Don't be stressed overseer: we have stress indicators Work in progress

Ron Berndsen, Ronald Heijmans and Richard Heuver

Payment and Settlement System Simulator Seminar

Helsinki Finland

25-26 August 2016

The Sec. 74

Outline

Introduction

- 2 Research question
- 3 How to develop stress indicators?
- 4 Some examples of indicators

-

Motivation of analysis

- FMI transaction level data (often) available or can become available.
 - At least to central banks.
- Currently, little quantitative information available for overseers/operators.
- Data provides crucial information to overseers/operators.

A

 How to derive stress indicators from the Principle for Financial Market Infrastructures by using FMI transaction level data?

In other words:

Principles for Financial Market Infrastructures (24)

Legend: completely new raising the bar basically unchanged

Berndsen, Heijmans, Heuver (DNB)

э

Principles for Financial Market Infrastructures (24)

PFMI nr	Description	relevant for quanti- tative oversight
1 2 3 4	Legal basis Governance Framework for the comprehensive management of risks Credit risk	- - *
5 6 7 8	Collateral Margin Liquidity risk Settlement finality	* *
9 10 11 12	Money settlements Physical deliveries CSD's securities safekeeping Settlement of two linked obligations	* * -
13 14 15 16	Participants-default rules and procedures Segregation and portability General business risk Custody and investment risks	* - *
17 18 19 20	Operational risk Access and participation requirements Tiered participation arrangements FMI links	* - *
21 22 23 24	Efficiency and effectiveness Communication procedures and standards Disclosure of rules - key procedures - and market data Disclosure of market data by trade repositories	- - - -

• We focus in this paper on 1) operational, 2) liquidity and 3) FMI Links.

Berndsen, Heijmans, Heuver (DNB)

Data

- As a proof of concept we use TARGET2 transaction level data.
- Data ranging from June 2008 until May 2016.

Basic concept

- Stress indicators should be easy to understand by a none-scientist (e.g. overseer, operator or manager)
- We propose a traffic light approach:
 - green: no stress.
 - yellow: increased stress.
 - red: high stress.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Be aware of this creature:

イロト イヨト イヨト イヨト

Is not equal to a:

What is true?

A Kiwi:

- can run faster than Usain Bolt.
- 2 can fly.
- Iays the largest eggs of all birds relative to its body size.
- has the shortest beak of all birds.
- has good vision.

э

How to proceed?

- Develop time series from which indicators can be derived.
- Potentially combine several time series to make one indicator.
- Check for seasonality, other repetitive cycles and trends.
- Check with end users (e.g. an overseer) for usability.

Watch out for the Kiwi. Confusion of tongues not unlikely!

A B F A B F

Which quantitative measure(s) to use?

- Legislation/supervision quantitative measure.
- Quantitative (external) guideline.
- Based on its own history (absolute/relative change).

The third measure can be a bit tricky (think of the Kiwi).

Service level agreement (legal)

- Provider of TARGET2 guarantees a certain nr of transactions X_{max} per day and hour.
 - A red light should e.g. be given when:

$$X_{settled} >= X_{max}$$
 (1)

And a yellow light when:

$$X_{settled} >= X_{max} - threshold$$
 (2)

A B F A B F

2

≣ ► < ≣

 The overseer will initially only see the traffic light for a given month (or the last couple of months):

	June 2009	December 2012	October 2015
Above 100%	3	0	0
Above 100% - σ	4	2	0
Traffic light	Red	Yellow	Green

Throughput guidelines (external guideline)

• A certain percentage of transactions (value) has to be settle before a certain time (UK LVPS CHAPS, see e.g. Ball et al. (2011)).

Transferred value before 14.30 hours <=75% (3) Transferred value before 12.00 hours <=50% (4)

< ロ > < 回 > < 回 > < 回 > < 回</p>

Under investigation

- Network indicators:
 - basic properties: such as degree, connectivity
 - advanced properties: such as Hub/authority centrality (see e.g. thesis Carlos Leon).
 - combined properties: combine (similar) network properties to one overall indicator.
 - for different payment types (interbank, customer, etc).
- Links to other payment systems (FMI-links or interdependencies).
- Look for cyclical patterns you may have to correct for (based on Van Ark, Heijmans and Heuver in progress).

What else? What are your ideas?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminary conclusions

- First results look very promising, but we are not there yet.
- Interpretation is a challenge when there is no clear/external bench mark for stress.
- General warning: Don't be KIWI-ed!

• Data handling and processing speed essential in development of indicators: well functioning data warehouse is a prerequisite.

- A TE N - A TE N

Oversight Stress Indicators

Data warehouse implementation of TARGET2 payment system data using a dimensional model approach

Data warehouse definition

A data warehouse is a copy of transaction data specifically structured for query and analysis

(Ralph Kimball)

Different purpose...

Transaction Processing	Analysis
 One transaction at a time 	 A large data-range at a time
e.g. - storage of one settlement	e.g. - daily number of settlements within the whole month
 Limiting history in order to keep high performance 	 History is important
e.g. - max of 5 day online, older days in archive	e.g. - compare current years to pre-crisis situation in 2007

Current TARGET2 data

- Is stored as an archive
- Contains detailed data on each transaction
- Has many character key fields (account, payment type, date)

- Huge storage size
- Not suited for analytics
- Desire to integrate:
 - Furfine output (money market transactions)
 - BIC condolidation
 - MFI integration

Purpose of the TARGET2 data warehouse

• Researchers

that aim to perform analysis spanning multiple years and yet desire granularity

- Some examples:
 - Stress indicators
 - Network analysis
 - Multiple year simulations using BoF Simulator

You win some - you lose some...

- Win:
 - Performance
 - Flexibility
 - Integration of other data sources

- Lose:
 - some columns (e.g. priority)
 - some granularity (e.g. quarter of the hour)

What is a dimensional approach

- First define the core facts
 - Value of payments
 - Number of payments
 - Account balance, Credit Limit
- Then define the key dimensions
 - Sending Participant, receiving Participant
 - Time, day, month
 - Payment Type

Dimensional Model - Star Schema

How to achieve DWH performance

- Fact tables are "lean and mean", containing
 - key facts
 - keys pointers to dimensions (integers)

- Dimension tables
 - are accessible through key pointers
 - contain character fields / details

Stylized example: - Archive of payment transactions

Day ch 10	BIC db ch 11	BIC cr ch 11	Transaction Type ch 18	Amount nd 8
2016-01-01	ABNANL2AXXX	RABONL2UXXX	Bank payment	100.000,25
2016-01-01	INGBNL2AXXX	GILLNL2AXXX	Client payment	12.807.342,31
2016-01-01	ABNANL2UXXX	FLORNL2ACUR	CB-deposit	1.250,17
2016-01-02	KABANL2AXXX	ABNANL2UXXX	Client payment	2.187.024,37
2016-01-02	ABNANL2UXXX	INNDNL2UDDE	Settlement Equens	200.000,00
2016-01-02	RABONL2UXXX	ABNANL2UXXX	Bank payment	507,17
2016-01-02	INGBNL2AXXX	RABONL2UXXX	Bank payment	204.057.018,33

Line width is: 10+11+11+18+8 = 58 bytes. Table is large and contains redundance. Table contains many character columns --> not suited for a computer.

Stylized example - Data Warehouse implementation

Fact table

Day ni 4	Bank db ni 2	Bank cr ni 2	Ttype.nr ni 1	Amount ni 6
20160101	1	2	1	100.000
20160101	7	3	2	12.807.342
20160101	1	5	3	1.250
20160102	4	1	2	2.187.024
20160102	1	6	4	200.000
20160102	2	1	1	507
20160102	7	2	1	204.057.018

Dimension table "Bank"

↓ ↓ ↓	
Banknr ni 2	Bank name ch 11
1	ABNANL2AXXX
2	RABONL2UXXX
3	GILLNL2AXXX
4	KABANL2AXXX
5	FLORNL2ACUR
6	INNDNL2UDDE
7	INGBNL2AXXX

Line Width is: 4+2+2+1+6 = 15 bytes. This is a 75% decrease. Fact table contains numbers only. --> much better suited for a computer.

First implementation in TARGET2

First impression on performance

Berndsen, Heijmans, Heuver (DNB)

Future work

- Indexes
- Final tests
- Documentation
 - Paper
 - Technical documentation
 - User manual