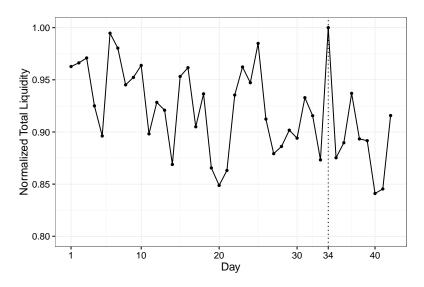
Two dynamic systems:

- Constrained Dynamic System (DS_c)
- Unconstrained Dynamic System (DS_u)

Payment data:

- Inter-bank transactions from TARGET2NL
- 187,697 transactions between 40 banks
- Transmitted between March and April 2015
- Aggregated over 42 business days

Total Liquidity Transmitted Each Day



Evaluation Procedure

Let w be the number of days in the sliding window.

Perform one-step-ahead predictions:

- 1 Estimate parameters from day t w to t
- 2 Predict liquidity flows at day t+1
- 3 Move sliding window forward by one day
- 4 Repeat until end of dataset

Finally, estimate the prediction error of the models.

Error Functions

The prediction error for a single day was measured by:

$$E(t) = \frac{\sum_{l=1}^{n} \sum_{m=1}^{n} |\hat{a}_{lm}^{t} - a_{lm}^{t}|}{\sum_{l=1}^{n} \sum_{m=1}^{n} a_{lm}^{t}}$$

We also calculated the average error of all predicted days when using a particular window size w:

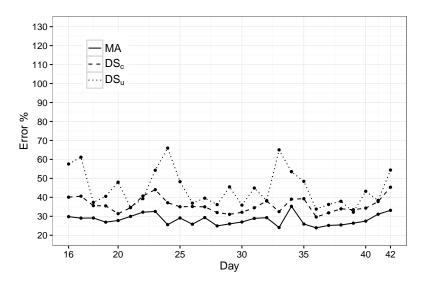
$$AE(w) = \frac{1}{\rho} \sum_{i=1}^{\rho} E(t_i + w)$$

where, p = k - w is the number of predicted days.

Results

	AE(15)	<i>AE</i> (20)	<i>AE</i> (25)
MA	0.2819	0.2817	0.2768
DS_c	0.3591	0.3568	0.3473
DS_u	0.4472	0.4498	0.4342

Daily Error Curves for the 15 Days Sliding Window



Conclusion

Two main insights:

Conservation of liquidity is required for stability

Why?

- Prevent banks from generating unlimited liquidity
- Apply as a form of regularization
- The dynamic system does not fit typical payment data

Possible explanations:

- Conservation of liquidity was not satisfied by the data
- Markov Property (memory-less)
- Payments are driven by unaccountable influences

