

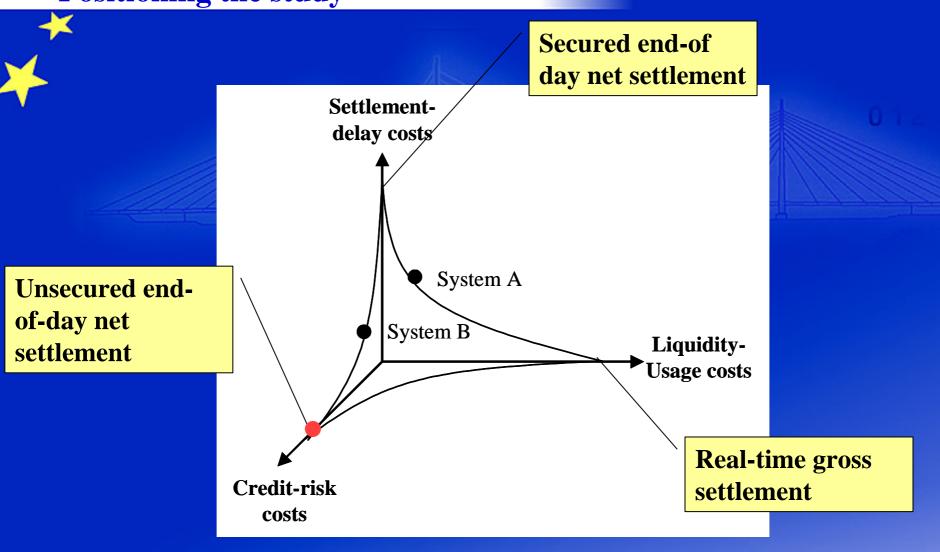
EUROPEAN CENTRAL BANK

Systemic risk in a netting system revisited

Kimmo Soramäki European Central Bank Directorate General Payment Systems

Morten L. Bech Federal Reserve Bank of New York Research and Market Analysis Group

EUROPEAN CENTRAL BANK


I. Introduction
II. Methodology
III. Computing
IV. Results

Systemic risk

- i.e. the impact a failure by a participant in the system may have on other system participants.
- ... may become contagious and may eventually impede the effective functioning of the payment system or the financial system at large.
- Our questions:
 - How much systemic risk can there be?
 - Is the largest bank the worst?
 - How about multiple failures?

We base our results on simulations where one or more banks are set into insolvency at the end of the day and the impact of the failure is propagated through the system.

Positioning the study

from Leinonen-Soramäki 1999/2003

Methodology

Initial shock:

A sudden and unexpected failure of a participant. The participant is removed from settlement all the payments to and from the participant are unwound. Only participants with a net debit position are considered.

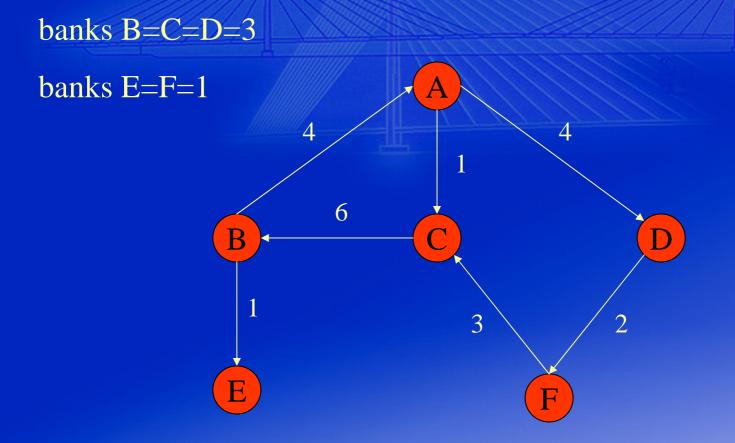
Propagation:

- 1. the remaining participants' multilateral net positions are recalculated
- 2. all banks with a deterioration in the multilateral position exceeding a threshold value <u>and</u> a new net debit position are removed from settlement
 - a) If banks were removed then all payments to and from these banks are unwound and the process starts over from 1
 - b) If no banks were removed, the contagion process ends

Parameters

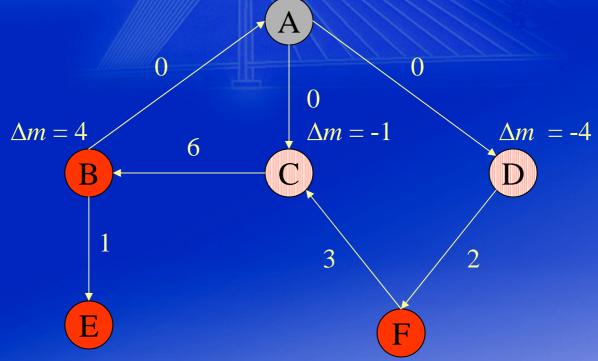
Previous research:

Author	# of failures	selection criteria	failure threshold		
Humphrey (1986)	1	single largest net creditor	capital		
Angelini et al (1996)	1	all	capital		
Bech et al (2002)	1	single largest net debtor	25, .5, .75, 1 * capital		

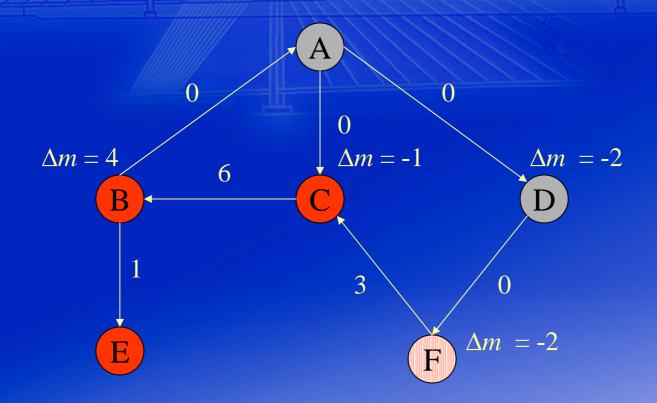

We simulate

 for single failure scenario all banks in a net debit position
 for the simultaneous failure of 2 and 4 banks all combinations of 10 largest banks with a net debit position

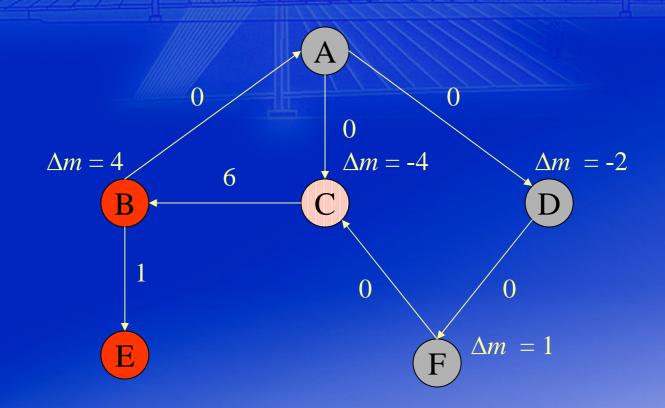
with 6 failure thresholds (.05,.01, .25, .5, .75, 1) relative to the Tier 1 capital of the banks.


Methodology: Example - slide 1/6

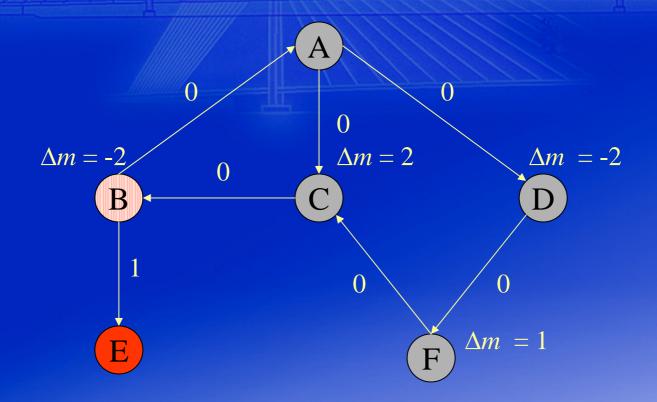
The system consists of six participants that have exchanged payments during the day. The threshold values for triggering failures are in the example the following:


Methodology: Example - slide 2/6

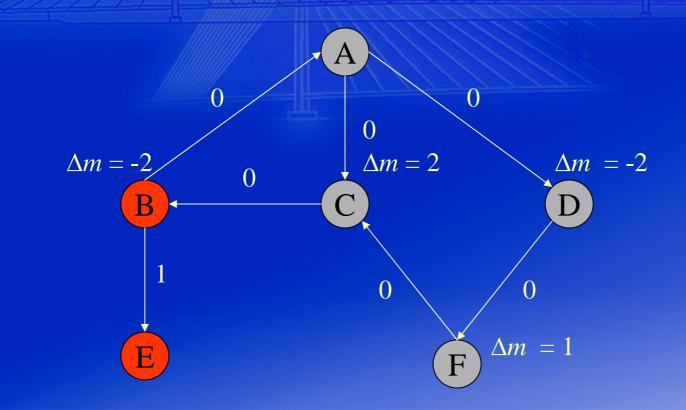
We let bank A fail and calculate the changes in multilateral net positions when payments from and to bank A are removed from settlement (unwound). Bank A is the *primary failure*. As this is the first step in the process of contagion, we call this round *generation 1*.


Methodology: Example - slide 3/6

As a consequence, Bank D is removed from the system and the multilateral net positions are recalculated. The recalculation of the positions moves the contagion process to the second generation. Bank D is the only *direct secondary failure*..


Methodology: Example - slide 4/6

Bank F fails, as its loss is higher than its threshold value for failure (2>1). Bank F is the first *indirect secondary failure* and the only failure in the third generation.


Methodology: Example - slide 5/6

The failure propagates in the system. Bank C is removed and the positions recalculated for the fourth time. The combined deterioration caused by the failure of banks A and C on bank B's positions is two - less than its capital.

Methodology: Example - slide 6/6

The contagion ends at generation five as no new failures take place.

Computing - program

... out of n largest net debit positions:

Scenario

Loss sharing

Collateral:

10

n/a

D > a*C and MLNP<0

Single bank Two banks Three banks Four banks Scenarios 1 to 2 Scenarios 1 to 3 Scenarios 1 to 4

X

Set of alphas: 0.05;0.1;0.25;0.5,0.75;1 # of failing banks Date Failing bank(s) 1.26.28 and 66 Generation Delete results Show results Pause Stop Start. $D > a^{*}C$ equal $D > a^{*}C$ and MLNP<0 euro1 $D > a^{*}C$ and -MLNP>C n/a All of the above Simulating payment and settlement systems, Helsinki 26 August 2004

-

τ.

Simulation ID

Scenario

Alpha I

1

2

Computing - Input and output

INPUT - bilateral positions

*

			Day	Se	ender	Receiver	Balar	nce	ValueS	ent					
4				1	285	807	-12	7580.7	1:	95057					
				1	436	815	-	4285.3	1841	96.94	_				
				1	214	807		-3000		3000		INPUT - participant dat			ta u
				1	218	807	-648	714.21	649	9786.9					
		1 41					ID		Legal name of participant				Eq	uity	Assets
	1 220					1100002	28 STAT	TE STREE	ET B&1				4,657,252,000	82198318000	
					536 FHLB BOSTON						11980517				
				1	29		1100123	34 MELLON TR OF NEW ENGLAND NA				NA		6287843000	
				1	230		1100127	76 ONE	UNITED I	BK				372,985,000 29,892,000	442855000
				1	245		1100143	38 INVE	STORS E	3&TC				508,415,000	10099212000
				1	28		1100234	43 BOS		/ATE E	3&TC		117,056,000		1676877000
				1	257		110025	50 WAII	NWRIGHT	B&TC	;			50,980,000	642584000
				1	258		1100262	28 CAP	ITAL CRO	SSING) BK			130,987,000	959120000
				1	27			77 ASIA	AN AMER	B&TC				17,671,000	120189000
		1 297 805			35000 0										
	OUTPUT 19			814 -177684.18 17768											
				-	819	807		-650		1400					
	Initia	IFail		-	ilDFailed			Numbe	erFailed	De	ItaFailed	NetDebitPos		CapitalFailed	ValueUnsettled
		1	2	0.05 62			29571.62		0		0		0	-	0
		1	2	0.05 62			36110.32		10	-1	79130494.91	-72757			761628819.24
		1	2	0.05 63			09936.83		0		0		0	0	U
		1	2	0.05 63			52912.18		0		0			U	U
		1	2	0.05 63			083576.6		0		0		U	U	0
		1	2	0.05 63			55014.61		0	500	0	07.40.4507	U		U
		1	2	0.05 63			69538.18		227		70198318.79	-37464507			1.1030349075E+12
		1	2	0.05 64			66715.27		19		65970848.61	-6197252			28414161523.77
		1	2	0.05 64			89925.61		28		49966023.89	-6391310		10552966090	29538718650.98
		1	2	0.05 64			36137.74		20	-/	72797760.21	-6295746		9482110090	28999953227.52
		1	2	0.05 64	9	-58	42597.11		0		0		0	UU	U

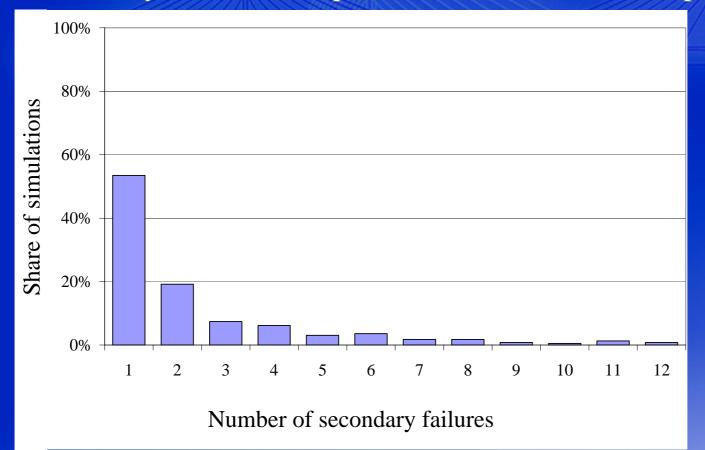
Data

We base our results on the simulation of 21 days of US Fedwire data from January 2003.

		Per b	ank					
	Turnover	Bilateral	Multilateral	Bilateral	Multilateral	Capital	Daily	
		Net Position	Net Position	Netting Effect	Netting Effect		Links	
		<u>\$billions</u>				\$billions		
Mean	1,286.1	305.9	56.0	76%	96%	0.6	63	
Median	1,259.9	290.5	56.4	76%	96%	0.1	32	
Minimum	1,188.9	274.6	41.0	75%	94%	0.001	1	
Maximum	1,509.8	366.5	81.3	78%	97%	56.2	893	
St. Deviation	n 91.7	30.1	11.8	1%	1%	3.2	102	
Source: Own Calculations								

Source: Own Calculations

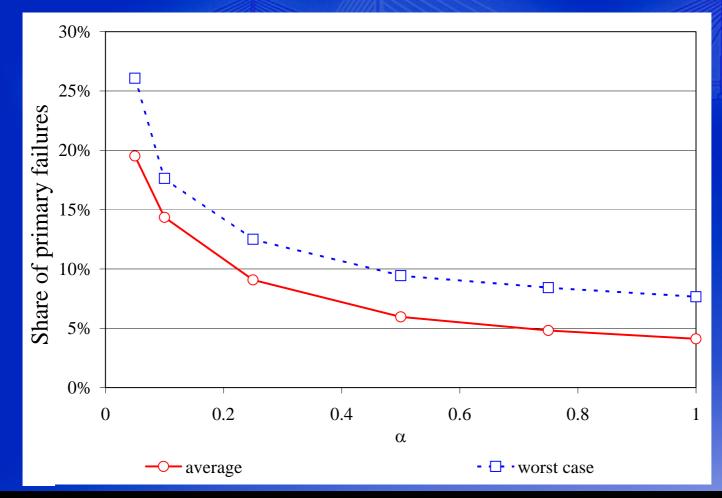
Magnitude of systemic risk


Previous research:

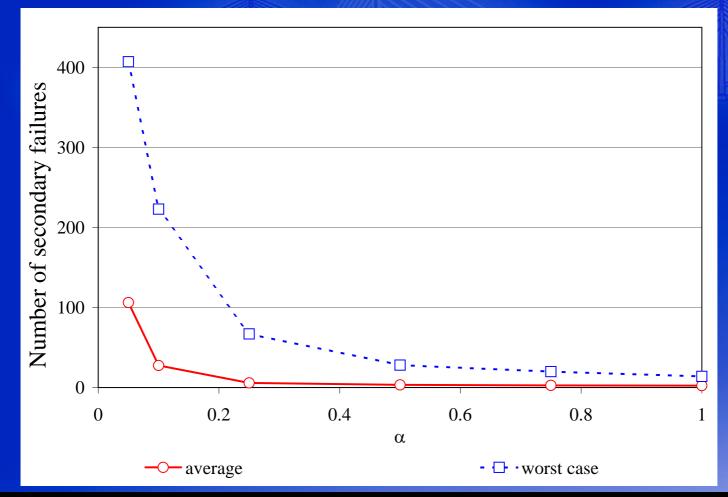
Author	Period	Data	Systemic risk
Humphrey (1986)	2 days	US (CHIPS)	significant
Angelini et al. (1996)	21 days	Italy (BI-REL)	relatively low
Kuussaari (1996)		Finland	relatively low
Bech et al (2002)	2 months	Denmark (PBS)	low
Northcott (2002)	231 days	Canada (ACSS)	limited, if any

The samples are getting bigger and the effects smaller.

Systemic risk generally low


The vast majority of bank failures did not cause any systemic consequences in the simulations (only 15 - 30 banks per day). Also the systemic consequences were modest when present:

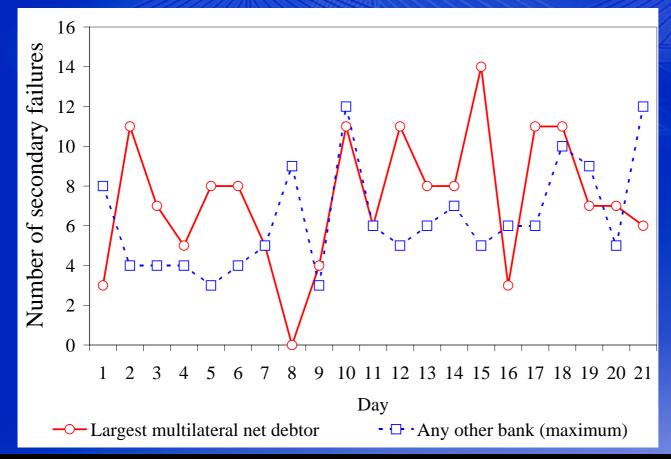
Simulating payment and settlement systems, Helsinki 26 August 2004


\dots but chances increase as α gets lower

Relationship between the failure threshold and the share of primary failures causing systemic consequences

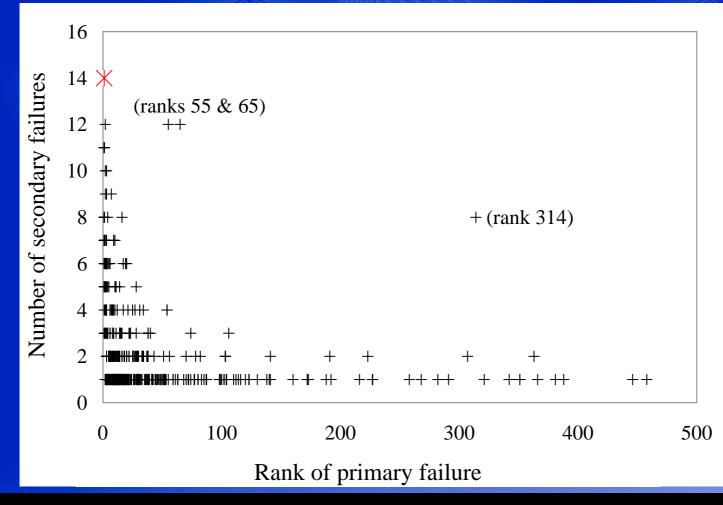
... and so does the impact

Relationship between the failure threshold and the number of secondary failures caused by a primary failure

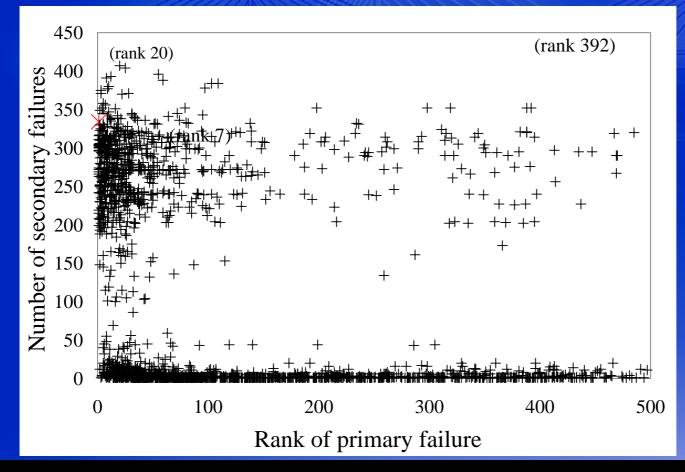


Not always the usual suspect

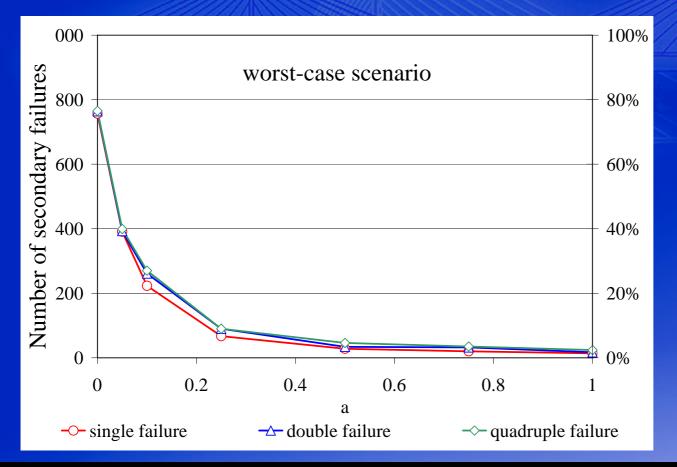
Comparing the the number of secondary failures caused


• by the single largest net debtor, and

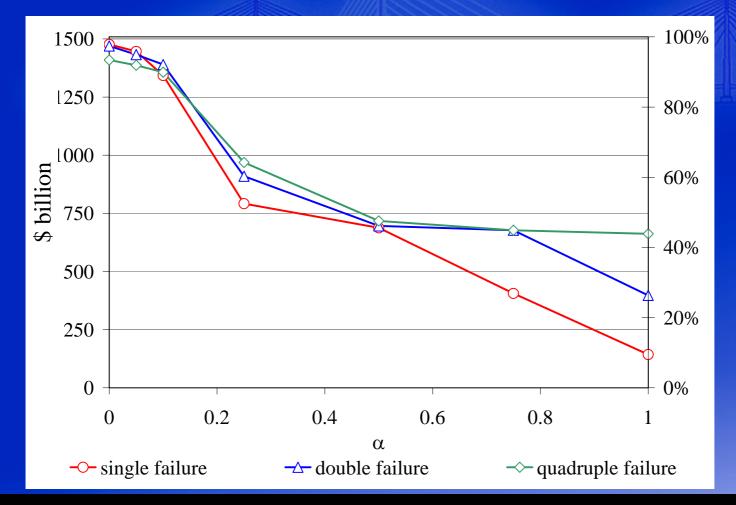
• any other bank with a net debit position


Virtually any bank? No.

For α =1. Banks with lower multilateral net debit positions are less likely to produce higher systemic consequences


Virtually any bank? Yes.

For α =0.05. Virtually the failure of any bank, irrespective of its multilateral net debit position, could cause severe systemic consequences.


How about multiple primary failures?

The differences are surprisingly small. Seems to be a less decisive factor for systemic consequences than the failure threshold used.

Multiple primary failures 2

The value of unsettled payments, does, however increase substantially.

Conclusions

Results:

. . .

- We find the intrinsic systemic risk to be low
- Careful not to study only single largest net debtors, especially for liquidity effects
- Multiple primary failures surprisingly benign

Interesting further directions:

- what has happened since Humphrey (1986)?
- what are the drivers of systemic risk? (network topology, statistical properties)
- what about more secured forms of settlement?

EUROPEAN CENTRAL BANK