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Introduction

Financial intermediation:

m Banks are constantly executing payments

m Facilitate financial market operations

m Provide payment services to individuals and companies
Liquidity problems:

m Caused by disruptions to the financial intermediation

m Occur without (long-term) warnings

m Impact an entire financial system (by a domino effect)
Supervision of banks:

m Performed by supervising authorities (e.g. DNB or ECB)

m Understand liquidity flows between banks

m Anticipate potential liquidity problems
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Payment data constitute a valuable source of information to spot
signs of liquidity problems.

They include five basic features:
m Sending bank
m Receiving bank
= Amount of liquidity
m Settlement date

m Payment type
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Our Approach to Detect Liquidity Problems
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Modeling Liquidity Flows

There are many ways in which liquidity flows between banks are
being modeled.

Contagion Analysis:

m Use a matrix to define liquidity flows

m Populate matrix from balance sheet data or payment data
Agent-based Models:

m Model banks as agents

m Specify decision rules that mimic payment behavior of banks
Simulation Models:

m Resettle historic payments in a simulator

m BoF-PSS2 simulator
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Let B={b1,...,b,} be aset of banks and T =< t;,...,t,x > be
an ordered set of time intervals.

Liquidity flows are modeled by:
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Conservation of Liquidity

Banks cannot transmit more liquidity than they have available at
any moment in time:

n
inflow(t Z aj; = Z attl = outflow(t + 1)
m=1

Accumulated savings of banks are calculated by:

t+1 t+1
aji au + Z a/l Z a;

1#£i m#i

Banks participate in a closed payment system:

IPIERY:

=1 m=1
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Regression Model for a Single Bank

We construct a regression model for each bank b; that

independently predicts at+1.

aitl =0ai_+ei

where, ©' is a n by n matrix of non-negative model parameters,
and !, ~ N(0,X) is a column vector of n error terms.

Theorem (Conservation of Liquidity)

Z At—i-l)_Zah iff Z ,—1 for 1=1,...,n

m=1
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Aggregated Dynamic System

The regression models of the banks define a linear dynamic system
that maps y? to ytt!:

E(§) =M-y*

where, y = vec(A?) is a n? column vector consisting of all columns
of At vertically enumerated.

M = PD is a n? by n? stochastic matrix, where:
m P is a permutation matrix
m D = diag(©!,...,0") is a block diagonal matrix
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Estimation of the Parameters

The elements of the ©' matrices in M can be estimated from
historic payment data. We do this by minimizing the squared errors
of each regression model separately:

=

-1
F(O) =Y llajt! - Oal |
t=1

Taking in account the constraints:

minimize  f(©")

Qi
subject to éj’:,ZO for j,I=1,...,n
n
and Zéj,zl for I=1,...,n
j=1
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Moving Average Model (Baseline Model)

We compare the dynamic system with a moving average model.

For each bank b;, we independently predict a t+1 as:

At+1 Z 3!

where, w is the window size.

In this context, a}; denotes the liquidity transmitted by b; at t
between subsidiary accounts.
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Evaluation Setup

Baseline model:
m Moving Average Model (MA)
Two dynamic systems:
m Constrained Dynamic System (DS.)
m Unconstrained Dynamic System (DS,)
Payment data:
m Inter-bank transactions from TARGET2NL
m 187,697 transactions between 40 banks
m Transmitted between March and April 2015
m Aggregated over 42 business days
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Total Liquidity Transmitted Each Day
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Evaluation Procedure

Let w be the number of days in the sliding window.

Perform one-step-ahead predictions:
Estimate parameters from day t — w to t
Predict liquidity flows at day t + 1
Move sliding window forward by one day
Repeat until end of dataset

Finally, estimate the prediction error of the models.
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Error Functions

The prediction error for a single day was measured by:

n n at t
E(t) - n n t
D=1 2 m=1 A
We also calculated the average error of all predicted days when
using a particular window size w:

p

AE(w) = ; > E(ti+w)

i=1

where, p = k — w is the number of predicted days.
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AE(15) AE(20) AE(25)

MA 0.2819 0.2817 0.2768
DS. 0.3591 0.3568 0.3473
DS, 0.4472 0.4498 0.4342
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Daily Error Curves for the 15 Days Sliding Window
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Conclusion

Two main insights:

Conservation of liquidity is required for stability

Why?
m Prevent banks from generating unlimited liquidity
m Apply as a form of regularization

The dynamic system does not fit typical payment data

Possible explanations:
m Conservation of liquidity was not satisfied by the data
m Markov Property (memory-less)
m Payments are driven by unaccountable influences
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