Guy WOELFEL

Payment Systems Department Banque de France

Payment and Settlement Simulation Seminar (Helsinki, 26 August 2004)

- I. Presentation of PNS and methodology
- II. Functioning of PNS without defaulter
- III. Impact of a default when no selective modification of limits by the other participants
- IV. Impact of a default when selective modification of limits by the other participants
- V. Conclusion

- I. Presentation of PNS and methodology
 - Principal caracteristics of the design of PNS
 - Methodology used

I. Presentation of PNS and methodology

- Main caracteristics of the design of PNS
 - Privately owned large value payment system
 - Payments are processed one by one and settled continuously with immediate finality in central bank money
 - Real time link between TBF (RTGS connected to TARGET) and PNS to transfer liquidity
 - one initial transfer from TBF to PNS at the beginning of the day
 - additional transfers to and from TBF throughout the day
 - Bilateral limits set by the issuer

I. Presentation of PNS and methodology

- Main caracteristics of the design of PNS
 - Payments not settled immediatedly are queued centrally
 - Settlement mechanism for queued payments :
 - Queue scanning : when a payment is settled
 - Bilateral offsetting: when a payment is queued
 - Multilateral offsetting : periodically
 - Bypass FIFO mechanism for payments under 1 M €

I. Presentation of PNS and methodology

- Main caracteristics of the design of PNS
- Methodology used
 - Over 1,200 simulations
 - 20 days of actual transaction data from January 2004
 - Technical default :
 - . No payments issued ...
 - but payments received

I. Presentation of PNS and methodology

- Main caracteristics of the design of PNS
- Methodology used
 - Indicators :
 - . Rejected payments
 - . Delay indicator :

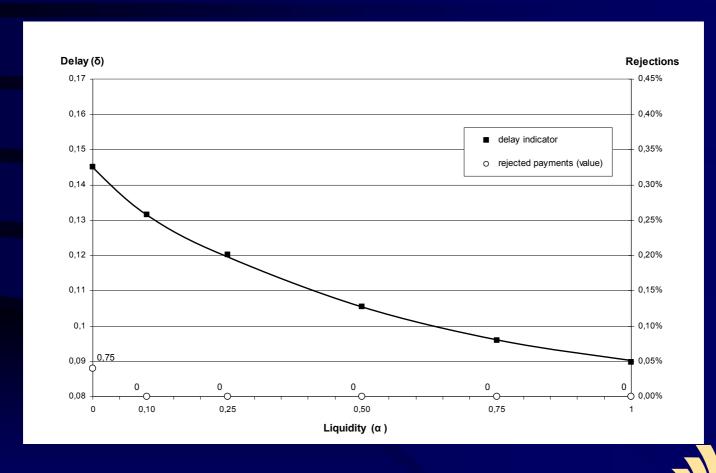
$$\delta = \frac{\sum_{i} (t_{settle,i} - t_{issue,i}) v_{i}}{\sum_{i} (t_{end} - t_{issue,i}) v_{i}}$$

. Percentage of payments settled immediately, average time spent in the queue, ...

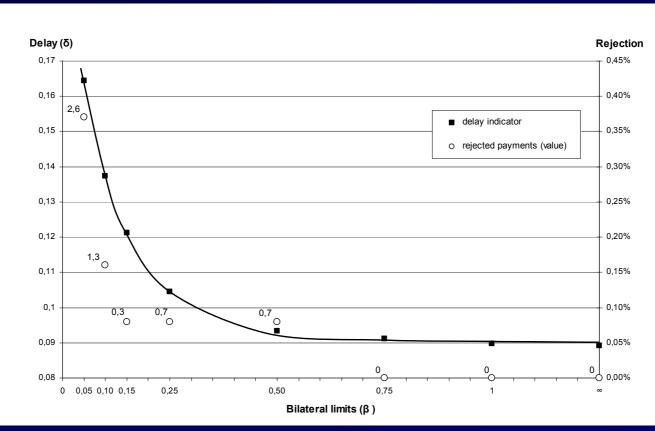
II. Functioning of PNS without defaulter

- Model
- Principal results

II. Functioning of PNS without defaulter


Model

- Lower Bound of Liquidity (LBL): minimum level of liquidity necessary to settle all payments
- Lower Bound of Bilateral Limits (LBBL): minimum value of bilateral limits necessary to settle all payments
- Simulations were realised with different levels of liquidity (LL) and bilateral limits (BLL):


```
 LL = LBL + \alpha \, (AL - LBL) \quad \alpha \in [\, 0 \, , 1 \, ]   BLL = LBBL + \beta \, (ABL - LBBL) \quad \beta \in [\, 0 \, , \infty \, [\,
```

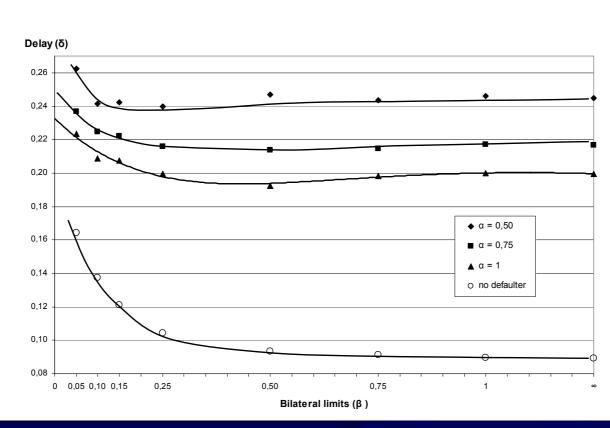

$$\delta = f(\alpha)$$

$$\delta = f(\beta)$$

II. Functioning of PNS without defaulter

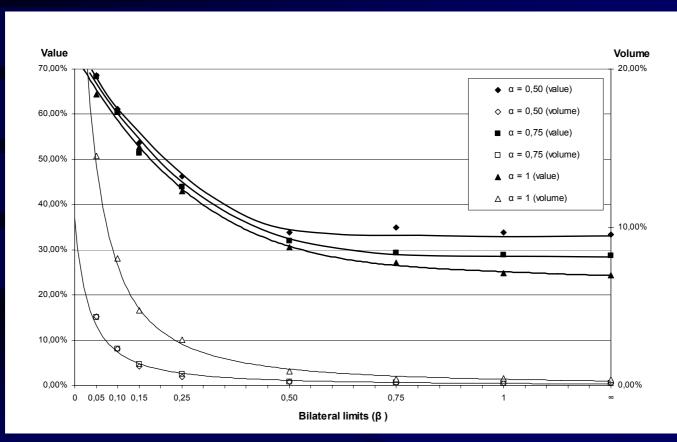
- Model
- Principal results
 - Ability of PNS to function smoothly with low levels of α and β
 - PNS functions almost like a RTGS
 - Few rejected payments ☒ capacity of offsetting mechanisms to solve gridlocks

- III. Impact of a default when no selective modification of limits by the other participants
 - Model
 - Principal results

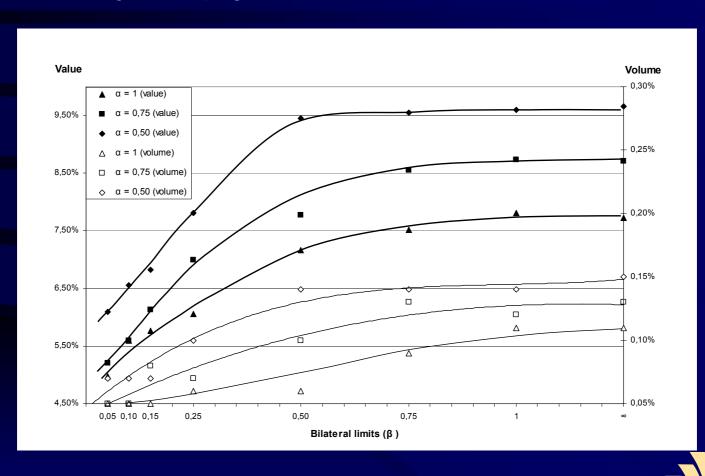


III. Impact of a default when no selective modification of limits by the other participants

- Model
 - Defaulter = largest issuer (in value)
 - Technical default = from the beginning of the day
 - $-\alpha \in [0;1]$ and $\beta \in [0.05;\infty[$
 - Indicators :
 - . Delay
 - . Rejected payments between non defaulters
 - . Rejected payments to the defaulter



$$\delta = f(\alpha, \beta)$$



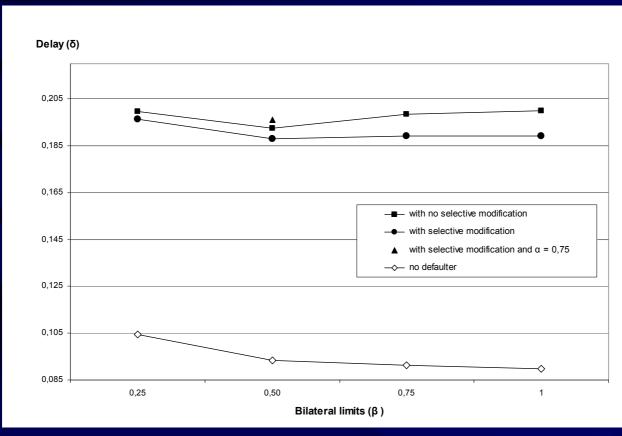
Rejected payments to the defaulter

Rejected payments between non defaulters

III. Impact of a default when no selective modification of limits by the other participants

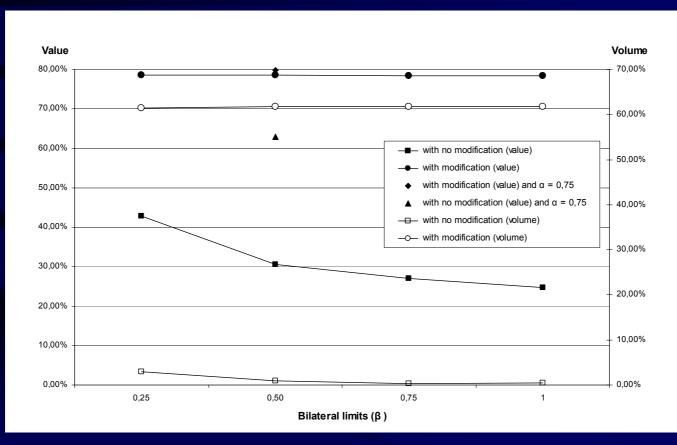
- Model
- Principal results
 - The impact of a default is considerable
 - Rejection of up to 10 % (value) of payments between n. defaulters
 - Delay indicator more than doubles
 - Indicators very significantly with β through a combination of two effects
 - $\beta \downarrow$ => queued payments \uparrow => $\delta \uparrow$, rejected payments \uparrow
 - $\beta \downarrow$ => queued payments to defaulter \uparrow => liquidity available for non defaulters \uparrow => $\delta \downarrow$, rejected payments \downarrow

- IV. Impact of a default when selective modification of limits by the other participants
 - Model
 - Principal results

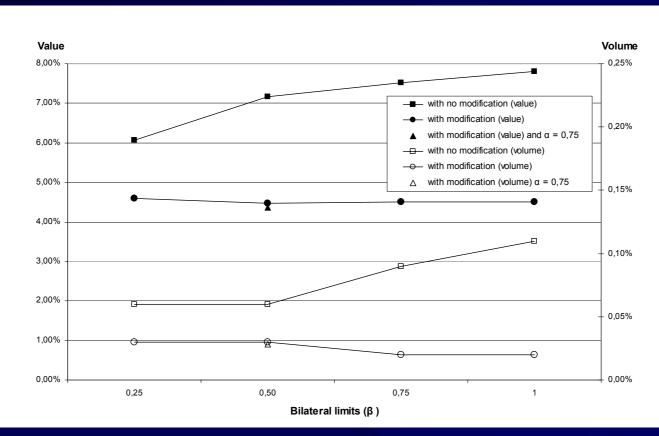

IV. Impact of a default when selective modification of limits by the other participants

Model

- Defaulter = largest issuer (in value)
- Technical default = from the beginning of the day
- Bilateral limits are set at LBBL vis-à-vis the defaulter
- (α = 1 and β ∈ [0.25; 1]) + (α = 0.75 and β = 0.5)
- Indicators:
 - . Delay
 - . Rejected payments between non defaulters
 - . Rejected payments to the defaulter



$$\delta = f(\beta)$$



Rejected payments to the defaulter

Rejected payments between non defaulters

IV. Impact of a default when selective modification of limits by the other participants

- Model
- Principal results
 - The impact is still considerable ...
 - but the value of rejetected payments between non defaulters can be significantly reduced
 - value of rejected payments can be reduced by more than 40%
 - value of rejected payments is not sensitive to β
 - changes in other parameters => no significant impact:
 - value under which bypass FIFO mechanism
 - additional runs of multilateral offsetting mechanism

V. Conclusion

- Technical default ⇒ can have considerable impact
- Can be reduced with :
 - Proactive behaviour : BL should be set lower by participants
 - no impact on fluidity when no default
 - positive impact in the event of a default
 - Reactive behaviour : quick recognition of a default
 setting BL = LBBL selectively vis-à-vis the defaulter
- Suggestions for further analysis :
 - New scenarios (multiple defaults, banking default ...)
 - Behavioural analysis (intra day change of limits, changed timing of liquidity transfer)
 - Other settlement algorithms or risk management tools