DANMARKS NATIONALBANK

STRESS TESTING KRONOS, THE DANISH RTGS-SYSTEM, IN A HISTORICAL PERSPECTIVE

Agenda

- 1. Overview of Kronos (3 min.)
- 2. Research questions and results (5 min.)
- **3. Scenarios** (5 min.)
- **4. Detailed results** (10 min.)
- 5. Further research (2 min.)

Overview of Kronos

As of 2018 H1:

- 88 direct participants (1,800 correspondents in 2017).
- Average volume per business day: 5,779 transactions.
- Average value per business day: kr. 406 billion (€ 54 billion).
- Average value of each transaction: kr. 70 million (€ 9 million).
- High variance: The majority of transactions have a value of less than kr. 1 million.

Payment flows between Kronos and ancillary systems

Research questions and results

The primary purpose of our liquidity stress test is to answer "what if" questions:

- a. What if a major participant is unable to send payments for a full day?
- b. What if the unsecured money market freezes?
- c. What if the value of collateral for intraday credit drops substantially?

We assess the resilience of the system, i.e. the effect on participants' liquidity, in each of the above scenarios (+ combined scenarios) for the years 2007-2017.

We find that even in the worst possible scenario, the average share of transactions that would have been settled (in value terms) is greater than **94% in crisis years** and greater than **98% in recent years**. The negative liquidity effect is limited and can be mitigated by means of Kronos' contingency procedures.

Participants fill their current-accounts to their limit

Danmarks Nationalbank uses three monetary policy instruments:

- 1. Current-account deposits at 0.00%
- 2. Certificates of deposit at -0.65%
- 3. Monetary policy loans at 0.05%

In a low interest rate environment, monetary policy counterparties choose to place as much liquidity as possible in their current-account → liquidity in Kronos has been plentiful in recent years.

Benchmark

- The payment flow in Benchmark closely resembles the actual flow in Kronos...
 - For each transaction:
 Value ≤ Balance + Credit → ✓,
 or the transaction is put in a bypass FIFO queue.
- ... albeit with some exceptions:
 - We cannot observe queued transactions in our data, i.e. all payments in Benchmark are settled immediately.
 - Gridlock resolution is omitted.

Time	From	То	Value	Balance	Credit	
07:30	Bank 1	Bank 2	10	0	60	✓
08:17	Bank 2	Bank 1	20	40	0	✓
09:01	Bank 1	Bank 3	40	10	60	✓
09:37	Bank 3	Bank 2	20	40	32	✓
10:02	Bank 2	Bank 3	25	40	0	✓
11:04	Bank 3	Bank 1	50	45	32	✓
12:15	Bank 3	Bank 1	20	-5	32	✓
13:53	Bank 1	Bank 2	50	40	60	✓
14:11	Bank 1	Bank 3	30	-10	60	✓
15:27	Bank 2	Bank 3	30	65	0	√

Scenario *RPK*: Remove participant *K*

- A large participant is unable to submit payments for a full business day.
- The participant can still receive payments → liquidity sink effect.
- All other transactions are submitted as in benchmark > queues emerge, settlement is delayed or ultimately does not take place (unsettled).
- In the right example:
 Bank 1 (the largest participant) is removed → two unsettled payments.

Time	From	То	Value	Balance	Credit	
07:30	Bank 1	Bank 2	10	0	60	
08:17	Bank 2	Bank 1	20	30	0	✓
09:01	Bank 1	Bank 3	40	20	60	
09:37	Bank 3	Bank 2	20	0	32	1
10:02	Bank 2	Bank 3	25	30	0	1
11:04	Bank 3	Bank 1	50	5	32	X
12:15	Bank 3	Bank 1	20	5	32	1
13:53	Bank 1	Bank 2	50	40	60	
14:11	Bank 1	Bank 3	30	40	60	
15:27	Bank 2	Bank 3	30	5	0	X

Scenario MML: Remove money market loans

- We use the Furfine (1999) algorithm to identify money market loans:
 - \circ Payment of x on day t,
 - o Repayment of (1 + r)x on day t + 1.
- These transactions are removed to simulate a money market freeze.
- In the right example:
 Two MML transactions are removed
 → one unsettled payment.

Time	From	То	Value	Balance	Credit	
07:30	Bank 1	Bank 2	10	0	60	
08:17	Bank 2	Bank 1	20	30	0	1
09:01	Bank 1	Bank 3	40	20	60	1
09:37	Bank 3	Bank 2	20	40	32	1
10:02	Bank 2	Bank 3	25	30	0	
11:04	Bank 3	Bank 1	50	20	32	/
12:15	Bank 3	Bank 1	20	-30	32	X
13:53	Bank 1	Bank 2	50	30	60	1
14:11	Bank 1	Bank 3	30	-20	60	1
15:27	Bank 2	Bank 3	30	80	0	√

Scenario C25: Collateral value drops by 25%

- An extreme shock to the value of collateral leads to a decrease in participants' intraday credit lines.
- In the right example:
 A 25% drop in collateral value
 → two unsettled payments.

Time	From	То	Value	Balance	Credit	
07:30	Bank 1	Bank 2	10	0	45	1
08:17	Bank 2	Bank 1	20	40	0	1
09:01	Bank 1	Bank 3	40	10	45	1
09:37	Bank 3	Bank 2	20	40	24	1
10:02	Bank 2	Bank 3	25	40	0	1
11:04	Bank 3	Bank 1	50	45	24	1
12:15	Bank 3	Bank 1	20	-5	24	Х
13:53	Bank 1	Bank 2	50	20	45	1
14:11	Bank 1	Bank 3	30	-30	45	X
15:27	Bank 2	Bank 3	30	65	0	√

-25%

Sources of error

We overestimate the negative effect, because

- The participants are passive → No reaction to e.g. the lack of incoming payments from another participant (÷ ABM, ÷ stop sending rule).
- The participants cannot pledge additional collateral intraday through auto-col. or by any other means.
- Payments cannot be submitted by means of contingency procedures.

We underestimate the negative effect, because

- Ancillary systems are static and are modelled as passive participants -> Mutual dependencies and spillover effects are unaccounted for.
- The duration of all scenarios is limited to one business day (÷ interday balance transfers and other effects).

Indicators

I. Direct effect:

unsubmitted payments in the scenario submitted payments in benchmark

II. Indirect effect:

unsettled payments in scenario submitted payments in scenario

III. Multiplier effect:

unsettled payments in scenario unsubmitted payments in scenario

- IV. Liquidity usage indicator:

 "To what extent do participants use their available liquidity (balance on current-account + intraday-credit line) to settle payments?"
- V. Settlement delay indicator: "The rate of payments in queue, a time- and value-weighted average:
 Earlier submission; higher value
 → higher weight".

(Details in Appendix)

Simulated scenarios and periods

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
BEN	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP1	-	-	-	-	✓	✓	\checkmark	\checkmark	1	✓	✓	1	✓	✓	\checkmark
RP2	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP3	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP4	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP5	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MML	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	1
C25	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	1
RP1 & MML	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	1
RP2 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP3 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP4 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP5 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	1
RP1, MML & C25	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP2, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP3, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP4, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP5, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	\checkmark

Direct effect

Indirect effect

Multiplier effect

Liquidity usage (consumed liquidity)

Settlement delay

Distribution of the indirect effect (RP1)

Value in queue / Cumulative transaction value on a particularly critical day in 2017 (RP1)

- On a critical day: Significant value in queue over the course of the day
 → Further analysis needed.
- However, on these critical days:
 - The number of unsubmitted payments that lead to queues is limited.
 - A maximum of 5 participants have payments in queue.
- → Kronos' contingency procedures!

Further research

- A closer look at critical dates, times, and participants [Fall 2018].
- Adapting to the data structure of Kronos2 (K2) [Spring 2019].
- Inter-day considerations [2019].
- The effect of gridlock resolution or other liquidity savings mechanism's in Kronos2 [2019].
- Other suggestions?

That's all folks!

Thank you.

Appendix A: Indicators I & II, direct & indirect effect

Direct effect:

 unsubmitted payments in the scenario
 submitted payments in benchmark

$$=\frac{35}{295}=11.9\%$$

Indirect effect:

unsettled payments in scenario submitted payments in scenario

$$=\frac{20}{260}=7.7\%$$

Time	From	То	Subm. bench.			Un- settled	
07:30	Bank 1	Bank 2	10	10	10		
08:17	Bank 2	Bank 1	20	20			√
09:01	Bank 1	Bank 3	40	40			√
09:37	Bank 3	Bank 2	20	20			√
10:02	Bank 2	Bank 3	25	25	25		
11:04	Bank 3	Bank 1	50	50			√
12:15	Bank 3	Bank 1	20	20		20	X
13:53	Bank 1	Bank 2	50	50			√
14:11	Bank 1	Bank 3	30	30			√
15:27	Bank 2	Bank 3	30	30			√
			295	260	35	20	

Appendix A: Indicator III, multiplier effect

• Multiplier effect: $unsettled\ payments\ in\ scenario$ $unsubmitted\ payments\ in\ scenario$ $=\frac{20}{35}=57.1\%$

Time	From	То	Subm. bench.		Un- subm.	Un- settled	
07.70	Dank 1	Dank 2					
07.50	Bank 1	Bank Z	10	10	10		
08:17	Bank 2	Bank 1	20	20			/
09:01	Bank 1	Bank 3	40	40			√
09:37	Bank 3	Bank 2	20	20			√
10:02	Bank 2	Bank 3	25	25	25		
11:04	Bank 3	Bank 1	50	50			1
12:15	Bank 3	Bank 1	20	20		20	X
13:53	Bank 1	Bank 2	50	50			/
14:11	Bank 1	Bank 3	30	30			√
15:27	Bank 2	Bank 3	30	30			1
			295	260	35	20	

Appendix A: Indicator IV, liquidity usage

 Liquidity usage indicator: "To what extent do participants use their available liquidity (balance on current-account + intraday-credit line) to settle payments?"

$$liqusagc = \frac{\sum_{i=1}^{N} -L_i}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} a_{i,j}} \in [0;1],$$

where L_i is the minimum of the cumulative sum of payments sent and received over the business day for participant i, and

 $a_{i,j}$ is the value of payment j of participant i.

- liqusagc = 0: Submitted payments are funded exclusively by received payments (only possible on participant level; liqusagc > 0 on system level).
- liqusagc = 1: Submitted payments are funded exclusively by available liquidity.

Appendix A: Indicator V, settlement delay

Settlement delay indicator: "The rate of payments in queue, a time- and value-weighted average: Earlier submission; higher value \rightarrow higher weight".

setdelay =
$$\frac{\sum_{i=1}^{N} \sum_{j=1}^{M_i} (t_{i,j} - s_{i,j}) a_{i,j}}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} (T - s_{i,j}) a_{i,j}},$$

where $a_{i,j}$ is the value of payment j of participant i, $s_{i,j}$ is the submission time of payment j of participant i, $t_{i,j}$ is the settlement time of payment j of participant i, and T is the closing time of Kronos (15:30).

- setdelay = 0: No payments are queued.
- setdelay = 1: All payments are queued from submission time to closing time.

Appendix A: Indicators VI & VII, liquidity bounds

Upper bound of liquidity:

$$\max(L, 0) = 50$$
,

where *L* is the minimum of the cumulative sum of payments sent and received over the business day: "Sufficient liquidity for all payments to be settled in their original order".

Lower bound of liquidity:
 max(value received - value sent, 0) = 0
 "Sufficient liquidity for all payments to be settled through multilateral netting".

Appendix B: Additional results across the RP-scenarios

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
BEN	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP1	-	-	-	-	1	✓	✓	✓	✓	1	✓	✓	✓	✓	✓
RP2	-	-	-	-	1	✓	1	✓	✓	1	✓	✓	✓	✓	✓
RP3	-	-	-	-	✓	✓	1	✓	✓	1	✓	✓	1	✓	✓
RP4	-	-	-	-	1	✓	✓	✓	✓	1	✓	✓	✓	✓	✓
RP5	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MML	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
C25	-	-	-	-	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	✓
RP1 & MML	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP2 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP3 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP4 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP5 & MML	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP1, MML & C25	-	-	-	-	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
RP2, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP3, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP4, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓
RP5, MML & C25	-	-	-	-	-	-	-	-	-	✓	✓	✓	✓	✓	✓

Appendix B: Direct effect

Appendix B: Indirect effect

Appendix B: Multiplier effect

Appendix B: Liquidity usage (consumed liquidity)

Appendix B: Settlement delay

Appendix B: Liquidity bounds, BEN & RP1

Appendix B: Liquidity bounds, BEN & RP5

