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Abstract

Diagnostic expectations constitute a realistic behavioral model of inference. This paper

shows that this approach for expectation formation can be productively integrated into the

New Keynesian framework. To this end, we start by offering a first technical treatment

of diagnostic expectations in linear macroeconomic models. Diagnostic expectations gener-

ate endogenous extrapolation in general equilibrium. We show that diagnostic expectations

generate extra amplification in the presence of nominal frictions; a fall in aggregate supply

generates a Keynesian recession; fiscal policy is more effective at stimulating the economy;

with imperfect information, diagnostic expectations generate delayed overreaction of aggre-

gate variables. Bayesian estimation of a rich medium-scale model delivers estimates of the

diagnosticity parameter that is in line with previous studies. Moreover, we find strong em-

pirical evidence in favor of the diagnostic model.
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1 Introduction

Diagnostic expectations (DE) have emerged as an important departure from rational

expectations in macroeconomics and finance. Among the host of possible deviations

from rational expectations, there are three broad reasons that make diagnostic expec-

tations a leading alternative to consider for macroeconomic modeling. First, diagnostic

expectations constitute a microfounded deviation immune to the Lucas critique. Sec-

ond, this approach lends itself to a great deal of tractability, as a number of recent

efforts in macroeconomics and finance have demonstrated (see Bordalo, Gennaioli, and

Shleifer 2018; Bordalo, Gennaioli, Ma, and Shleifer 2020; Bordalo, Gennaioli, Shleifer,

and Terry 2021, among others). Third, based on the pathbreaking and influential work

on the “representativeness heuristic” by Kahneman and Tversky (1972), one ought to

consider this behavioral model as fundamentally realistic, and thereby portable across

fields of economics.1

In this paper, we argue that diagnostic expectations can be productively incor-

porated into the New Keynesian (NK) framework. To this end, we start off with a

substantial technical contribution: We develop a solution method for a general class

of linear DSGE models with diagnostic expectations. The key to our method is to for-

mally establish the existence and uniqueness of a rational expectations representation

of the diagnostic expectations model, a challenging task in the presence of endogenous

states. This result allows us to compute the equilibrium diagnostic expectation of

endogenous variables.

Armed with this method, we demonstrate the usefulness of diagnostic expectations

in two parts, analytical and empirical. Analytically, using a three-equation NK model,

we show how diagnostic expectations bring rich insights on four issues raised by the

literature. The first issue we tackle is that of amplification and propagation in general

equilibrium. As shown in previous work (Bordalo, Gennaioli, and Shleifer 2018, hence-

forth BGS), diagnostic expectations (DE) imply an extrapolation of current shocks into

the future. Intuitively, this could generate extra volatility for endogenous variables.

We show that this intuition is in fact not guaranteed. In the presence of nominal fric-

tions (as in the NK model) DE generate extra volatility; in a frictionless representative

agent real business cycle (RBC) model, general equilibrium channels shut down the

effect of DE, and output is less volatile under DE than under rational expectations

(RE).2

1Simply put, the representativeness heuristic is the general human tendency to over-estimate how representative
a small sample is, a pattern documented in a large body of literature in psychology and behavioral economics. For
a survey and more detailed discussion, see Kahneman, Slovic, and Tversky (1982).

2Bordalo, Gennaioli, Shleifer, and Terry (2021) consider financial frictions and how DE generate realistic credit
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The second issue considered is whether a fall in aggregate supply can cause a de-

mand shortage. Since the onset of the COVID-19 pandemic, there is a renewed interest

on whether supply-side disruptions can ultimately generate shortfalls in aggregate de-

mand (see Guerrieri, Lorenzoni, Straub, and Werning 2020; Fornaro and Wolf 2020;

Caballero and Simsek 2020; Bilbiie and Melitz 2020, among others.) Whereas the

rational expectations NK (RE-NK) model generates the opposite prediction, we show

that adding DE into the NK framework (DE-NK) allows for the possibility of “Keyne-

sian supply shocks”: Following a negative supply shock, diagnostic agents extrapolate

the shock into the future, and hence become excessively pessimistic. This pushes them

to reduce consumption drastically, generating a Keynesian recession.

The third issue we tackle concerns government policy. We show how endogenous

extrapolation arising from the evaluation of the inflation process by diagnostic agents

can significantly raise the government spending multiplier. Current surprise inflation

causes the diagnostic agent to expect future inflation thereby reducing the subjective

real interest rate. When the diagnosticity parameter is higher than the coefficient

governing the reaction of the monetary authority to inflation, the DE-NK model is able

to generate a multiplier greater than 1 even with i.i.d. government spending shocks.

We show how this analytical conclusion can be challenged by the degree of exogenous

extrapolation, which depends on the persistence of the shock. If the shock is persistent

enough, the DE of future spending can completely crowd out current consumption

and lead to a multiplier that is equal to 0, or even negative. Hence, the degree of

diagnosticity allows the model to span a wide range of multipliers, highlighting the

importance of the behavioral friction in this context.

With an eye to the large macroeconomics literature on information frictions, the

fourth question we consider concerns under- and overreaction of expectations (Coibion

and Gorodnichenko 2015a; Bordalo, Gennaioli, Ma, and Shleifer 2020). Based on pre-

vious work (Lorenzoni 2009; Blanchard, L’Huillier, and Lorenzoni 2013), we extend

DE-NK model to a setting where the consumers receive noisy signals about the future

path of their income. Beliefs about their long-run income determine aggregate con-

sumption and output due to nominal rigidities. We show that a plausible calibration

of the imperfect information DE-NK model can generate both short-run underreac-

tion, and an overreaction over the medium-term. Combining diagnostic expectations

with information frictions can deliver rich implications for the path of agents’ beliefs

in general equilibrium models.

On the empirical front, we let DE and RE compete within a standard medium-

cycles in a real economy. See Section 3 for a broader discussion.
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scale DSGE model. Using Bayesian methods, we evaluate the relative fitness of both

approaches when applied to post-war U.S. business cycles data. In order to submit the

behavioral expectational friction to a stringent empirical test, the model we consider

contains a large number of benchmark frictions and shocks drawn from the seminal

works by Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007).

For the same reason, we include information frictions following an influential literature

as recently emphasized by Coibion and Gorodnichenko (2015a). We find very strong

empirical evidence in favor of DE versus RE.

A recurrent theme in our paper is that when agents have diagnostic beliefs about

endogenous variables, instead of exogenous processes, new behavioral insights emerge.

Endogenous extrapolation, as highlighted in our fiscal policy exercise, has remarkable

economic implications. We provide two examples of models with endogenous extrap-

olation at the end of Section 2.

We briefly make a few technical remarks about our solution method. First, the

computation of the DE of linear combinations involving endogenous state variables in

the form of predetermined variables is challenging, and is, thus far, an open question

in the literature. We make use of the mathematics of the Dirac delta distribution

to overcome this technical challenge. Our results clarify that predetermined variables

cannot be treated as constants in the diagnostic model. The reason is that DE intro-

duce a form of ‘behavioral inattention’, whereby aggregate predetermined variables are

perfectly observed by the atomistic diagnostic agent only with a lag.3 This introduces

path dependence in beliefs, while maintaining tractability of the recursive, diagnostic,

model. Section 2 provides further motivation and intuition for these results; the for-

mal derivations are presented in Appendix A. Second, we show that incorporating DE

requires researchers to loglinearize the model from scratch rather than simply replac-

ing the rational expectations operator with the corresponding diagnostic expectations

operator in linear economies. For a given set of equilibrium conditions obtained from

first principles, the presence of DE actually changes the loglinear equilibrium condi-

tions that constitute a correct approximation.4 We explain, in detail, how to obtain

the correct approximation and provide a few examples. Log-linearization under DE

brings forward novel economic insights in forward looking models, discussed in depth

below. Third, we provide sharp results on the stability and the existence of a bounded

solution with DE. While the stability conditions are same as in the corresponding RE

3Relatedly, Gennaioli and Shleifer (2010) emphasize how memory accessibility generates judgment errors that
depend on representative scenarios.

4This is different from many other departures from the full-information rational expectations case, as for exam-
ple the introduction of imperfect information (Woodford 2002) or other behavioral models (Garcia-Schmidt and
Woodford 2019), where the structure of equilibrium conditions of the loglinear model does not change.
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model, we note that the solution under DE can be explosive for certain limiting val-

ues of the diagnosticity parameter. Researchers may need to exercise caution when

applying DE to endogenous variables.

Related Literature. The paper is primarily related to the emerging literature on

DE. See Gennaioli and Shleifer (2018) for a review. Most closely related are papers by

Maxted (2020) and Bordalo, Gennaioli, Shleifer, and Terry (2021), who incorporate

DE in macro-finance frameworks.5 Maxted (2020) shows that incorporating DE into

a macro-finance framework can reproduce several facts surrounding financial crises

(see also Krishnamurthy and Li 2020). Bordalo, Gennaioli, Shleifer, and Terry (2021)

show that DE can quantitatively generate countercyclical credit spreads in a heteroge-

neous firms business-cycle model. We complement these efforts by providing a general

treatment of DE in linear macroeconomic models. In particular, we show how incor-

porating DE into NK models (Woodford 2003; Gaĺı 2015) delivers rich new insights

and significantly improves the fit to the data.

In parallel and complementary work, Bianchi, Ilut, and Saijo (2021) also investigate

applications of DE in linear models. The main focus of their paper is distant memory,

the notion that agents’ reference distribution looks back more than 1 period. In such

settings, the law of iterated expectations fails, and therefore the model with distant

memory is time inconsistent. In their paper, Bianchi, Ilut, and Saijo (2021) investigate

the rich implications of this type of time inconsistency. Our paper focuses exclusively

on linear settings with time consistency, and shows that this baseline setup offers a

number of insights useful for the NK literature. We also provide an empirical evalu-

ation in a benchmark medium-scale DSGE model. Moreover, ours is the first general

technical treatment of linear models. We formally prove how to evaluate the DE of

linear combinations involving endogenous state variables using the mathematics of the

Dirac delta distribution, and outline, in detail, the steps from the exact equilibrium

conditions to the loglinear approximation of medium-scale models.

Our paper also speaks to the literature proposing deviations from the full-information

rational expectations (FIRE) hypothesis. See, for example, Mankiw and Reis (2002),

Coibion and Gorodnichenko (2015a), Angeletos, Huo, and Sastry (2020), Bordalo,

Gennaioli, Ma, and Shleifer (2020), Kohlhas and Walther (2020), among others.

Angeletos, Huo, and Sastry (2020) document delayed overreaction of beliefs in re-

sponse to business cycle shocks. Bordalo, Gennaioli, Ma, and Shleifer (2020) propose

5D’Arienzo (2020) investigates the ability of DE to reconcile the overreaction of expectations of long rates relative
to the expectations of short rates to news in bond markets. Ma, Ropele, Sraer, and Thesmar (2020) quantify the
costs of managerial biases.
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a model of DE with dispersed information to study underreaction and overreaction in

survey forecasts. See also Ma, Ropele, Sraer, and Thesmar (2020) and Afrouzi, Kwon,

Landier, Ma, and Thesmar (2020). We complement these analyses by showing that

one can obtain delayed overreaction in an imperfect information DE-NK model. With

respect to earlier work, there are two innovations in our procedure. First, we use a mi-

crofounded behavioral friction. Second, we generate these patterns with expectations

in general equilibrium models. In a related vein, our estimated DSGE model builds on

work exploring business cycle models where agents receive advance information about

future productivity that is subject to an information friction (Blanchard, L’Huillier,

and Lorenzoni 2013; Chahrour and Jurado 2018).

Our paper fits into the macroeconomics literature that models departures from

rational expectations with various behavioral assumptions. Some of the recent ap-

plications have focused on resolving puzzles in New Keynesian models by introducing

behavioral assumptions. Angeletos and Lian (2018), Farhi and Werning (2019), Gabaix

(2020), and Garcia-Schmidt and Woodford (2019) are some of the papers that propose

departures from rational expectations to attenuate the strength of forward guidance.

Iovino and Sergeyev (2020) study the effectiveness of central bank balance sheet poli-

cies with level-k thinking. Farhi and Werning (2020) study the role of monetary policy

as a macro-prudential tool when agents form extrapolative expectations.

Paper Organization. The paper is organized as follows. Section 2 presents our

solution method, discusses stability, and provides examples illustrating endogenous

propagation of diagnostic beliefs. Section 3 presents the analytical results from a

3-equation NK model. Section 4 presents the empirical evaluation of diagnostic expec-

tations in a medium scale DSGE model. Section 5 concludes. The Appendix provides

supplementary materials and collects all the proofs.

2 Solution Method

In this section we present a solution method for a general class of linear models.

Agents use diagnostic expectations to form beliefs about the evolution of all variables,

exogenous and endogenous. Our strategy consists in obtaining a rational expectations

(RE) representation of the diagnostic expectations (DE) model. Based on this step,

the model can be solved using standard techniques.
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2.1 Preliminary Considerations: Handling Predetermined Vari-

ables

The main goal here is to establish a strong additivity result for the DE operator. This

result will be useful to get linearity in the context of the general linear model below. For

purposes of the arguments in this subsection, define the following two AR(1) processes

for random variables xt and yt:

xt = ρxxt−1 + εt (1)

yt = ρyyt−1 + ηt (2)

where εt ∼ N(0, σ2
ε) and ηt ∼ N(0, σ2

η) are Gaussian and orthogonal exogenous shocks,

ρx and ρy are persistence parameters satisfying ρx, ρy ∈ [0, 1), and σ2
ε and σ2

η are the

shocks’ variances.

We first focus on xt. The true (or non-distorted) pdf of xt+1 is f(xt+1|xt) ∝
ϕ
(
xt+1−ρxxt

σε

)
, where ϕ(x) is the density of a standard normal distribution ϕ(x) =

1√
2π
e−

1
2
x2

. Following Bordalo, Gennaioli, and Shleifer (2018) (henceforth BGS), the

diagnostic distribution is defined as

f θt (xt+1) = f(xt+1|Gt) ·
[
f(xt+1|Gt)

f(xt+1| −Gt)

]θ
· C

where Gt and −Gt are conditioning events. Gt encodes current conditions: Gt ≡
{xt = x̌t}, where x̌t denotes the realization of xt.

6 −Gt encodes a reference group (i.e.

a reference event), that is used to compute the reference distribution f(xt+1|−Gt). Due

to the representativeness heuristic, agents overweight the last realization of xt (relative

to the reference group) when forming beliefs about the future realization of xt+1. The

likelihood ratio f(xt+1|Gt)/f(xt+1| − Gt) distorts beliefs to a degree governed by the

diagnosticity parameter θ ≥ 0. C is a constant ensuring that f θt (xt+1) integrates to 1.

Following BGS, we impose that the event −Gt carries “no news” at time t (hence-

forth no-news assumption or NNA).

Assumption 1 (Univariate No-News Assumption)

f(xt+1| −Gt) = f(xt+1|xt = ρxx̌t−1)

6We do not use the same notation x̂t for realizations as BGS, since we have reserved hats over variables for
loglinear deviations below.
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Beliefs about future xt+1 are formed conditional on the event that the random

variable xt, conditional on the past realization x̌t−1, is what it was expected to be, so

εt = E[εt] = 0, which is equivalent to xt = ρxx̌t−1. Under the NNA, the diagnostic

distribution is then written as

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = ρxx̌t−1)

]θ
· C (3)

Notice that the distribution (3) is conditional on two elements: first, it is conditional

on the current realization of xt, written x̌t, because this enters the true distribution

of xt+1; second, it is conditional on the reference event −Gt ≡ {xt = ρxx̌t−1}, which

depends on the realization at t− 1, x̌t−1. This earlier realization defines the reference

distribution. In this dynamic setting, the reference event happens “between t− 1 and

t”.

Following previous literature, we denote the diagnostic expectation operator at time

t by Eθt [ · ]. The diagnostic expectation is formally defined as

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx

Thanks to the NNA (Assumption 1), one can obtain the following tractable expression

for the diagnostic expectation of a future variable in terms of current and lagged true

(or ‘rational’) expectations:7

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (4)

Equation (4) reveals that diagnostic beliefs are path dependent. The shock εt−1

affects the information set at t − 1 and thereby the expectation Et−1[xt+1]. Previous

beliefs constitute a state variable.8 This path dependence generates extrapolation.

The challenging aspect is computing the DE of linear combinations involving prede-

termined variables. Examples include the capital stock, or past consumption in models

with habit formation. Consider the object Eθt [xt+1 + yt], where the degenerate random

variable yt plays the role of the predetermined variable. The properties of this object

depends crucially on the assumptions imposed on the reference distribution of each of

7See Bordalo et al. (2018, Proposition 1). For completeness, a proof that closely follows Bordalo et al. (2018)
is presented in the appendix.

8Alternatively, careful inspection of the pdf (3) shows the dependence on the shock εt−1 through the realization
x̌t−1. The shock εt−1 determines x̌t−1, and hence the expected value of xt, together with the reference event −Gt.
Different from the rational case, the current state xt does not fully determine the subjective density of the process
going forward.
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the variables xt+1 and yt.

The solution we adopt is motivated by a consistency requirement and by a tractabil-

ity concern. For consistency, in the context of the general linear model, we impose a

multivariate NNA on all shocks. By way of implication, this imposes the NNA on

predetermined variables present in linear combinations. In terms of tractability, just

as the NNA was useful to obtain the formula for the DE of future variables in isolation

(equation 4), we show that the same assumption, imposed on predetermined variables,

leads to a tractable solution of the recursive model.

A technical aspect worth highlighting is that the NNA implies that predetermined

variables cannot be treated as constants. In fact, going back to the linear combination

above,

Eθt [xt+1 + yt] 6= Eθt [xt+1] + yt

The intuition for this property is that diagnosticity introduces behavioral inattention,

whereby aggregate predetermined variables are perfectly observed by the atomistic di-

agnostic agent only with a lag. To understand how this arises, consider the information

sets Gt = {xt = x̌t; yt = y̌t} and −Gt = {xt = ρxx̌t−1; yt = ρyy̌t−1} that define the

diagnostic distribution f θt (xt+1 + yt). With respect to Gt, yt is known and equal to

y̌t. However, with respect to −Gt, yt is not known (instead, the agent’s memory leads

her/him to believe that yt = ρyy̌t−1.) Hence, the agent is forming inference based on

two minds. Because one of these minds is inattentive, overall inference also features

inattention. This is closely linked to the path dependence mentioned above.9 This

type of inattention lasts only one period, since

Eθt [xt+1 + yt−1] = Eθt [xt+1] + yt−1

This is because −Gt now includes yt−1. In conclusion, note that the predetermined

variable is actually not predetermined with respect to the reference distribution, show-

ing how the computation of the DE above involves uncertainty also about yt.

With the consistent use of the NNA, we obtain the following strong additivity

result, extending BGS’s result to settings with predetermined variables.10

Proposition 1 (Strong Additivity of the Diagnostic Expectation)

Eθt [xt+r + yt+s] = Eθt [xt+r] + Eθt [yt+s], r, s ≥ 0

9In order to make this feature more apparent, one is tempted to denote the diagnostic expectation operator as
Eθt,t−1[ · ]. However, we have decide to follow BGS closely and avoid this type of cumbersome notation.

10See BGS, proof of Corollary 1, Online Appendix, for the case r, s ≥ 1.
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In order to prove this result, we make use of the mathematics of the Dirac delta

distribution, useful to deal with the joint density of xt+1 and yt. Those developments

are presented in Appendix A. There, we also offer two counterexamples showing that

one cannot get a consistent recursive representation without the consistent use of the

NNA. This also implies that, in that case, the RE representation below does not exist.

2.2 General Formulation of Linear Diagnostic Expectations

Model, and Solution

2.2.1 Exogenous Processes.

We start by specifying the exogenous drivers of the economy. Exogenous variables are

stacked in a (n× 1) vector xt that is assumed to follow the AR(1) stochastic process

xt = Axt−1 + vt (5)

where vt is a (k×1) vector of Gaussian and orthogonal exogenous shocks vt ∼ N(0,Σv),

and A is a diagonal matrix of persistence parameters.

Following Bordalo et al. (2018), we make a no-news assumption for this multivariate

setup.

Assumption 2 (Multivariate No-News Assumption)

f(xt+1| −Gt) = f(xt+1|xt = Axt−1)

2.2.2 Stochastic Difference Equation

The class of forward-looking models we analyze is written as a stochastic difference

equation. To this end, let yt denote a (m×1) vector of endogenous variables (including

jump variables and states) and xt, as above, denote the (n × 1) vector of exogenous

states. The model is:

Eθt [Fyt+1 + G1yt + Mxt+1 + N1xt] + G2yt + Hyt−1 + N2xt = 0 (6)

where F, G1, G2, M, N1, N2, and H, are matrices of parameters. F, G1, G2,

and H are (m × m) matrices, N1 and N2 are (m × n) matrices. Eθt [ · ], as above,

denotes the diagnostic expectation operator, which is now taken over endogenous and

exogenous variables. Notice that in writing model (6), we were careful in allowing both

the expectation of time t variables (e.g. Eθt [N1xt]), and the variables themselves (e.g.
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N2xt). This is because at the stage of loglinearization we may encounter expressions

of this form, and at this stage, we have not invoked linearity of the DE operator yet.11

2.2.3 Solution Procedure

The remaining steps are the following. First, postulate a form for the solution. Second,

obtain a rational expectations representation of the model. Third, solve for the model

expressed in terms of rational expectations using standard tools (as the method of

undetermined coefficients, for instance).

Form of the Solution. We look for a solution of the form

yt = Pyt−1 + Qxt + Rvt (7)

We make this guess based on the extrapolative nature of DE. Under (7), yt follows a

multivariate Gaussian distribution. Thus, using strong additivity (Proposition 1), we

can write equation (6) in the more convenient form12

FEθt [yt+1] + G1Eθt [yt] + G2yt + Hyt−1 + MEθt [xt+1] + N1Eθt [xt] + N2xt = 0

We now can obtain the representation of the model in terms of rational expectations.

Proposition 2 (Multivariate Rational Expectations Representation) Assume

the multivariate NNA (Assumption 2). Model (6) admits the following rational expec-

tations representation:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)
+Mθ

(
Et[xt+1]− Et−1[xt+1]

)
+G1θ

(
yt − Et−1[yt]

)
+N1θ

(
xt − Et−1[xt]

)
= 0 (8)

where G = G1 + G2 and N = N1 + N2. Moreover, this representation is unique.

11It is possible that the linear model, in its original form, is written with this expectation broken up into different
terms Eθt [Fyt+1 + G1yt + Mxt+1] + Eθt [N1xt], say, or with sums of expectations that involve the same variables,
i.e. Eθt [F1yt+1] + Eθt [F2yt+1], for example. As we will explain below, due to the structure of the solution, the
additivity property established by Proposition 1 will render these issues moot.

12Together with the property of the diagnostic expectation that for any constant c and random variable Zt+1,
Eθt [cZt+1] = cEθt [Zt+1], which follows from the theorem of the expectation of a monotonic transformation of a
random variable.
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Armed with this representation, we verify that equation (7) is a solution. Ap-

pendix B presents the detailed steps to arrive at the solution matrices following the

presentation by Uhlig (1995).

2.3 Stability

It turns out that the model under DE is subject to the same stability conditions as the

model under RE. More precisely, consider the same model above, but under rational

expectations:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt = 0 (9)

where the matrices F, G, H, M and N are defined above. The following result holds.

Proposition 3 (Stability) Assume a bounded solution exists for the DE model given

by equations (5) and (6). The stability conditions for this DE model are identical to

the stability conditions for the RE model given by (5) and (9).

While the stability conditions are exactly same as under the RE model, we note

that the existence of a bounded solution under DE requires an additional assumption.

We formalize this requirement in the following proposition.

Proposition 4 (Existence of a Bounded Solution) Assume a bounded solution ex-

ists for the RE model given by equations (5) and (6) with θ = 0. Then a bounded

solution for the DE model exists if (1 + θ)FP + G + θG1 is full-rank.

Example 1 below will illustrate how DE may affect the existence of a bounded

solution, even when RE models have a bounded and stable solution.

2.4 Examples: Endogenous Extrapolation

These two examples illustrate how DE generate endogenous extrapolation in dynamic

models. (Example 1 also discusses unbounded solutions; example 2 also discusses the

loglinearization of equations with non-stationary variables.)

2.4.1 Example 1: Univariate Endogenous State Variable Model

Consider the following model:

yt = aEθt [yt+1] + cyt−1 + εt

where |a+ c| < 1 and εt is white noise.
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The solution of the RE model (θ = 0) can be derived analytically using the minimum

state variable solution method:

yt = φ1 yt−1 +
1

1− aφ1

εt

where φ1 ≡ 1−
√

1−4ac
2a

.13 Under DE, the minimum state variable solution is given by

yt = φ1 yt−1 +
1

1− (1 + θ)aφ1

εt (10)

We get two conclusions from these calculations.

First, notice from equation (10) that computing the DE over the endogenous vari-

able yt+1 delivers extrapolation, even though the exogenous process is i.i.d. When

diagnostic expectations are imposed on endogenous variables, then the solution of

the model is altered even with i.i.d. shocks. If instead the diagnostic expectations

were imposed on exogenous shock processes only, then the RE and the DE solution

would coincide with i.i.d. shocks. This example illustrates qualitatively how model-

ing diagnostic expectations on endogenous variables provides an internal propagation

mechanism for DSGE models.

Second, with this example, we can also illustrate the result obtained in Proposition

4: When θ → 1
aφ1
− 1 or θ → ∞, then the DE solution explodes even though there

exists a unique bounded RE solution. The lesson of this example is therefore that in

practice the researcher may need to be mindful of bifurcation points. In particular,

bifurcation values may affect search over the parameter space in the context of struc-

tural estimation. In our application to NK models, we compute the conditions such

that the DE solution explodes, and verify that the associated limit values for θ are

very large. Therefore, this does not materially affect our results.

2.4.2 Example 2: Nominal Euler Equation

Consider the following Euler equation of a nominal economy:14

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
(11)

13Specifically, using the method of undetermined coefficients, we get the following requirement: φ1 = a φ21 + c.
Imposing that φ1 → 0 as c→ 0, we arrive at the solution. |a+ c| < 1 ensures that the model is stable in the sense
of Proposition 3 and that the RE solution is bounded.

14Section 3 derives this equation from first principles.
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where Ct is consumption, Pt is the price level, it is the nominal rate, u(·) = log(·) is

period utility, and β is the discount factor.

Loglinearizing:

ĉt = Eθt [ĉt+1]− (̂it − (Eθt [p̂t+1]− p̂t))

where {ĉt, ît, p̂t} denote loglinear deviations of consumption and the interest rate from

their respective steady states, and of the price level from an initial price level, respec-

tively. Using the BGS formula (4) and algebraic manipulation delivers the loglinear

diagnostic Euler equation15

ĉt = Eθt [ĉt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) (12)

Notice that current inflation induces an expansionary channel by reducing the sub-

jective real rate computed by diagnostic agents. The reason is as follows. Due to path

dependence, computation of a real rate of interest involves the price level at t − 1.16

Since the agent is extrapolating from yesterday (t− 1) into tomorrow (t+ 1), today’s

inflation innovation π̂t − Et−1[π̂t] is extrapolated into tomorrow: Current surprise in-

flation causes the diagnostic agent to expect future inflation, to a degree θ, thereby

reducing the subjective real interest rate. Furthermore, this effect is present even in

the case of i.i.d. shocks, once again highlighting the endogenous extrapolation gen-

erated by equilibrium diagnosticity. Presence of this endogenous extrapolation term

underscores the importance of computing DE on endogenous variables. We will exploit

this channel in Section 3 by emphasizing its implications for fiscal policy.

2.5 A Practical Guide to the Implementation of Diagnostic

Expectations in DSGE Models

We conclude this section with the following summary. A researcher interested in using

diagnostic expectations within a (loglinear) DSGE model can take the following simple

steps.

1. Obtain the exact equilibrium conditions of the model. (Section 3 provides an

example in the context of a 3-equation NK model, and Section 4 in the context

15See Appendix C.1.1.
16To see this, multiply on both sides of (11) by Pt−1 and use Pt inside the DE to obtain:

u′(Ct)
Pt−1
Pt

= β(1 + it)Eθt
[
u′(Ct+1)

Pt−1
Pt

Pt
Pt+1

]
which can then be loglinearized to arrive at (12), after using strong additivity.
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of a medium-scale DSGE model.)

2. Loglinearize the model, being careful not to introduce contemporaneous variables

in-and-out of the DE operator. (See the appendix for examples.)

3. Obtain the RE representation of the model (Proposition 2) using the additivity

result.

4. Use any solver for RE models that can handle expectations conditional on previous

period’s information set (Et−1[ · ]). (For instance, in Dynare, this is accomplished

using the EXPECTATION(-1) command.)

5. Check that the parameter space considered does not cover bifurcation values

(Proposition 4 and Example 1).

3 Analysis Using a New Keynesian Model

In this section, we derive a three-equation New Keynesian model augmented by di-

agnostic expectations. Our goal is to revisit a number of prominent themes in this

context.

3.1 Diagnostic New Keynesian Model

We set up the model from first principles. We discuss a number of novel aspects that

arise due to DE, such as the possibility of time-inconsistency due to the behavioral

distortion, and the need to take belief path dependence into consideration to obtain

the loglinear approximation.

There are three sets of agents in the economy: households, firms and the govern-

ment.

3.1.1 Households

Households maximize the following lifetime utility

logCt −
ω

1 + ν
L1+ν
t + Eθt

[
Σ∞s=t+1β

s−t
(

log(Cs)−
ω

1 + ν
L1+ν
s

)]
where Lt is labor supply, ν > 0 is the inverse of the Frisch elasticity of labor supply,

β is the discount factor β, satisfying 0 < β < 1, ω > 0 is a parameter that pins down

the steady-state level of hours. Maximization is subject to a budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt
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where Pt is the price level, Bt+1 is the demand of nominal bonds that pay off 1 + it

interest rate in the following period, Wt is the wage, Dt and Tt are dividends from

firm-ownership and lump-sum government transfers, respectively.

Notice that we write dynamic maximization problems, as this one, by explicitly

separating time t choice variables from the expectation of future choice variables.

This separation is crucial for solving the model with diagnostic expectations, and is a

consequence of the DE path dependence discussed in Section 2.17

3.1.2 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods’ demand is given by Yt(j) =
(
Pt(j)
Pt

)−εp
Yt, where

εp > 1 is the elasticity of substitution, Pt(j) is the price of intermediate good j, and Pt

is the price of final good Yt. Each intermediate good is produced using the technology

Yt(j) = AtLt(j), where ât ≡ log(At) is an aggregate TFP process that follows an AR(1)

process with persistence coefficient ρa:

ât = ρaât−1 + εa,t

and εa,t ∼ iid N(0, σ2
a). The firm pays a quadratic adjustment cost ψp

2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt,

in units of the final good (Rotemberg 1982) to adjust prices. Firms’ per period profits

are given by Dt ≡ Pt(j)Yt(j) − WtLt(j) − ψp
2

(
Pt(j)
Pt−1(j)

− 1
)2

PtYt. The firm’s profit

maximization problem is

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}

where Qt,t+s is the household’s nominal stochastic discount factor.

3.1.3 Government

The government sets nominal interest rate with the following rule 1 + it = (1 +

iss)Π
φπ
t

(
Yt
Y ∗t

)φx
, where Y ∗t = At is the natural rate allocation, iss = 1

β
− 1 is the

17The reader may wonder whether DE introduces time inconsistency in agents’ choices. It turns out that this is
not the case in the loglinear approximation when the reference distribution is based on t−1. By the law of iterated
expectations (which then holds for the diagnostic expectation), time t + 1 policy functions are in fact consistent
with agents’ expectations (about their time t + 1 policy functions). The paper by Bianchi, Ilut, and Saijo (2021)
analyzes the interesting implications of time-inconsistency in linear models when the agent’s reference distribution
is more than one-period backward looking.
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steady state nominal interest rate, φπ ≥ 0, φx ≥ 0, and steady state inflation Π = 1.

Total output produced is equal to household consumption expenditure and adjustment

costs spent when adjusting prices. We first consider a model where is no government

spending, and nominal bonds are in zero net supply.18

3.1.4 Equilibrium

Appendix C presents the equilibrium conditions. (The DE operator is the expectation

over a continuous density, hence one gets these first-order conditions by taking deriva-

tives, as usual.) In particular, it shows that the household intertemporal first order

condition is equation (11). This appendix also goes over the log-linear approximation

in detail. The resulting equilibrium is given by following three equations:

ŷt = Eθt [ŷt+1]− (̂it − (Eθt [p̂t+1]− p̂t)) (13)

π̂t = βEθt [π̂t+1] + κ(ŷt − ât) (14)

ît = φππ̂t + φx(ŷt − ât) (15)

where κ ≡ εp−1

ψp
(1 + ν), ŷt is the log deviation of output, p̂t is the log deviation of the

price level, ît is the log deviation of the interest rate, and π̂t is the log deviation of

inflation from the zero-inflation steady state. The shock process is given by:

ât = ρaât−1 + εa,t (16)

where εa,t ∼ i.i.d. N(0, σ2
a).

As explain in the context of Example 2 in Section 2, equation (13) can be written as

(12), showing that DE change the expression for the approximated Euler equation by

adding an extra term.19 Mathematically, this is a consequence of path dependence.20

The economic implication is endogenous extrapolation of inflation from t− 1 to t+ 1,

as explained in Example 2, Section 2.

Notwithstanding path dependence, we obtain a similar Phillips curve to the RE

case using Rotemberg (1982) pricing. The key to this result is that, different than

with Calvo pricing, Rotemberg pricing with DE allows one to obtain a recursion that

only involves one expectation forward. This turns out to be key for tractability. The

appendix presents the detailed derivation.

18In the fiscal multiplier analysis below we will introduce government spending shocks.
19Since there is no government spending, ŷt = ĉt.
20Indeed, as shown in the appendix, the loglinearization of the exact Euler equation involves Pt−1, since, for any

set of random variables Xt+1 and Yt−1, Eθt [Xt+1Yt−1] = Eθt [Xt+1] · Yt−1. A similar operation is not allowed with
Yt.
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We make the following assumption in order to guarantee the existence of a bounded

solution (Proposition 4).21

Assumption 3 (Boundedness) θ < φπ + κ−1(1 + φx)

We provide an explicit solution for the model in Appendix C.

3.2 Diagnostic Expectations and the Possibility of Extra Am-

plification

A classic challenge in macroeconomic modeling is finding ways to generate realistic

business cycles with shocks of moderate size. The literature has relied on multiple

types of frictions (e.g. nominal, as in Christiano, Eichenbaum, and Evans 2005, or

financial, as in Bernanke and Gertler 1989; Kiyotaki and Moore 1997), interactions in

the form of strong complementarities (Benhabib and Farmer 1994), or multiple shocks

(Smets and Wouters 2007) to fit this pattern of the data.

We demonstrate that diagnosticity provides a viable behavioral alternative to un-

derstand the large size of observed fluctuations within the NK model. Because di-

agnosticity leads agents to extrapolate the impact of exogenous shocks, expectations

are more volatile. Intuitively, one would expect the DE-NK model to predict a higher

volatility of output than under RE. Indeed, the following proposition establishes that

when diagnosticity is strong enough, it does generate extra endogenous volatility in

the NK model. We are able to analytically prove this result when prices are completely

rigid (ψp →∞).22

Proposition 5 (Extra Volatility: NK Model) Consider the model given by (13)-

(16). Assume that ψp → ∞ and that the diagnosticity parameter is high enough, that

is, θ > 2(1 − ρa)(1 + φx)/(φxρa). Then, output is more volatile under diagnostic

expectations than that under rational expectations: V ar(ŷt)DE > V ar(ŷt)RE.

For standard parameter values, this condition is satisfied. For example, when

ρa = 0.9 and φx = 0.5, this condition requires that θ be greater than 0.67 for diagnostic

expectations to generate extra volatility. Most estimated values for this parameter pro-

vided in Bordalo, Gennaioli, Ma, and Shleifer (2020), and used in Bordalo, Gennaioli,

Shleifer, and Terry (2021) are well above 0.67.

21We also assume that κ(φπ − 1) + (1− β)φx > 0 to ensure a stable solution in the sense of Proposition 3.
22Away from this limit, we can use the solution of the model presented in the appendix and obtain a condition

for extra volatility, but this condition is messy and does not lend itself to any clear interpretation.
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The analytical results noted in the case of completely rigid prices also hold when

prices are sticky (but not-completely rigid), i.e. when 0 < ψp < ∞. To numerically

demonstrate this, we use a standard calibration of the NK model.23 θ is set to 1 fol-

lowing Bordalo, Gennaioli, Shleifer, and Terry (2021). We obtain a standard deviation

of output of 2.96%, relative to 1.82% under RE. Thus, output volatility increases by

63% due to DE.

DE interact with the nominal frictions embedded in the NK model in order to

generate extra output volatility. In order to demonstrate this, we consider the polar

opposite case of a frictionless real business cycle (RBC) model.24 In this case, the stan-

dard deviation of output is actually lower under DE (1.88%) than under RE (2.04%).

In order to clarify that this does not depend on the particular calibration used for

the simulation but it is a general property of the model, we also present the following

analytical result in the tractable case of full depreciation.

Proposition 6 (Extra Volatility: RBC Model) Consider the model given by (16),

(47)-(53). Assume that the depreciation rate δ = 1 and that ρa = 0. Output is less

volatile under DE than under RE: V ar(ŷt)DE < V ar(ŷt)RE.

In order to understand these results, it is useful to draw a parallel to the news

shocks literature originating in the seminal work by Beaudry and Portier (2004) and

Beaudry and Portier (2006). The addition of DE to the NK model can be seen as

a way of generating errors in expectations that resemble news about the future. For

instance, in the case of a positive TFP shock, agents extrapolate this shock, expecting

a further positive TFP shock in the next period. Therefore, the TFP shock generates a

contemporaneous raise in TFP, and an excessive increase in expectations about TFP in

the next period. As discussed in this literature, shocks to expectations generally have

difficulties in generating amplification and comovement in a baseline, frictionless, RBC

model (Beaudry and Portier 2006; Jaimovich and Rebelo 2009). Indeed, in the case of

a positive news shock, the implied income effect produces a fall of labor supply and

hence output (Barro and King 1984). However, as shown in Blanchard, L’Huillier, and

Lorenzoni (2013), nominal rigidities are a solution to this counterfactual prediction of

the RBC model. When prices are sticky, output is demand determined: The positive

income effect raises consumption and in general equilibrium this effect dominates.

Output ultimately increases. This explains the extra volatility afforded by the DE-NK

model.

23Following Gaĺı (2015), we set β = 0.99, εp = 9, φπ = 1.50, and φx = 0.5. We set ν = 2, and ψp such that
κ = 0.050. The TFP process is calibrated with persistence 0.90 and standard deviation of 2%.

24The model is standard. See Appendix D for a detailed exposition. The calibration is presented in Appendix E.
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We note that the recent important paper by Bordalo, Gennaioli, Shleifer, and Terry

(2021) presents another case in which DE interact with frictions to generate extra

volatility. The paper looks at an RBC model with financial frictions on the firm side.

Firms are heterogeneous. The paper shows that the interaction of firms’ expectations

with financial frictions successfully generate amplification of investment and output

dynamics, and fits a number of facts relating to credit cycles.

3.3 Keynesian Supply Shocks

Motivated by economic crisis caused by the COVID-19 pandemic, a rapidly growing

literature focuses on constructing models that have the ability to generate a demand

shortfall that is fundamentally caused by a disruption on the supply side of the econ-

omy, that is, a ‘Keynesian’ supply shock. Thus far, some of the candidate explana-

tions for this phenomenon include multiple consumption goods (Guerrieri, Lorenzoni,

Straub, and Werning 2020), endogenous firm-entry (Bilbiie and Melitz 2020), het-

erogenous risk-tolerance (Caballero and Simsek 2020), and endogenous TFP growth

(Fornaro and Wolf 2020). As the following proposition shows, DE present a behavioral

mechanism capable of producing Keynesian supply shocks.

Proposition 7 (Keynesian Supply Shocks) Consider the model given by (13)-(16).

Assume that ψp → ∞ and that the diagnosticity parameter is high enough, that is,

θ > 2(1 − ρa)(1 + φx)/(φxρa). Then, the output gap x̂t positively co-moves with the

unanticipated component of TFP: ∂x̂t
∂εa,t

> 0.

Similar to Proposition 5, the proposition imposes completely rigid prices for tractabil-

ity. The result extends to the case of moderately rigid prices, as Figure 1 shows. We use

the same calibration as for the volatility result above. The figure plots the evolution of

the output gap. Following a negative TFP shock, the economy enters a recession: the

output gap and employment falls under DE. In the RE case, the output gap moves in

the opposite direction.

The key to this striking result is extrapolation: following the shock, agents extrap-

olate and become excessively pessimistic about future output. This leads to a large

drop in consumption, which due to nominal rigidities, leads to contemporaneous fall

in output. Due to diagnosticity, expectations become sufficiently pessimistic to induce

a fall in output larger than the initial drop in TFP, generating a Keynesian recession.

This is in contrast to the result under RE where the fall in TFP, being only transitory,

does not lead to a fall in aggregate demand. Hence, there is a boom: lower TFP for
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Figure 1: Output Gap Response to a Negative TFP Shock, Baseline NK Model
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Notes: The figure depicts the impulse response of the output gap to a unit negative shock to TFP. The productivity shock process is
given by equation (16). The blue solid line denote impulses responses with diagnostic expectations, whereas the red dotted line denote
responses with rational expectations. The dynamics of employment are exactly the same as the output gap.

the same level of aggregate demand increases the demand for labor; this generates a

boom in the labor market, together with a rise in the output gap.

3.4 Fiscal Policy Multiplier

Here we address the implications of DE for the size of the fiscal policy multiplier.

There are two reasons to do this.

First, given the recent unprecedented fiscal response to the COVID-19 crisis in the

U.S. and other countries, understanding the effects of fiscal policy is central. Also,

substantial empirical evidence indicates that marginal propensities to consume are

large (see Fagereng, Holm, and Natvik 2021, among others), or similarly, that fiscal

multipliers are large in the cross section (Nakamura and Steinsson 2014).25 We show

that DE constitute a useful addition to the NK framework, because it generates novel,

rich implications for the fiscal multiplier.

Second, this exercise is a natural path for understanding the endogenous extrapo-

lation generated by the diagnostic Fisher equation embedded in equation (11). This

endogenous extrapolation channel highlights the implication of the extra term arising

due to belief path-dependence, as explained in Example 2, Section 2.

We add government spending shocks to the NK model. To keep the exposition

brief, the model is presented in Appendix C. For convenience, we write the diagnostic

Fisher equation here:

r̂t = ît − Et[πt+1]− θ(Et[πt+1]− Et−1[πt+1])− θ(πt − Et−1[πt])

25See Steinsson (2021) for a similar discussion.
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Extrapolation implied by DE reduces the real interest rate, and hence leads to higher

multipliers.

To make this point in a transparent way, we start by looking at i.i.d. govern-

ment spending shocks. The reason is that with i.i.d. shocks, there is no exogenous

extrapolation.26 We obtain the following proposition.

Proposition 8 (Fiscal Policy Multiplier) Consider the model given by (28)-(30)

and (32). Assume that φx = 0 and that the persistence of the shock ρg = 0. Then:

1. Under rational expectations, the fiscal policy multiplier is always strictly less than

1. Under diagnostic expectations, the fiscal policy multiplier is greater than 1 if

θ > φπ, and less than 1 if θ < φπ.

2. The fiscal policy multiplier is greater under diagnostic expectations than under

rational expectations.

3. The fiscal policy multiplier is increasing in θ, and tends to infinity as θ −→
φπ + κ−1.

Hence, when the degree of diagnosticity is above the reaction parameter of the mon-

etary authority, the multiplier is greater than one. The intuition for this result is as

follows. The diagnostic real rate moves, in response to current inflation, due to the

endogenous extrapolation (governed by θ), and by the response of the central bank. In

the RE benchmark, the multiplier is always smaller than 1 because the central bank

moves the nominal rate to dampen the effect of fiscal policy. The condition θ > φπ

ensures that endogenous extrapolation offsets this dampening.

The degree of diagnosticity parametrizes the multiplier, increasing it above the RE

multiplier, and spanning the full range of values to infinity. (We assume that φx = 0 in

order to get a clean and easy to interpret condition such that the multiplier is greater

than 1 in the DE model.27)

This analytical case highlights that the higher multiplier under DE is only working

through the term θ(πt − Et−1[πt]) in the diagnostic Fisher equation. Extrapolation is

endogenous, generating the expansionary effect discussed in Example 2 above. Given

that the government spending shock is i.i.d., there is no exogenous extrapolation of

the shock due to diagnosticity.

In order to illustrate a case where the multiplier is greater than 1, we consider a

dovish interest rate rule (φπ = 1.1) and a moderately higher diagnosticity parameter

of θ = 1.5. Using a persistence of the government shock equal to 0.5 generates a DE

26To see this, notice that equation (4) implies, for an AR(1) process, Eθt [xt+1] = ρxx̌t + θρxε̌t.
27The general condition is θ ≥ φπ + φx

(1−ψ)κ .
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multiplier of 1.06, and an RE multiplier of 0.91. Raising the diagnosticity parameter

slightly generates much larger multipliers. Furthermore, using a steeper Phillips curve

(say, κ = 0.20) strengthens the endogenous inflation extrapolation channel: the DE

multiplier is now 1.13, for an RE multiplier of 0.73.

We conclude this section by noting that DE do not always lead to higher multipliers.

When government shocks are persistent, the expectation of future spending crowds

out current consumption, reducing output. With DE, expectations of future spending

are exaggerated, and can considerably reduce multipliers when persistence is high. To

illustrate this, we go back to our baseline calibration. In addition, we set the persistence

of the shock to 0.9. In this case, the RE multiplier is 0.17, for a DE multiplier of -0.32.

In this simulation, the exogenous extrapolation channel is so strong that it dominates

the endogenous extrapolation channel, leading to a negative multiplier.

3.5 Overreaction and Delayed Overreaction

Whether beliefs as measured by surveys feature under- or overreaction is the subject of

an important debate in recent literature. Indeed, Coibion and Gorodnichenko (2012)

provide evidence of underreaction of consensus forecasts, whereas Bordalo, Gennaioli,

Ma, and Shleifer (2020) provide evidence of overreaction at the level of the individual

forecaster. Kohlhas and Walther (2020) find that there is overreaction, in some cases,

even at the aggregate level. In a complementary way, Angeletos, Huo, and Sastry

(2020) stress that at the aggregate level one can observe both under- and overreation.

According to them, what matters is the horizon: there is underreaction in the short

run, whereas overreaction dominates in the medium run.

The importance of the horizon at which one observes the dynamics of forecasts

has also been stressed in an application to stock returns by Bordalo, Gennaioli, La

Porta, and Shleifer (2019). The authors stress that the key is to look at the medium-

term forecast errors to find evidence of overreaction to news. The explanation is the

following. A gradual arrival of news can happen some time after an anticipated event,

and a buildup of the overreaction can move forecasts away from the underreaction

generated by imperfect information on impact.

Based on the premise by Bordalo et al. (2019), our broad aim in this section is to

contribute to this debate by presenting an extension of the NK model in which long-

term beliefs are guided by the diagnostic Kalman filter. The key innovation of our

setup compared to previous exercises in the literature is that agents form beliefs about

a hidden component that features both sizeable persistence, and is also permanent (in

the sense that the underlying process has a unit root.) To model the long-term nature
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of this hidden object, we calibrate this persistence to a high value, which conceptually

connects our exercise to the long-run risks approach (Bansal and Yaron 2004). How-

ever, ours is a general equilibrium representative-agent macroeconomic model where

consumers are concerned with the long run path of income.

Assume prices are completely rigid. Consumption is pinned down solely by beliefs

about long-run income.28 The information structure is as follows. TFP, in logs, now

has a permanent component ζt and a temporary component ξt. Agents do not observe

these components separately. Instead, they observe realized TFP and a noisy signal

about the permanent component st = ζt + εs,t where εs,t ∼ i.i.d. N(0, σ2
s), and form

beliefs using the diagnostic Kalman filter introduced by Bordalo et al. (2020).29

The following analytical result offers a simple comparison of beliefs about the long-

run under a) the diagnostic Kalman filter (DKF), b) the rational Kalman filter (RKF),

and c) the full information RE benchmark (FIRE).

Proposition 9 (Overreaction) Assume that ψp → ∞, φx = 0, and the persistence

of the permanent component ρζ = 0. Consider a positive shock to ζt. Then,

1. Beliefs about the long-run are greater under the DKF than under the RKF.

2. If θ is high enough, beliefs about the long-run under the DKF are greater than

under FIRE.

When ρζ > 0, delayed overreaction is possible. We offer a collection of numerical

results using the following calibration. In order to capture the idea that the agent

is forming beliefs about a very long-run object, we calibrate the persistence of the

permanent component to a high value, ρζ = 0.98. We normalize the standard deviation

of TFP to 1. We consider two values of the standard deviation of the signal: a relatively

precise signal (of standard deviation 0.01), or a relatively imprecise signal (of standard

deviation 0.03). Figure 2 presents the dynamics for beliefs about long-run productivity

in response to a one standard deviation permanent shock. The left-hand side (LHS)

panel presents the case of a precise signal, and the right-hand side (RHS) panel presents

the case of an imprecise signal.

Under FIRE, long-run beliefs jump to 1 on impact and stay there. This is because

the standard deviation of TFP innovations has been normalized to 1, and beliefs im-

28We take the limit φx → 0 and ψp → ∞. For brevity we do not write down the equations more explicitly, but
this conclusion can be reached by iterating forward the Euler equation.

29Even though the model does not explicitly have dispersed information as in Coibion and Gorodnichenko (2012),
we follow Lorenzoni (2009) by using a simple representative agent model with aggregate noisy signals. The filter
needs to be adapted to the particular information structure here, but the ideas are the same. For details of the
model specification, see Blanchard et al. (2013), or Appendix F for a full specification in the context of the
medium-scale DSGE.
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Figure 2: Impulse Responses: Beliefs About the Long-Run

(a) Precise Signal
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Notes: The panels depict the impulse responses of beliefs about long-run productivity to a one unit positive shock to the permanent
component of TFP. The left-hand side panel presents the case of a precise signal (σs = 0.01 and θ = 1.0); the right-hand side panel
with the case of an imprecise signal (σs = 0.03 and θ = 1.0).

mediately adjust to the long-run value of TFP after the shock. In the case of a precise

signal (LHS panel), beliefs under the RKF underreact on impact, starting off at 0.70.

As learning happens over time, these beliefs rise, gradually converging to 1 in the long

run.30 Instead, beliefs under the DKF strongly overreact on impact. This because the

signal is so precise that diagnosticity overwhelms imperfect information.

Turning to the case of an imprecise signal (RHS panel), beliefs under the RKF

underreact significantly, starting off at 0.41. Given that now imperfect information

is more severe, DKF beliefs also slightly underreact on impact, starting off at 0.84.

However, because agents receive a new signal every period, there is gradual learning.

Therefore, as they gather more information, DKF implies a sizeable overreaction over

periods 2 to 6, with a peak at 1.16. Notice, the RKF also slightly overreacts around

period 5. This is due to a mechanical effect induced by the persistence of beliefs.

However, diagnosticity induces overreaction above and beyond this mechanical effect.

We conclude by noting that we reported results only varying the precision of the

signal. By varying the degree of diagnosticity one modifies the degree of overreaction

independently. For instance, increasing θ to 1.5 (which is within the range of estimates

reported by Bordalo, Gennaioli, Ma, and Shleifer 2020) can generate a slight overre-

action in the short run and a stronger overreaction in the medium run, leading to a

hump-shaped pattern of beliefs.

30There is a light overreaction in period 3 even in the case of the RKF. This is simply a mechanical implication
of the persistence of beliefs inherited from the highly persistent permanent component.
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4 Empirical Evaluation

The primary goal of this section is to ask the following question. Consider a baseline,

medium scale, rational expectations DSGE model. Add diagnostic expectations to

such a model. (The diagnostic model nests the rational expectations model via the

diagnosticity parameter.) Is there clear evidence that diagnostic expectations improve

the ability of the DSGE model to fit business cycle data?

With this formulation of the broad question that will guide our empirical inves-

tigation, three interrelated subquestions emerge: What is the estimated value of the

diagnosticity parameter? Does the credible interval span the RE limit? And, ulti-

mately, is there statistical evidence that diagnosticity provides an advantage when

fitting business cycle data?

We highlight a number of aspects that discipline this exercise. First, we include

a rich set of frictions and shocks in the baseline model. This includes the frictions

introduced in the seminal work by Christiano, Eichenbaum, and Evans (2005). We

include the exogenous driving processes introduced by Smets and Wouters (2007). In

addition, we include information frictions, based on the specification by Blanchard,

L’Huillier, and Lorenzoni (2013). By adding all these bells and whistles (nominal,

real, and information frictions), and driving processes, we aim to perform a tough

test of the usefulness of the behavioral friction embodied by diagnostic expectations.

Indeed, we want to assess whether it provides a significant empirical advantage, even

when all the other commonly used ingredients have already been included.

Second, our procedure is standard, because as we just explained, it employs the set

of key frictions introduced by Christiano, Eichenbaum, and Evans (2005), subsequently

used by Smets and Wouters (2007), in the context of Bayesian estimation. Also, we

solely use the standard set of macroeconomic observables in Bayesian estimation.

Third, we note that the inclusion of information frictions leads to a diagnostic

Kalman filter, as introduced by Bordalo, Gennaioli, Ma, and Shleifer (2020). Coibion

and Gorodnichenko (2015b) have also emphasized the importance of expectation un-

derreaction in the aggregate, which our information structure is able to account for.

4.1 Medium-Scale DSGE Model

Since the model is standard (Christiano, Eichenbaum, and Evans 2005), we describe

here its main ingredients and relegate the details to the appendix. The preferences of

the representative household feature habit formation and differentiated labor supply

types. In addition to price rigidity, we introduce wage rigidity as in Erceg, Hender-
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son, and Levin (2000). The capital stock is owned and rented by the representative

household, and the capital accumulation features a quadratic adjustment cost in in-

vestment, as introduced by Christiano et al. (2005). The model features variable

capacity utilization.

The final good is a Dixit-Stiglitz aggregate of a continuum of intermediate goods,

produced by monopolistic competitive firms, with Rotemberg (1982) costs of price

adjustment. Similarly, specialized labor services are supplied under monopolistic com-

petition, with Rotemberg (1982) costs of nominal wage adjustment. The monetary

authority sets the nominal interest rate following an inertial Taylor rule.

Following Smets and Wouters (2007) and Blanchard et al. (2013), the model is

estimated based on U.S. time series for GDP, consumption, investment, employment,

the federal funds rate, inflation, and wages, for the period 1954:III-2011:I. We set up a

Kalman filter to get smoothed estimates of the permanent component of productivity

and the associated agents’ beliefs. We generate 1,500,000 draws using a Metropolis-

Hastings algorithm and discard the first 40% as initial burn-in. We set a flat prior

centered at 0.85 for the diagnosticity parameter.

4.2 Results

The parameter estimates are reported on Table 1. Estimation results report mean

posterior estimates, along with 2.5% and 97.5% percentiles. The bottom row reports

the marginal likelihood. Figure 3 plots the path of beliefs about the long-run level of

TFP, in both DE and RE cases.31

Let us first look at the estimate for the diagnosticity parameter θ. The parameter

is estimated at 0.9992. This is close to what is obtained in the previous empirical

exercises reported by Bordalo, Gennaioli, Ma, and Shleifer (2020), and to the value

used by Bordalo, Gennaioli, Shleifer, and Terry (2021). Figure 5 in the appendix

shows that the posterior distribution of θ is unimodal.32 The 95 percent credible

interval covers values from 0.746 to 1.248, away from the RE limit of zero.

We use the Bayes factor to empirically evaluate the fit of the diagnostic model

against the rational model. The log marginal likelihood of the data given the esti-

mated diagnostic model is -1584.31. This statistic is -1590.66 in the case of the ratio-

nal counterpart. Following the suggestion by Kass and Raftery (1995), we compute

31We have numerically verified that the parameter space we consider does not contain bifurcation values of θ
(the only bifurcation value we have found is for θ > 10.)

32We have checked the robustness of this finding to several variations of the prior distribution on θ, including
unimodal distributions with a mean both above and below 1. This did not significantly change the resulting
posterior distribution of θ.
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Table 1: Estimated Parameters

Parameter Prior Posterior Conf. bands Distribution Prior SD

θ Diagnosticity 0.85 0.9992 0.7462 1.2482 Uniform 0.4907

h Habit 0.5 0.6970 0.6515 0.7436 Beta 0.1

α Production function 0.3 0.1466 0.1361 0.1571 Normal 0.05

ν Inv. Frisch elasticity 2 1.1073 0.5013 1.6057 Gamma 0.75
χ′′(1)
χ′(1) Capacity utilization cost 5 5.2601 3.6311 6.8841 Gamma 1

S′′(1) Investment adjustment cost 4 3.6204 2.6690 4.5390 Normal 1

ψp Price adjustment 100 169.72 140.69 198.32 Normal 25

ψw Wage adjustment 3000 18502.10 13275.99 23764.48 Normal 5000

φπ Taylor rule inflation 1.5 1.0383 1.0001 1.0735 Normal 0.3

φx Taylor rule output 0.005 0.0157 0.0092 0.0223 Normal 0.005

Technology Shocks and Noise

ρ 0.6 0.9336 0.9175 0.9500 Beta 0.2

σa 0.5 1.1097 1.0176 1.2005 Inv. Gamma 1

σs 1 2.2576 1.1171 3.3484 Inv. Gamma 1

Investment-Specific Shocks

ρµ 0.6 0.7661 0.6778 0.8584 Beta 0.2

σµ 5 3.7301 2.5914 4.8255 Inv. Gamma 1.5

Markup Shocks

ρp 0.6 0.8260 0.7565 0.8965 Beta 0.2

φp 0.5 0.9611 0.9348 0.9900 Beta 0.2

σp 0.15 0.5583 0.4746 0.6407 Inv. Gamma 1

ρw 0.6 0.9545 0.9309 0.9797 Beta 0.2

φw 0.5 0.9661 0.9482 0.9849 Beta 0.2

σw 0.15 0.7512 0.6694 0.8286 Inv. Gamma 1

Policy Shocks

ρR 0.5 0.4743 0.4175 0.5315 Beta 0.2

ρmp 0.4 0.0353 0.0018 0.0670 Beta 0.2

σmp 0.15 0.3798 0.3431 0.4149 Inv. Gamma 1

ρg 0.6 0.9943 0.9902 0.9986 Beta 0.2

σg 0.5 0.3594 0.3311 0.3876 Inv. Gamma 1

log Marg. Likelihood -1584.31

Notes: The table reports mean posterior estimates, along with 2.5% and 97.5% percentiles. We ran 1,500,000 MH draws, discarding the
first 40% as initial burn-in. The observation equation is composed of U.S. time series for GDP, consumption, investment, employment,
the federal funds rate, inflation, and wages.
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2 log(BF ) = 12.70, which represents very strong evidence in favor of the diagnostic

model.33

In order to understand the empirical advantage of the DE model in terms of fit, we

computed a collection of data moments (volatilities, cross-correlations and autocorre-

lations for all endogenous variables) and compared these moments to those predicted

by both models. We find clear evidence that the DE model provides a superior fit

of the first-order autocorrelation of output, consumption, and investment growth, the

RE model consistently overestimating the degree of autocorrelation.34

We now focus on the amount of extra volatility afforded by DE according to the

estimation. DE generate a sizable increase in the volatility of aggregate quantities,

such as output, consumption, investment growth. Among these, the largest increase is

the one of consumption, with a 36% increase volatility. This result is expected, since,

as explained by Blanchard, L’Huillier, and Lorenzoni (2013), expectations matter the

most for the determination of consumption in the present model. This volatility is

propagated, in general equilibrium, to output and investment, with an observed 23%

increase in the standard deviation of both variables. There is a slight decrease of

inflation and interest rate volatility.35

Turning the attention to the path of beliefs in the DE model, we see in Figure 3

that diagnostic beliefs (dashed, in red) track their rational counterpart (solid, in blue)

over medium-run horizons, but at the same time exhibit large short-run volatility. In

particular, it is interesting to note that at turning points for rational beliefs (as, for

instance, before the 2008 downturn, or the start of the sustained productivity pickup of

the 1990s), diagnostic beliefs overshoot considerably, and then revert back to tracking

the rational benchmark.36

5 Conclusion

In this paper, we argue that diagnostic expectations constitute a behavioral mechanism

that can be fruitfully incorporated into New Keynesian macroeconomics. To this end,

we first considered a set of challenges encountered by researchers working with this

type of models, and revisited them analytically under diagnostic expectations. We

33The interpretation of this quantity is that the odds that the data was generated by the diagnostic model instead
of the rational model are above 150:1.

34Specifically, in the data, the first-order autocorrelation of output, consumption, and investment growth are
0.33, 0.36, and 0.27, respectively; 0.39, 0.26, and 0.54 as predicted by the DE model, respectively; 0.58, 0.59, and
0.70 are predicted by the RE model.

35See Appendix F.
36For reasons of space, we present a number of complementary results in the appendix.
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Figure 3: Long-Run TFP, and Agents’ Real-Time Expectations
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Notes: The figure plots estimated series using a Kalman smoother. The black solid line denotes the econometrician’s smoothed series
of the long-run level of TFP (ât+∞|T ), whereas the blue solid and red dashed lines correspond to the econometrician’s smoothed series

of the agents’ real time beliefs about the long-run level of TFP under RE (â(t+∞|t)|T ) and DE (âθ
(t+∞|t)|T ), respectively. Similar to

Blanchard, L’Huillier, and Lorenzoni (2013), the aggregate TFP process ât is composed of two components: a permanent component

ζ̂t and a transitory component ξ̂t: ât = ζ̂t + ξ̂t. The long-run level of TFP is given by ât+∞ = (ζ̂t − ρζ̂t−1)/(1− ρ).

concluded that the use of diagnostic expectations opens up avenues to make significant

progress in the context of these challenges. We then asked if diagnostic expectations

are validated empirically. Using a standard procedure, we conclude that the answer

to this question is yes: The diagnostic model dominates the rational counterpart in

terms of fit.

Our general solution method offers opportunities to explore and revisit a number

of themes in macroeconomics and international macroeconomics in the context of di-

agnostic expectations. For example, a challenge in open economy models has been

to account for the cyclicality of the current account in emerging countries, or to im-

prove our understanding of exchange rate predictability. We leave these explorations

to future work.
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A Linearity Results for the Diagnostic Expectation

Operator

This appendix significantly expands Section 2 by providing extra, more detailed, ma-

terial, and proofs. The theme of this appendix is to develop tools for handling the DE

operator. We start by writing out some of the expressions in detail, and discussing

some of the intuition for the results. The main goal is to build up to the proofs for

two key results that allows us to handle linear stochastic recursive models: Proposition

1 (additivity of the DE operator) and Proposition 2 (RE representation). Standard

matrix operations to obtain the solution, and associated proofs (needed once the RE

representation has been obtained), are discussed in Appendix B.

Explicit Expression for Diagnostic Distribution Under the NNA, and Tractabil-

ity Intuition. Given (realized) states x̌t and x̌t−1, the diagnostic probability distri-

bution function of xt+1 is

f θt (xt+1) = f(xt+1|xt = x̌t) ·
[

f(xt+1|xt = x̌t)

f(xt+1|xt = ρxx̌t−1)

]θ
· C (17)

When looking at equation (17), it is important to notice that, generically, x̌t 6=
ρxx̌t−1 (due to the realization of the shock εt.) However, since εt is fixed at 0 by the

NNA, then

f(xt+1|xt = ρxx̌t−1) ∝ ϕ

(
xt+1 − ρ2

xx̌t−1

σε

)
Thanks to the NNA, the variance of this pdf is σ2

ε , which is the same as the variance

of the true pdf of xt+1. Thus, the true and the reference distributions have the same

variance. This allows for tractability, implying that the diagnostic distribution is

normally distributed.

A.1 Diagnostic Expectation of Future Variables

We now prove that the diagnostic expectation of a univariate variable can be expressed

in terms of rational expectations.

Proof of Equation (4). The diagnostic expectation of xt+1 is given by

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx
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The diagnostic pdf is given by

f θt (x) =

[
1
σε
ϕ

(
x−ρxx̌t
σε

)]1+θ

[
1
σε
ϕ

(
x−ρ2

xx̌t−1

σε

)]θ C
where C is a normalizing constant given by

exp

{
− 1

2

(
θ(1 + θ)ρ2

xx̌
2
t + θ(θ + 1)ρ4

xx̌
2
t−1 − 2(1 + θ)θρ3

xx̌tx̌t−1

σ2
ε

)}
in which case

Eθt [xt+1] =

∫ ∞
−∞

xf θt (x)dx

=

∫ ∞
−∞

x
1

σε
ϕ

(
x− (ρxx̌t + θ(ρxx̌t − ρ2

xx̌t−1))

σε

)
dx

Thus, the diagnostic distribution f θt (xt+1) is normal with variance σ2
ε and mean

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1])

�

In this formula, the lagged expectation Et−1[xt+1] is the expectation conditional on

information available at t− 1, that is, conditional on x̌t−1. Thus, Et[xt+1] = ρxx̌t and

Et−1[xt+1] = ρ2
xx̌t−1. For the AR(1) process assumed in Section 2.1 and a given realized

ε̌t, this proof implies that:

Eθt [xt+1] = Et[xt+1] + θρxε̌t > Et[xt+1]

if and only if ε̌t > 0, that is diagnostic expectations indeed extrapolate the past shock

into future beliefs.

Linearity of Diagnostic Expectation Operator. Assume that yt also follows an

AR(1) process:

yt = ρyyt−1 + ηt (18)

where ηt ∼ i.i.d.N(0, σ2
η) and ρy is a persistence parameter satisfying ρy ∈ [0, 1), and

σ2
η is the shock’s variance.

Given this, and the assumption on the AR(1) processes made in Section 2.1, the
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sum xt+1 + yt+1 is a normal random variable. The following is a corollary of (4).

Corollary 1 (Univariate RE Representation for a Sum of Random Variables)

Eθt [xt+1 + yt+1] = Et[xt+1 + yt+1] + θ(Et[xt+1 + yt+1]− Et−1[xt+1 + yt+1])

Hence, we immediately see that, in this case, the DE operator is additive:

Eθt [xt+1 + yt+1] = Eθt [xt+1] + Eθt [yt+1]

A.2 Diagnostic Expectation of Predetermined Variables

A technical challenge that arises in the context of DSGEs is the presence of predeter-

mined variables, and how to handle them in the context of DE. In this appendix, we

derive a series of results to maintain linearity. To the best of our knowledge, we are

the first to formally address these issues.

Suppose the predetermined variable is yt. In order to compute the DE of yt, and of

linear combinations of this variable with other variables following AR(1) processes, we

will use the Dirac delta function, defined as follows. Suppose that y̌t is the realization

of yt. Since yt is degenerate, it can be represented by a cumulative distribution function

(cdf) with vanishing uncertainty:

Pr(yt ≤ y̌|yt = y̌t) = lim
ση→0+

1

ση
Φ

(
y̌ − y̌t
ση

)
This is the probability that yt is below any given value y̌, where Φ(x) is the cumulative

distribution function (cdf) of a standard normal random variable:

Φ (x̌) =

∫ x̌

−∞
ϕ(x)dx

This implies that Pr(yt = y̌t) = 1 and Pr(yt 6= y̌t) = 0, also denoted using the Dirac

delta function δ(x):

δ(x) = lim
a→0+

1

a
ϕ
(x
a

)
with the requirement that δ(x) is a pdf. Using this notation, δ(yt − y̌t) is the pdf of

yt, and thus

Pr(yt ≤ y̌|yt = y̌t) =

∫ y̌

−∞
δ(y − y̌t)dy

is equal to 1 for y̌ ≥ y̌t and equal to 0 otherwise.
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There are two equivalent approaches to compute the DE of linear combinations

involving predetermined variables.

The first approach rests in the strong additivity result. To prove this result, we

first need to compute the DE of a predetermined variable in isolation. Even though

agents in the model do not compute the DE of predetermined variables in isolation,

mathematically this is a necessary step.37

Lemma 1 computes the time-t diagnostic expectation of yt under the NNA. In this

case, the reference distribution of yt is degenerate, with expectation ρyy̌t−1, where y̌t−1

is the past realization. We represent this reference distribution by a cdf with vanishing

uncertainty, as follows

Pr(yt ≤ y̌|yt = ρyy̌t−1) = lim
ση→0+

1

ση
Φ

(
y̌ − ρyy̌t−1

ση

)
(19)

Lemma 1 (DE of a Degenerate Random Variable Under the NNA)

Eθt [yt] = y̌t + θ(y̌t − ρyy̌t−1)

Proof (Lemma 1). The diagnostic expectation of yt is given by

Eθt [yt] =

∫ ∞
−∞

yf θt (y)dy

In order to get the diagnostic pdf of yt, we start by looking at the diagnostic cdf, which

by virtue of the NNA is

Prθt (yt ≤ y̌) = lim
ση→0+

∫ y̌

−∞

[
1
ση
ϕ
(
y−y̌t
ση

)]1+θ

[
1
ση
ϕ
(
y−ρy y̌t−1

ση

)]θ C dy

First, note that[
1
ση
ϕ

(
y−y̌t
ση

)]1+θ

[
1
ση
ϕ

(
y−ρy y̌t−1

ση

)]θ =
1√

2πση
exp

{
−1

2

[
(1 + θ)

(
y − y̌t
ση

)2

− θ
(
y − ρyy̌t−1

ση

)2]}

=
1√

2πση
exp

{
−1

2

[
y −

(
(1 + θ)y̌t − θρty̌t−1

)]2
σ2
η

}
× 1

C

37Hence, some readers will find it useful to think about this as an “as if” approach. That is, agents in the model
behaved as if they computed the DE of predetermined variables directly.
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where the value of C must be

C = exp

{
−1

2

[
θ(1 + θ)y̌2

t + θ(1 + θ)ρ2
yy̌

2
t−1 − 2θ(1 + θ)ρyy̌ty̌t−1

σ2
η

]}
Hence, we can write

Eθt [yt] = lim
ση→0+

lim
u→∞

∫ u

−∞
y

[
1
ση
ϕ

(
y−y̌t
ση

)]1+θ

[
1
ση
ϕ

(
y−ρty̌t−1

ση

)]θ Cdy
= lim

ση→0+
lim
u→∞

∫ u

−∞
y

1

ση
ϕ

(
y −

(
(1 + θ)y̌t − θρyy̌t−1

)
ση

)
dy

= lim
ση→0+

lim
u→∞

{∫ u

−∞

y −
(
(1 + θ)y̌t − θρyy̌t−1

)
ση

ϕ

(
y −

(
(1 + θ)y̌t − θρyy̌t−1

)
ση

)
dy

+
(
(1 + θ)y̌t − θρyy̌t−1

) ∫ u

−∞

1

ση
ϕ

(
y −

(
(1 + θ)y̌t − θρyy̌t−1

)
ση

)
dy

}
We will evaluate the integral by change of variables. To this end, define z ≡

y−((1+θ)y̌t−θρy y̌t−1)

ση
such that

Eθt [yt] = lim
ση→0+

lim
u→∞

{
ση

∫ u−((1+θ)y̌t−θρyy̌t−1)

ση

−∞
zϕ(z)dz + ((1 + θ)y̌t − θρyy̌t−1)

∫ u−((1+θ)y̌t−θρyy̌t−1)

ση

−∞
ϕ(z)dz

}

Since limση→0+
u−((1+θ)y̌t−θρy y̌t−1)

ση
= +∞ when u > (1 + θ)y̌t − θρyy̌t−1, we have

lim
ση→0+

∫ u−((1+θ)y̌t−θρyy̌t−1)

ση

−∞
zϕ(z)dz = 0 and lim

ση→0+

∫ u−((1+θ)y̌t−θρyy̌t−1)

ση

−∞
ϕ(z)dz = 1

and

Prθt (yt ≤ y̌) = lim
ση→0+

1

ση
Φ

(
y̌ − (y̌t + θ(y̌t − ρyy̌t−1))

ση

)
Thus,

f θt (yt) = δ(yt − (y̌t + θ(y̌t − ρyy̌t−1)))

and

Eθt [yt] = y̌t + θ(y̌t − ρyy̌t−1)

�

This lemma generalizes the diagnostic expectation representation obtained in Equa-

tion (4) to degenerate variables. We highlight that the NNA is crucial for this result.
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Later in this section, we show that alternative conditioning sets deliver a different re-

sult (cases in which one loses recursion in DSGE models when there are predetermined

variables.)

We already mentioned above that agents in the model do not compute the DE of

predetermined variables in isolation. Still, the expression given by Lemma 1 probably

deserves some discussion. First, it is worth mentioning something we highlighted in

Footnote 9 once again. In order to highlight the fact that the agent uses a reference

distribution back to t − 1 more apparent, one is tempted to denote the diagnostic

expectation operator as Eθt,t−1[ · ], at the cost of making the notation heavier. This

would also serve to clarify how the formula given by Lemma 1 arises: the formula is

simply capturing the path-dependence property of beliefs, which impacts the expression

for the expectation even for degenerate variables.

Also, the Lemma is solely presented to clarify what model consistency implies. In

fact, notice that the reference distribution of yt is also based on the no-news assump-

tion.38 Thus, the agent uses a reference distribution whereby the shock ηt is equal to

0 in expectation (equivalently, such that yt is, in expectation, fully determined by the

persistence of the process.)

Thus, the agent’s computation of the diagnostic expectation is distorted by agents’

memory of the past (which enters through the reference distribution.) Mathematically,

the formula is an implication of both the true and the reference distributions of yt

being represented by a Dirac delta function, as formulated fully in Lemma 1. We

emphasize that this step is crucial to achieve tractability in these models. Indeed,

below we show two alternate approaches that deliver Eθt [yt] = y̌t by breaking our

consistency requirement. In those scenarios, a linear RE representation does not exist.

Consequently, our consistency requirement is also valuable for delivering a linear RE

representation in general settings.

Having established the results above, we are now in a position to provide the proof

for Proposition 1.

Proof (Proposition 1). There are two cases:

• The case s = r = 1 follows from the fact that both xt+1 and yt+1 are normal and

therefore Equation (4) and Corollary 1 apply.

• The case of s = 0 or r = 0 follows from Lemma 1.

�
38In the linear model below, this will amount to making the same assumption on shocks, both for future and

predetermined variables.
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The second approach to the computation of the DE of linear combination involving

predetermined variables is to recognize that such linear combinations are also Gaussian,

and extend the BGS formula to this case. We establish the validity of this approach

as follows. Let us denote the predetermined random variable with yt. It is useful

to first record the following lemma, showing that the sum xt+1 + yt follows a normal

distribution.

Lemma 2

xt+1 + yt ∼ N(ρxx̌t + y̌t, σ
2
ε)

Proof. We know that

xt+1 ∼ N(ρxx̌t, σ
2
ε)

To derive the pdf of zt+1 ≡ xt+1 + yt, we evaluate the convolution

fzt+1(z) =

∫ ∞
−∞

fxt+1(x)fyt(z − x)dx =

∫ ∞
−∞

1

σε
ϕ

(
x− ρxx̌t

σε

)
δ(z − x− y̌t)dx

where fzt+1 is the pdf of zt+1, fxt+1 is the pdf of xt+1, and fyt is the pdf of yt, and the

second equality follows from the fact that xt+1 is normally distributed and yt follows

a Dirac delta distribution centered at y̌t.

By the symmetry of the Dirac delta function,

fzt+1(z) =

∫ ∞
−∞

1

σε
ϕ

(
x− ρxx̌t

σε

)
δ(x− z + y̌t)dx

and by the sifting property of the Dirac delta function:39

fzt+1(z) =
1

σε
ϕ

(
z − y̌t − ρxx̌t

σε

)
which is what we wanted to show. �

Armed with Lemma 2, we then obtain the following rational expectations represen-

tation for DE with predetermined variables.

Lemma 3 (Univariate RE Representation with Degenerate Random Variables)

39The Dirac delta function’s sifting property is the following. For a continuous function f(x) over (−∞,∞),∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0)
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Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

Proof. First, we need the reference distribution of xt+1 + yt. Under no news, εt =

ηt = 0 and so,

xt+1 + yt = ρ2
xxt−1 + ρyyt−1 + εt+1

Then, by an easy extension of Lemma 2,

(xt+1 + yt)|εt = ηt = 0 ∼ N(ρ2
xx̌t−1 + ρyy̌t−1, σ

2
ε)

It follows that both the reference and representative distributions are normal and have

variance σ2
ε . We then conclude that

Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

�

We can in fact use this last proposition to compute the expectation of the linear

combination for the processes presented in the body. The calculation is as follows:

Eθt [xt+1 + yt] = Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

= ρxx̌t + y̌t + θ(ρxx̌t + y̌t − ρ2
xx̌t−1 − ρyy̌t−1)

= ρxx̌t + y̌t + θρxε̌t + θη̌t

= ρxx̌t + y̌t + θ(ρxε̌t + η̌t)

A.3 Existence and Uniqueness of the Rational Expectations

Representation for the General Linear Model

The proof for the existence and uniqueness of the RE representation for model (Propo-

sition 2) now follows from the previous results.

Proof (Proposition 2). In order to prove this result, we first note that (7) implies

that yt is multivariate Gaussian random variable. xt is also a multivariate Gaussian

random variable.

As a consequence of this fact we can can evaluate the DE on the multivariate model.

There are two equivalent ways of proceeding:

• Apply the strong additivity for DE, Proposition 1, and then use Lemma 1 to
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compute the DE of predetermined variables. Rearrange terms. Expression (8)

follows.

• Apply Lemma 3 and rearrange the terms using the linearity of the RE operator.

Expression (8) follows.

Uniqueness follows from the fact that the DE can only be evaluated in a unique

way once NNA on the multivariate model (Assumption 2) has been assumed.

�

A.4 Alternative Assumptions for Predetermined Variables

We present two cases where the diagnostic expectation of a predetermined variable yt

at time t is equal to the observed time-t realization y̌t, and the diagnostic expectation

of a forward looking variable xt+1 is given by Equation (4). In these two alternate

cases, we then show that one cannot obtain a linear recursive RE representation.

We maintain the no-news assumption for xt+1 in this section. That is,

Eθt [xt+1] = Et[xt+1] + θ(Et[xt+1]− Et−1[xt+1]) (20)

which is the same as equation (4).

Alternative Assumption 1 for Degenerate Variables. Instead of the NNA (As-

sumption 1), let us suppose that the reference distribution for the predetermined vari-

able is same as the true distribution. In other words, there is no diagnosticity associated

with computing DE for yt at time t. Since yt is degenerate, its true distribution can

be represented by a cumulative distribution function (cdf) with vanishing uncertainty:

Pr(yt ≤ y̌|yt = y̌t) = lim
ση→0+

1

ση
Φ

(
y̌ − y̌t
ση

)
In order to get the diagnostic pdf of yt, we start by looking at the diagnostic cdf, with

the alternate reference distribution

Prθt (yt ≤ y̌|yt = y̌t, yt = y̌t) = lim
ση→0+

∫ y̌

−∞

[
1
ση
ϕ
(
y−y̌t
ση

)]1+θ

[
1
ση
ϕ
(
y−y̌t
ση

)]θ dy = Pr(yt ≤ y̌|yt = y̌t)

Thus,f θt (y) = δ(yt − y̌t). As a consequence,

Eθt [yt] = y̌t
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In order to compute diagnostic expectation xt+1 + yt, note that the true distribu-

tion for xt+1 + yt is same as shown in Lemma 2. Since we assume that the no-news

assumption holds for xt+1, the reference distribution for xt+1 + yt is N(ρ2
xx̌t−1 + y̌t, σ

2
ε).

We then obtain the following representation for the diagnostic expectation:

Eθt [xt+1 + yt] = (1 + θ)(ρx̌t + y̌t)− θ(ρ2x̌t−1 + y̌t)

= (1 + θ)ρx̌t − θρ2x̌t−1 + y̌t

= Eθt [xt+1] + Eθt [yt]

Detailed steps available upon request.

While this alternate assumption seemingly provides a linear representation of DE,

it is inconsistent with equation (20). To see this inconsistency, define zt+1 = xt+1 + yt.

Consequently,

Eθt [zt+1] = Et[zt+1] + θ(Et[zt+1]− Et−1[zt+1]) (from equation 20)

= Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

= (1 + θ)Et[xt+1]− θEt−1[xt+1] + (1 + θ)y̌t − θEt−1[yt]

6= Eθt [xt+1] + Eθt [yt] = Eθt [xt+1 + yt]

Hence, the linear RE representation does not exist in this case.

Alternative Assumption 2 for Degenerate Variables. Instead of the NNA (As-

sumption 1), let us suppose that the reference distribution of yt is the (non-degenerate)

normal distribution:

f(yt|yt−1 = y̌t−1) ∝ ϕ

(
yt − ρyy̌t−1

ση

)
which corresponds to replacing the NNA by the assumption that the conditioning set

is {yt−1 = y̌t−1}. This is the alternative discussed in Bordalo, Gennaioli, and Shleifer

(2018), footnote 8. We highlight that this is an assumption about past yt−1 instead of

current yt. Indeed, the NNA embeds an assumption about the shock εt, on top of the

conditioning on the realization y̌t−1, resulting in the reference cdf (19) above. In this

alternative case, the following lemma obtains.

Lemma 4 Replace Assumption 1 by {yt−1 = y̌t−1}. Then,

Eθt [yt] = y̌t
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Proof. The diagnostic expectation of yt is given by

Eθt [yt] =

∫
yf θt (y|yt = y̌t, yt−1 = y̌t−1)dy

Notice that in this notation, since we are not using the NNA, we explicitly write the

two conditioning events G = {yt = y̌t} and −G = {yt−1 = y̌t−1}. In order to get the

diagnostic pdf of yt, we start by looking at the diagnostic cdf:

Prθt (yt ≤ y̌|yt = y̌t, yt−1 = y̌t−1) = lim
a→0+

∫ y̌

−∞

[
1
a
ϕ
(
y−y̌t
a

)]1+θ[
1
ση
ϕ
(
y−ρy y̌t−1

ση

)]θ C dy

Notice that this time it is only the uncertainty in the numerator that vanishes. First,

note that[
1
a
ϕ

(
y−y̌t
a

)]1+θ

[
1
ση
ϕ

(
y−ρy y̌t−1

ση

)]θ =
1√

2π a
1+θ

σθη

exp

{
−1

2

[
(1 + θ)

(
y − y̌t
a

)2

− θ
(
y − ρyy̌t−1

ση

)2]}

=
1√

2πσa
exp

{
−1

2

(y − µa)2

σ2
a

}
× 1

C

where

µa =
σ2
η(1 + θ)y̌t − a2θρyy̌t−1

σ2
η(1 + θ)− a2θ

, σ2
a =

a2σ2
η

σ2
η(1 + θ)− a2θ

and the value of C must be

C = exp

{
−1

2

(
µ2
a − ka
σ2
a

)}
a1+θ

σaσθη

where

ka =
σ2
η(1 + θ)y̌2

t − a2θρ2
yy̌

2
t−1

σ2
η(1 + θ)− a2θ
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Hence, we can write

Eθt [yt] = lim
a→0+

lim
u→∞

∫ u

−∞
y

[
1
a
ϕ
(
y−y̌t
a

)]1+θ[
1
ση
ϕ
(
y−ρy y̌t−1

ση

)]θ C dy

= lim
a→0+

lim
u→∞

∫ u

−∞
y

1

σa
ϕ

(
y − µa
σa

)
dy

= lim
a→0+

lim
u→∞

{∫ u

−∞

y − µa
σa

ϕ

(
y − µa
σa

)
dy + µa

∫ x

−∞

1

σa
ϕ

(
y − µa
σa

)
dy

}
We will evaluate the integral by change of variables. To this end, define z ≡ y−µa

σa

such that

Eθt [yt] = lim
a→0+

lim
u→∞

{
σa

∫ u−µa
σa

−∞
zϕ(z)dz + µa

∫ u−µa
σa

−∞
ϕ(z)dz

}
Notice that

lim
a→0+

µa = y̌t

and

lim
a→0+

σa = 0

Since lima→0+
u−µa
σa

= +∞ when u > µa, we have

lim
a→0+

∫ u−µa
σa

−∞
zϕ(z)dz = 0 and lim

a→0+

∫ u−µa
σa

−∞
ϕ(z)dz = 1

and

Prθt (yt ≤ y̌|yt = y̌t, yt−1 = y̌t−1) = lim
a→0+

1

a
Φ

(
y̌ − y̌t
a

)
Thus,

f θt (y) = δ(yt − y̌t)

As a consequence,

Eθt [yt] = y̌t

as we wanted to show. �

We can then show with some additional steps that the linearity of DE may fail under

this alternate assumption on reference distribution for yt. We obtain the following
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result

Eθt [xt+1 + yt] =
(1 + θ)2Et[xt+1]− θEt−1[xt+1] + (2 + θ)y̌t

2 + θ

6= (1 + θ)Et[xt+1 + yt]− θEt−1[xt+1 + yt]

6= Eθ[xt+1] + Eθ[yt]

Detailed steps available upon request.

As in the previous case, we can show this RE representation leads to an inconsis-

tency when solving DSGE models. Once again, define zt+1 = xt+1 + yt. Consequently,

Eθt [zt+1] = Et[zt+1] + θ(Et[zt+1]− Et−1[zt+1]) (from equation 20)

= Et[xt+1 + yt] + θ(Et[xt+1 + yt]− Et−1[xt+1 + yt])

= (1 + θ)Et[xt+1]− θEt−1[xt+1] + (1 + θ)y̌t − θEt−1[yt]

6= Eθt [xt+1 + yt]
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B Detailed Solution Procedure, Stability, and Bound-

edness of the Solution: Supplementary Materials

and Proofs

Detailed Solution Procedure. We solve for the recursive equilibrium law of motion

of a linear diagnostic-expectations DSGE model using the method of undetermined

coefficients.

With the strong additivity result from Proposition 1, the class of forward-looking

models of our interest is written in the following form:

FEθt [yt+1] + G1Eθt [yt] + G2yt + Hyt−1 + MEθt [xt+1] + N1Eθt [xt] + N2xt = 0

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 + Qxt + Rvt (21)

we can rewrite the above stochastic difference equation as follows:

FEθt
[
Pyt + Qxt+1 + Rvt+1] + G1Eθt

[
Pyt−1 + Qxt + Rvt] + G2Pyt−1

+G2Qxt + G2Rvt + MEθt
[
Axt + vt+1

]
+ N1Eθt

[
xt
]

+ Hyt−1 + N2xt = 0

Diagnostic expectations can be represented as a linear combination of the rational
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expectations held at t and t− 1:

FEθt
[
Pyt + Qxt+1 + Rvt+1] = (1 + θ)FEt

[
P2yt−1 + PQxt + PRvt + QAxt + Qvt+1 + Rvt+1

]
− θFEt−1

[
P2yt−1 + PQAxt−1 + PQvt + PRvt + QA2xt−1 + QAvt + Qvt+1 + Rvt+1

]
= FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt

G1Eθt
[
Pyt−1 + Qxt + Rvt] = (1 + θ)G1Et[Pyt−1 + Qxt + Rvt]− θG1Et−1[Pyt−1 + Qxt + Rvt]

= G1Pyt−1 + G1Qxt + θG1Qvt + (1 + θ)G1Rvt

MEθt
[
Axt + vt+1

]
= (1 + θ)MEt[Axt + vt+1]− θMEt−1[Axt + vt+1]

= MAxt + θMAvt

N1Eθt
[
xt
]

= (1 + θ)N1Et[xt]− θN1Et−1[xt] = N1xt + θN1vt

We write the model in the rational expectations representation as

0 = FP2yt−1 + FPQxt + θFPQvt + (1 + θ)FPRvt + FQAxt + θFQAvt + G1Pyt−1 + ...

+ G1Qxt + θG1Qvt + (1 + θ)G1Rvt + G2Pyt−1 + G2Qxt + G2Rvt + MAxt + ...

+ θMAvt + N1xt + θN1vt + Hyt−1 + N2xt

It is now straightforward to proceed by the method of undetermined coefficients to

find a solution of the form (21), and the matrices P,Q,R can be found solving the

following matrix equations.

FP2 + GP + H = 0 (22)

FPQ + FQA + GQ + MA + N = 0 (23)

θFPQ + (1 + θ)FPR + θFQA + θG1Q + GR + θG1R + θMA + θN1 = 0 (24)

where G = G1 + G2 and N = N1 + N2.

We can use the techniques discussed in Uhlig (1995) to solve the quadratic matrix

equation (22) in P. The solution of the other two equations is straightforward as they
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are linear in Q and R: After vectorization, equation (23) becomes

(Im ⊗ FP)vec(Q) + (AT ⊗ F)vec(Q) + (Im ⊗G)vec(Q) + vec(MA) + vec(N) = 0

such that

vec(Q) = −
(

(Im ⊗ FP) + (AT ⊗ F) + (Im ⊗G)

)−1

× (vec(MA) + vec(N))

R can be found from (24):

R = −
(
(1 + θ)FP + G + θG1

)−1(
θFPQ + θFQA + θG1Q + θMA + θN1

)
Observe that solution for matrices P and Q does not depend on diagnosticity

parameter.

The Solution under Rational Expectations. Consider the model under rational

expectations:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt = 0 (25)

where G = G1 + G2 and N = N1 + N2 and, as above, yt and xt denote vectors of

endogenous variables (including controls and states) (m× 1) and of exogenous states

(n × 1). Et denotes the rational expectation operator, and the exogenous process is

given by (5).

Suppose that there is a unique stable solution of the model:

yt = P̃yt−1 + Q̃xt

then, we can rewrite the stochastic difference equation (25) as follows:

FEt
[
P̃yt + Q̃xt+1

]
+ GP̃yt−1 + GQ̃xt + Hyt−1 + MAxt + Nxt = 0

We can simplify the above equation to

FP̃2yt−1 + FP̃Q̃xt + FQ̃Axt + GP̃yt−1 + GQ̃xt + Hyt−1 + MAxt + Nxt = 0

and can solve similarly for the recursive equilibrium law of motion via the method of

undetermined coefficients. Specifically, the matrices P̃ and Q̃ can be found solving the
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following matrix equations.

FP̃2 + GP̃ + H = 0

FP̃Q̃ + FQ̃A + GQ̃ + MA + N = 0

Comparison of these equations with their counterpart under DE immediately shows

that P = P̃ and Q = Q̃.

Stability Conditions. Given the quadratic matrix equation (22)

FP2 + GP + H = 0

for the m×m matrix P and m×m matrices G and H, define the 2m× 2m matrices

Ξ and ∆:

Ξ =

[
−G −H

Im 0m

]
and

∆ =

[
−F 0m

0m Im

]
where Im is the identity matrix of size m and 0m is the m×m matrix with only zero

entries.

Uhlig (1995) shows that if (a) s is a generalized eigenvector and λ is the corre-

sponding generalized eigenvalue of Ξ with respect to ∆, then s can be written as

s′ =
[
λx
′
, x
′]

for some x ∈ Rm, and (b) there are m generalized eigenvalues λ1, ..., λm

together with generalized eigenvectors s1, ..., sm of Ξ with respect to ∆, written as

s
′
i = [λix

′
i, x

′
i] for some xi ∈ Rm, and if (x1, ..., xm) is linearly dependent, then

P = ΩΛΩ
′

is a solution to the matrix quadratic equation, where Ω = [x1, ..., xm] and Λ =

diag(λ1, ..., λm).

The stability conditions are given as follows.40

Theorem 1 The solution P is stable if |λi| < 1 for all i = 1, ...,m.

Thus, we can easily show that the stability conditions for both models are the same.

40See Section 6.3 of Uhlig (1995) for a detailed discussion.

51



Proof (Proposition 3). The solutions P and P̃ are the same since they involve

identical matrices F, G, and H. Thus, the stability conditions stated in Theorem 1

are the same for both solutions. �

Proof (Proposition 4). Let’s consider the RE model presented in equation (25)

where the exogenous variables are stacked in a (n × 1) vector xt that is assumed to

follow the AR(1) stochastic process

xt = Axt−1 + vt

where vt is a (k × 1) vector of Gaussian and orthogonal exogenous shocks:

vt ∼ N(0,Σv)

and A is a diagonal matrix of persistence parameters.

Suppose that there is a unique stable solution of the model:

yt = Pyt−1 + Qxt (26)

Assume, without loss of generality, that any unanticipated shocks or news only hit

the economy at date 1. The economy is in steady state at date 0 or before. Then, the

solution of the DE model from date 2 onwards coincides with the RE model solution.

We prove this statement by considering the RE representation of the DE model derived

in equation (8), reproduced here:

FEt[yt+1] + Gyt + Hyt−1 + MEt[xt+1] + Nxt

+Fθ
(
Et[yt+1]− Et−1[yt+1]

)
+Mθ

(
Et[xt+1]− Et−1[xt+1]

)
+G1θ

(
yt − Et−1[yt]

)
+N1θ

(
xt − Et−1[xt]

)
= 0

Since no news or shocks are assumed to happen for t ≥ 2, we get that

Et[yt+1]−Et−1[yt+1] = Et[xt+1]−Et−1[xt+1] = yt−Et−1[yt] = xt−Et−1[xt] = 0; ∀t ≥ 2

The system from date t ≥ 2 then simplifies to the RE model, the solution of which is

given by equation (26) for t ≥ 2. Date 1 solution for the DE model can then be found
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from (note the assumption that the economy is in steady state before date 1):

FE1[y2] + Gy1 + ME1[x2] + Nx1

+θ
(
FE1[y2] + ME1[x2] + G1y1 + N1x1

)
= 0

Notice that E1[y2] and E1[x2] are known at date 1 from the RE solution.

E1[y2] = Py1 + QAx1; E1[x2] = Ax1

After substituting these values and rearranging, we get:

(
(1 + θ)FP + G + θG1

)
y1 +

(
(1 + θ)(FQ + M)A + N + θN1

)
x1 = 0

Then, it follows that a bounded solution for the DE model exists if (1+θ)FP+G+θG1

is full-rank. �

General Condition for Extra Volatility We establish a general result about when

DE generate extra volatility over RE. Specific examples are provided in Section 3. As

a reminder, in the case of DE, the solution of a general linear model takes the form:

yt = Pyt−1 + Qxt + Rvt

Instead, in the case of RE, the solution of model takes the form:

yt = P̃yt−1 + Q̃xt

Comparing these two immediately leads to conjecture that, under DE, there should

be extra volatility due to the presence of the extra term Rvt. However, whether this

conjecture is true for a given set of parameters will depend on the covariance of the

matrix Q with the other matrices of parameters in the solution. This is what the

following proposition makes precise.

Proposition 10 (Extra Volatility) Let yDEit and yREit respectively denote the i-th

component of the vector of endogenous variables yDEt and yREt and V ar(yDEit ) and

V ar(yREit ) denote the variance of the variable yDEit and of the variable yREit . Then,

V ar(yDEit ) is larger than V ar(yREit ) if and only if:

diag(RΣvR′ + 2QΣvR′)i > 0
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where Σv is the variance-covariance matrix of vt.

Proof. We have already shown that P and P̃ are the same and that Q and Q̃ are the

same. Thus, given the exogenous process xt, the solution for the model with diagnostic

expectations and for the model with rational expectations can be formulated as

yDEt = Pyt−1 + Qxt + Rvt

yREt = Pyt−1 + Qxt

such that the variance of the vector of endogenous variables under diagnostic expecta-

tions, yDEt , is given by

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt)

+ 2 Cov(Pyt−1,Qxt) + 2 Cov(Pyt−1,Rvt) + 2 Cov(Qxt,Rvt) (27)

Similarly, the variance of the vector of endogenous variables under rational expec-

tations, yREt is given by

V ar(yREt ) = V ar(Pyt−1) + V ar(Qxt) + 2 Cov(Pyt−1,Qxt)

Since cov(Pyt−1,Rvt) = 0, (27) is simplified to

V ar(yDEt ) = V ar(Pyt−1) + V ar(Qxt) + V ar(Rvt) + 2 Cov(Pyt−1,Qxt) + 2 Cov(Qxt,Rvt)

such that by taking the difference of the two variances, we have

V ar(yDEt )− V ar(yREt ) = V ar(Rvt) + 2 Cov(Qxt,Rvt)

= V ar(Rvt) + 2 Cov(QAxt−1 + Qvt,Rvt)

= RΣvR′ + 2QΣvR′

Thus, for an endogenous variable yit to have extra volatility with diagnostic expec-

tations, the i-th diagonal component of the matrix RΣvR′+ 2QΣvR′ must be greater

than zero.

We conclude by making a parallel to the work by Matsuyama (2007), who high-

lights, in the context of financial frictions, that equilibrium properties change non-

monotonically with parameter values in such models. Looking at the expression for

the matrix R reveals that it is a non-linear function of θ. Hence, even values of θ close

to zero have the potential to (discontinuously) induce large volatility in linear models.
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C Diagnostic New Keynesian Model: Detailed Deriva-

tion

There are three sets of agents in the economy: households, firms and government.

Total output produced is equal to consumption expenditure made by the households

and adjustment costs spent in adjusting prices.

C.1 Households

Households have the following lifetime utility

logCt − ω
L1+ν
t

1 + ν
+ Eθt

[
Σ∞s=t+1β

s−t
[
log(Cs)−

ω

1 + ν
L1+ν
s

]]
subject to budget constraint:

PtCt +
Bt+1

(1 + it)
= Bt +WtLt +Dt + Tt ,

PtCt is nominal expenditure on final consumption good, Bt+1 denotes purchase of nom-

inal bonds that pay off 1 + it interest rate in the following period, WtLt denotes labor

income, Dt and Tt denote dividends from firm-ownership and lump-sum government

transfers respectively. Eθt is the diagnostic expectations operator with diagnosticity

parameter θ.

Let logCt ≡ u(Ct). The consumption Euler equation is given by:

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
Multiplying with Pt−1 on both sides:

u′(Ct)Pt−1

Pt
= β(1 + it)Eθt

[
u′(Ct+1)Pt−1

Pt+1

]
Let Πt = Pt

Pt−1
be the gross inflation rate. We can rewrite the Euler equation as:

u′(Ct)

Πt

= β(1 + it)Eθt
[
u′(Ct+1)

Πt Πt+1

]
substitute the functional form for u(Ct) and log-linearize the equation around the

deterministic steady state (Π = 1, β(1 + i) = 1). Hat-variables in small-cases denote
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log-deviation from steady state.

−π̂t − ĉt = ît + Eθt [−ĉt+1 − π̂t − π̂t+1]

Use the resource constraint: ŷt = ĉt, to get

ŷt = Eθt [ŷt+1 + π̂t+1 + π̂t]− π̂t − ît

Using additivity, rearranging, and using the fact that

Eθt [π̂t] = Et[π̂t] + θ(Et[π̂t]− Et−1[π̂t]) = π̂t + θ(π̂t − Et−1[π̂t])

which follows from Lemma 1, we obtain the equation in the body:

ŷt = Eθt [ŷt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t])

C.1.1 Alternate derivation of the log-linearized Euler equation

We briefly show an alternate proof to derive the log-linearized Euler equation without

explicitly requiring Lemma 1. Consider the consumption Euler equation

u′(Ct)

Pt
= β(1 + it)Eθt

[
u′(Ct+1)

Pt+1

]
Loglinearizing:

ŷt = Eθt [ŷt+1]− (̂it − (Eθt [p̂t+1]− p̂t))

where {ŷt, ît, p̂t} denote loglinear deviations of output, inflation from their respective

steady states, and of the price level from an initial price level, respectively. We can

show that (Eθt [p̂t+1] − p̂t) can be rewritten as Eθt [π̂t+1] + θ(π̂t − Et−1[π̂t]). Using the

BGS formula (4) presented in the main text, we can get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[p̂t+1]− θEt−1[p̂t+1]− p̂t

Adding and subtracting (1 + θ)p̂t, we get:

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[p̂t+1] + θp̂t

Adding and subtracting θEt−1[p̂t], we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1]− θEt−1[p̂t] + θp̂t
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Adding and subtracting θp̂t−1, we get

Eθt [p̂t+1]− p̂t = (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] + θ(π̂t − Et−1[π̂t])

Recognize that (1 + θ)Et[π̂t+1]− θEt−1[π̂t+1] ≡ Eθt [π̂t+1], we get that

Eθt [p̂t+1]− p̂t = Eθt [π̂t+1] + θ(π̂t − Et−1[π̂t])

C.2 Firms

Monopolistically competitive firms, indexed by j ∈ [0, 1], produce a differentiated good,

Yt(j). We assume a Dixit-Stiglitz aggregator that aggregates intermediate goods into

a final good, Yt. Intermediate goods demand given by:

Yt(j) =

(
Pt(j)

Pt

)−εp
Yt

where εp > 1 is the elasticity of substitution across intermediate goods’ varieties, Pt(j)

is price of intermediate good j, and Pt is the price of final good Yt. Each intermediate

good is produced using the technology:

Yt(j) = AtLt(j)

where log(At) is an aggregate TFP process that follows an AR(1) process with persis-

tence coefficient ρa:

logAt = ρa logAt−1 + εa,t

where εa,t ∼ iid N(0, σ2
a). Firm pays a quadratic adjustment cost in units of final good

(Rotemberg 1982) to adjust prices:

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt

Firm’s per period profits are given by:

Dt ≡ Pt(j)Yt(j)−WtLt(j)−
ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt
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Firm’s profit maximization problem

max
Pt(j)

{
Pt(j)Yt(j)−WtLt(j)−

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}

where Qt,t+s is the nominal stochastic discount factor of the household. Substitute in

the demand for intermediate goods to get:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−εp
Yt −

Wt

At

(
Pt(j)

Pt

)−εp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt + Eθt

[
∞∑
s=1

βsQt,t+sDt+s

]}

Notice that Pt(j) appears in period t profits and period t + 1 adjustment costs. It

doesn’t appear anywhere else in the problem. So we can “ignore” the remaining terms

as we take the first-order condition. The monopolistically competitive firm solves the

following problem:

max
Pt(j)

{
Pt(j)

(
Pt(j)

Pt

)−εp
Yt −

Wt

At

(
Pt(j)

Pt

)−εp
Yt −

ψp
2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt − Eθt

[
βQt,t+1

ψp
2

(
Pt+1(j)

Pt(j)
− 1

)2

Pt+1Yt+1

]}
+ other terms

First order condition:

(1− εp)
(
Pt(j)

Pt

)−εp
Yt + εp

Wt

AtPt

(
Pt(j)

Pt

)−εp−1

Yt − ψp
(

Pt(j)

Pt−1(j)
− 1

)
Pt

Pt−1(j)
Yt

−ψpβEθt
[
u′(Ct+1

u′(Ct)

(
Pt+1(j)

Pt(j)
− 1

)
Pt+1(j)

Pt(j)

Pt
Pt(j)

Yt+1

]
= 0

Symmetry across all firms implies that reset price equals the aggregate price level.

Define Πt = Pt
Pt−1

:

(1− εp)Yt + εp
Wt

AtPt
Yt − ψp(Πt − 1)ΠtYt + ψpβEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

Divide by Yt:

(1− εp) + εp
Wt

AtPt
− ψp(Πt − 1)Πt +

ψp
Yt
βEθt

[
u′(Ct+1

u′(Ct)
(Πt+1 − 1)Πt+1Yt+1

]
= 0

Log-linearize around the deterministic steady state such that A = 1, w = W
P

=
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ωCY ν = εp−1

εp
, Π = 1, and Yt = Y . Let wt = Wt

Pt

εpw(ŵt − ât)− ψpπ̂t + ψpβEθt π̂t+1 = 0

Rearrange to get

π̂t = βEθt [π̂t+1] +
εp w

ψp
(ŵt − ât)

From the intra-temporal labor supply first order condition, we have:

ŵt = ĉt + ν(ŷt − ât)

Use the resource constraint ĉt = ŷt, to rewrite the new Keynesian Phillips Curve

(NKPC):

π̂t = βEθt [π̂t+1] +
εp w

ψp
(1 + ν)ŷt

Note that εp w

ψp
= εp−1

ψp
. Then, the NKPC is given by

π̂t = βEθt [π̂t+1] + κ(ŷt − ât)

where κ ≡ εp−1

ψp
(1 + ν).

C.3 Policy Rule

The government sets nominal interest rate with the following rule:

1 + it
1 + iss

= Πφπ
t

(
Yt
Y ∗t

)φx
where Y ∗t = At is the natural rate allocation, iss = 1

β
− 1 is the steady state nominal

interest rate, φπ ≥ 0, φx ≥ 0, and steady state inflation Π = 1. Log-linearized policy

rule is given by:

ît = φππ̂t + φx(ŷt − ât)

We assume that nominal bonds are in net zero supply. Government spends Gt financed

by lumpsum taxes.
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C.4 Market Clearing

Total output produces is used for consumption and government expenditure.

Yt = Ct +Gt

C.5 Equilibrium

The log-linearized equilibrium in the New Keynesian model with diagnostic expecta-

tions is given by following three equations in three unknowns {ŷt, π̂t, ît} for a given

shock process {ât}.

ŷt = Eθt [ŷt+1]− (̂it − Eθt [π̂t+1]) + θ(π̂t − Et−1[π̂t]) + ĝt − Eθt ĝt+1 (28)

π̂t = βEθt [π̂t+1] + κ(ŷt − ât)− κψĝt (29)

ît = φππ̂t + φx(ŷt − ât) (30)

where κ ≡ εp−1

ψp
(1 + ν), and the shock processes are given by:

ât = ρaât−1 + εa,t (31)

ĝt = ρgĝt−1 + εg,t (32)

where εa,t ∼ iid N(0, σ2
a) and εg,t ∼ iid N(0, σ2

g).
41

C.6 Solution

C.6.1 Rational Expectations

Under RE, the solution of the model with TFP and government spending shocks is

given by:

ŷt =
(1− βρg)(1− ρg) + κψ(φπ − ρg)

(1− βρg)(1− ρg + φx) + κ(φπ − ρg)
εg,t+

φy(1− βρa) + κ(φπ − ρa)
(1− βρa)(1− ρa + φx) + κ(φπ − ρa)

εa,t

π̂t =
κ(1− ψ)(1− ρg)− κψφx

(1− βρg)(1− ρg + φx) + κ(φπ − ρg)
εg,t−

κ(1− ρa)
(1− βρa)(1− ρa + φx) + κ(φπ − ρa)

εa,t

Since ψ < 1, the fiscal multiplier is less than one in the NK model under rational

expectations.

41We define ĝt as percentage changes of government spending from its steady state as fraction of steady state
output.
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C.6.2 Diagnostic Expectations

Note that after a one-time unanticipated shock, the solution under DE and RE coincide

at subsequent dates since there is no news. (This was shown formally in the context

of the general linear model in the previous appendix, proof of Proposition 4.) At date

t = 1, we can derive the solution under DE as follows. From the RE solution, we know

the expectations of forward looking variables :

E1ŷ2 = ρg
(1− βρg)(1− ρg) + κψ(φπ − ρg)

(1− βρg)(1− ρg + φx) + κ(φπ − ρ)
εg,t+ρa

φy(1− βρa) + κ(φπ − ρa)
(1− βρa)(1− ρa + φx) + κ(φπ − ρa)

εa,t;

E1π̂2 = ρg
κ(1− ψ)(1− ρg)− κψφx

(1− βρg)(1− ρg + φx) + κ(φπ − ρg)
εg,t−ρa

κ(1− ρa)
(1− βρa)(1− ρa + φx) + κ(φπ − ρa)

εa,t

E0ŷ2 = E0π̂2 = E0π̂1 = 0

We can thus construct the diagnostic expectation terms that enter the DE model, and

simplify the model to

ŷ1 = (1 + θ)E1 [ŷ2 + π̂2 − ĝ2]− î1 + θπ̂1 + ĝ1 (33)

π̂1 = β(1 + θ)E1 [π̂2] + κ(ŷ1 − â1)− κψĝ1 (34)

î1 = φππ̂1 + φx(ŷ1 − â1) (35)

Substituting the latter two equations into the Euler equation, and rearranging we get

ŷ1 =
(1 + θ)E1 [ŷ2 + (1 + βθ − βφπ)π2] + [1 + (φπ − θ)κψ − (1 + θ)ρg]εg,1 + [κ(φπ − θ) + φx]εa,1

1 + φx + (φπ − θ)κ
(36)

The corresponding RE solution can be seen with θ = 0.

We study two scenarios with analytical results:

1. When the shocks are iid (ρa = ρg = 0), the solutions are:

ŷ1 =
1 + (φπ − θ)κψ

1 + φx + (φπ − θ)κ
εg,1 +

φx + (φπ − θ)κ
1 + φx + (φπ − θ)κ

εa,1

For a bounded solution (and continuity with RE solution), we assume that θ <

φπ + κ−1(1 + φx). There are two cases for the fiscal multiplier:

• φx < ν: The fiscal multiplier under DE is larger than under RE. The mul-

tiplier is increasing in θ, exceeds one for values of θ > φπ + φx
(1−ψ)κ

. As

θ → φπ + κ−1(1 + φy), the fiscal multiplier →∞.
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• φx > ν: The fiscal multiplier under DE is smaller than under RE.

The output gap x̂1 = −εa,1
1+φx+(φπ−θ)κ always negatively co-moves with iid TFP

shocks.

2. When prices are perfectly rigid, that is κ → 0, the solution for output is given

by:

ŷ1 =
(1− ρg)(1 + φx)− θρgφx

(1 + φx)(1− ρg + φx)
εg,1 +

φx(1 + φx + θρa)

(1 + φx)(1− ρa + φx)
εa,1

Fiscal multiplier under DE is smaller than under RE. Fiscal multiplier is decreas-

ing in θ. For θ > (1−ρg)(1+φx)

ρgφx
, assuming ρg > 0, output falls under DE with

increase in government spending.

Output gap x̂t = θρaφx−(1−ρa)(1+φx)
(1+φx)(1−ρa+φx)

εa,1 positively co-moves with TFP shock if and

only if θρaφx > (1− ρa)(1 + φx).

C.7 Proof of Propositions 5 and 7

Because there are no government shocks, ĉt = ŷt. The equilibrium with completely

rigid prices, i.e. ψp →∞, given by:

ŷt = Eθt [ŷt+1]− ît (37)

ît = φx(ŷt − ât) (38)

where ât = ρaât−1 + εa,t, ρa ∈ [0, 1), and εa,t ∼ iid N(0, σ2
a). Substituting the policy

rule into the Euler equation, we get:

ŷt =
1

1 + φx
Eθt [ŷt+1] +

φx
1 + φx

ât

By forward iteration, and using the law of iterated expectations under the no-news

assumption,

ŷt = lim
T→∞

Eθt [ŷT+1]

(1 + φx)T+1
+
∞∑
i=1

φxEθt [ât+i]

(1 + φx)i+1
+

φx
1 + φx

ât

The system is locally determinate if and only if φx > 0. Let φx > 0. Then,

ŷt =
∞∑
i=1

φxEθt [ât+i]

(1 + φx)i+1
+

φx
1 + φx

ât

From the definition of the shock process, we know that, ∀ i > 0

Eθt [ât+i] = ρia(1 + θ)ât − θρi+1
a ât−1 = ρia ((1 + θ)ât − θρaât−1)
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We can then derive the solution for output:

ŷt =
φxρa(1 + θ) + φx(1 + φx − ρa)

(1 + φx)(1 + φx − ρa)
ât −

φxθρ
2
a

(1 + φx)(1 + φx − ρa)
ât−1

The solution for output gap x̂t ≡ ŷt − ât is given by:

x̂t =
−ρa(1− ρa)(1 + φx)

(1 + φx)(1 + φx − ρa)
ât−1 +

θφxρa − (1− ρa)(1 + φx)

(1 + φx)(1 + φx − ρa)
εa,t

In response to an unanticipated improvement in productivity, output gap can be pos-

itive on impact if and only

θφxρa − (1− ρa)(1 + φx) > 0

When θ = 0, that is rational expectations, output gap negatively co-moves with pro-

ductivity shock. Under diagnostic expectations, productivity improvements can be

expansionary on impact.

Volatility of output gap is given by:

V ar(x̂t) =

(
ρa(1− ρa)(1 + φx)

(1 + φx)(1 + φx − ρa)

)2

V ar(ât−1) +

(
θφxρa − (1− ρa)(1 + φx)

(1 + φx)(1 + φx − ρa)

)2

σ2
a

The first coefficient is same under rational and diagnostic expectations. Volatility is

higher under diagnostic expectations relative to rational expectations if and only if

(θφxρa − (1− ρa)(1 + φx))
2 > (1− ρa)2(1 + φx)

2

⇐⇒ (θφxρa)
2 + (1− ρa)2(1 + φx)

2 − 2θφxρa(1− ρa)(1 + φx) > (1− ρa)2(1 + φx)
2

⇐⇒ (θφxρa)
2 > 2θφxρa(1− ρa)(1 + φx)

⇐⇒ θφxρa > 2(1− ρa)(1 + φx)

⇐⇒ θ >
2(1− ρa)(1 + φx)

φxρa

If θ > 2(1−ρa)(1+φx)
φxρa

is satisfied, then volatility of the output gap under DE is larger

than under RE.

Note that output ŷt = x̂t + ât. Under DE, the volatility of output is given by

V ar(ŷDEt ) = V ar(x̂DEt ) +V ar(ât) + 2Cov(x̂DEt , ât). Under RE, the volatility of output

is given by V ar(ŷREt ) = V ar(x̂REt ) +V ar(ât) + 2Cov(x̂REt , ât). When θ > 2(1−ρa)(1+φx)
φxρa

,

we know that V ar(x̂DEt ) > V ar(x̂REt ), and Cov(x̂DEt , ât) > 0 > Cov(x̂REt , ât). Hence
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output is also more volatile under DE relative to RE if θ > 2(1−ρa)(1+φx)
φxρa

.

C.8 Proof of Proposition 8

Assume iid government spending shocks. And assume that φx = 0. Then from Section

C.6, we obtain the solution for output under DE:

ŷ1 =
1 + (φπ − θ)κψ
1 + (φπ − θ)κ

εg,1

For the solution to be continuous in the RE limit and bounded, we assume that θ <

φπ + κ−1. Since ψ = 1
1+ν

< 1, the fiscal multiplier is increasing in θ. Under the RE

limit, θ = 0, the fiscal multiplier is strictly less than one. For θ > φπ, the multiplier is

larger than one. Finally, the multiplier explodes to infinity as θ → φπ + κ−1.

C.9 Proof of Proposition 9

1. When ψp →∞, φx = 0, and ρζ = 0, beliefs about the long-run (BLR) under the

DKF are given by

ζθt|t ≡ ζt|t + θ(ζt|t − ζt|t−1)

where ζt|t ≡ Et[ζt] and ζt|t−1 ≡ Et−1[ζt]. Also, BLR under the RKF are given by

ζt|t. From the rational Kalman filter, we have

ζt|t = ζt|t−1 +Gaint(st − st|t−1)

where st|t−1 ≡ Et−1[st] and Gaint is the Kalman gain. Thus, BLR under the DKF

is simplified to

ζθt|t ≡ ζt|t + θ ×Gaint(st − st|t−1) (39)

and as st− st|t−1 > 0 with a positive shock to ζt, BLR are greater under the DKF

than under the RKF.

2. We can also rewrite (39) as

ζθt|t = ζt−1 + (1 + θ)×Gaint(st − st|t−1)

given that ζt|t−1 = ζt−1. As BLR under FIRE are simply ζt = ζt−1 + εζ,t, BLR

under the DKF are greater than under FIRE if (1 + θ)×Gaint(st − st|t−1) > εζ,t
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where εζ,t is a shock to ζt. Thus, if

θ ≥ εζ,t
Gaint(st − st|t−1)

− 1

beliefs about the long-run under the DKF are greater than under FIRE.
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D Real Business Cycle Model

We list the equilibrium conditions for a standard RBC model. Equilibrium is given by

a sequence of seven unknowns {Ct, Kt+1, Yt, It, Nt, R
k
t , W̃t.} that satisfy the following

seven equations for a given exogenous process At and an initial value of capital stock

K0.

1

Ct
= βEθt

[
Rk
t+1 + 1− δ
Ct+1

]
(40)

W̃t = ωCtN
ν
t (41)

Kt+1 = (1− δ)Kt + It (42)

Yt = Kα
t (AtNt)

1−α (43)

Yt = Ct + It (44)

Rk
t = α

Yt
Kt

(45)

W̃t = (1− α)
Yt
Nt

(46)

β is the discount rate, δ is depreciation rate, ν is inverse of the Frisch elasticity of

labor supply, α is the capital share, and ω is a normalizing constant in the steady

state. θ > 0 is the diagnosticity parameter. The system of log-linearized equations is

as follows (where the lower case letters denote the log-deviations form the respective

steady state values)42:

w̃t = ct + νnt (47)

ct = Eθt
[
ct+1 −

Rk

Rk + 1− δ
rkt+1

]
(48)

kt+1 = δÎt + (1− δ)kt (49)

yt = (1− α)at + αkt + (1− α)nt (50)

yt = scct + (1− sc)Ît (51)

rkt = yt − kt (52)

w̃t = yt − nt (53)

where Rk is the steady state rental rate, and sc is the steady state share of consumption

in output. The economy starts in the steady state. There is a one-time unanticipated

iid shock a1 at time 1.

42Ît is also log-deviations of investment It from its steady state value.
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D.1 Rational Expectations and full depreciation, δ = 1

We derive analytical result assuming full depreciation, that is δ = 1. The Euler

equation under rational expectations and full depreciation is given by:

ct − kt+1 = Et [ct+1 − yt+1]

From the labor supply and labor demand conditions, we obtain

(1 + ν)nt = yt − ct

When δ = 1, Ît = kt+1. Use the above equation into the Euler equation, along with

investment equation to get

Ît − yt + (1 + ν)nt = (1 + ν)Et[nt+1]

Substitute in the resource constraint,

1

1− sc
[yt − scct]− yt + (1 + ν)nt = (1 + ν)Et[nt+1]

⇐⇒ sc
1− sc

[yt − ct] + (1 + ν)nt = (1 + ν)Et[nt+1]

⇐⇒
(

1 +
sc

1− sc

)
nt = Et[nt+1]

Solution for employment is

nt = 0 ∀t ≥ 0

We can solve for the solution for other variables at dates 1 and 2:

c1 = y1 = Î1 = k2 = (1− α)a1;

c2 = y2 = Î2 = k3 = α(1− α)a1

and so on.

D.2 Diagnostic Expectations and full depreciation, δ = 1

The Euler equation is

ct = Eθt [ct+1 − yt+1 + kt+1]

As before, the economy starts in the steady state. There is a one-time unanticipated
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iid shock a1 at time 1. From Date 2, the solution is same as rational expectations model.

Since, we have iid shocks, the solution at date 1 is:

c1 = (1 + θ)k2

Substitute into the resource constraint to get

y1 = (1 + θsc)k2

From labor supply and labor demand,

(1 + ν)n1 = y1 − c1 = −θ(1− sc)k2

Finally, from the production function

y1 = (1− α)a1 + (1− α)n1

⇐⇒ (1 + θsc)k2 = (1− α)a1 + (1− α)n1

⇐⇒ −(1 + θsc)

θ(1− sc)
(1 + ν)n1 = (1− α)a1 + (1− α)n1

n1 = − θ(1− sc)(1− α)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

Solution is

n1 = − θ(1− sc)(1− α)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

k2 =
(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

c1 =
(1 + θ)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)

y1 =
(1 + θsc)(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
Date 2 solution is :

n2 = 0; y2 = αk2 =
α(1− α)(1 + ν)a1

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
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D.3 Proof of Proposition 6

Volatility of output at date 1 is lower under DE compared to RE if and only if

(1 + θsc)(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1

which is true. Further, note that volatility of output at date 1 under DE is decreasing

in ν. Similarly, we can show that volatility of output under diagnostic expectations

is lower at all future horizons as well. For example, Volatility of output at date 2 is

lower under DE compared to RE if and only if

(1 + ν)

(1 + θsc)(1 + ν) + (1− α)θ(1− sc)
< 1

which is true since 1 + θsc > 1 and (1− α)θ(1− sc) > 0.
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E Numerical Results with NK and RBC model

To numerically demonstrate the excess volatility in the NK model, we use the calibra-

tion discussed in Table 2: Stationary TFP follows an AR(1) process with persistence

0.9 and standard deviation 0.02. We set the discount factor β to 0.99. For the RBC

model, we set the capital share α to 0.2 and the capital depreciation rate δ to 0.025. For

the NK model, we set φπ = 1.5, φx = 0.5, and κ = 0.05. We also set the diagnosticity

parameter θ to one.

Table 2: Parametrization: The NK and RBC models

Parameter Value

Common to Both Models

θ Diagnosticity 1

β Discount factor 0.99

Simple NK model

ν Inv. Frisch elasticity 2

φπ Taylor rule inflation 1.5

φx Taylor rule output gap 0.5

κ Slope of the Phillips curve 0.05

RBC model

α Capital share 0.2

δ Capital depreciation rate 0.025

Shock Process

ρa Shock persistence (stationary TFP) 0.9

σa Standard dev. (stationary TFP) 0.02

Panel a) in Table 3 shows unconditional volatilities of output growth, and consump-

tion growth under diagnostic and rational expectations. Since there is no government

spending or investment, output growth and consumption growth are equivalent in the

NK model. We find that the output gap under diagnostic expectations exhibits 63 per-

cent higher standard deviation relative to the output gap under rational expectations.

Panel b) in Table 3 shows unconditional volatilities of output growth, consumption

growth, and investment growth, both under diagnostic and rational expectations in

the baseline RBC model. Consumption growth is twice as volatile under diagnostic

expectations than under rational expectations. On the other hand, investment growth
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Table 3: Model-Implied Volatilities with Stationary TFP Shocks

(a) New Keynesian Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0182 0.0296 63%
Consumption 0.0182 0.0296 63%
Investment – – –

(b) Real Business Cycle Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.0204 0.0188 -8%
Consumption 0.0052 0.0103 98%
Investment 0.1147 0.0816 -29%

Notes: The table reports the standard deviations of output growth, consumption growth and investment growth in the New Keynesian
(NK) model and the RBC model in Panels (a) and (b) respectively. Final column titled “Percentage Increase” shows the percentage
increase in standard deviation under the diagnostic expectations model relative to the rational expectations benchmark. There is one
shock process in the two models. See Table 2 for the parameters.

and output growth are dampened under diagnostic expectations due to the general

equilibrium adjustment of the interest rate. Diagnosticity, therefore, does not always

generate extra amplification.

In the main text, see Figure 1, we already discussed the impulse response of output

gap to a TFP shock in the NK model. We conclude with a brief discussion of impulse

responses to a stationary TFP shock in the RBC model. Figure 4 plots the impulse

response of the exogenous TFP, consumption, output, investment, capital stock, and

real interest rate to a one standard deviation shock to TFP. The greater reduction in

real-interest rate under diagnostic expectations attenuates the fall in investment, and

explains why there is lower volatility in output and investment with diagnostic beliefs,

compared to the corresponding variables under rational expectations. Diagnosticity,

therefore, does not always generate extra amplification.
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Figure 4: Impulse responses to a stationary TFP shock in the RBC model

(a) GDP

0 4 8 12
Quarters

-1.5

-1

-0.5

Diagnostic
Rational

(b) Consumption

0 4 8 12
Quarters

-0.6

-0.5

-0.4

-0.3

(c) Investment

0 4 8 12
Quarters

-6

-4

-2

0

(d) Hours worked

0 4 8 12
Quarters

-0.6

-0.4

-0.2

0

(e) Real interest rate

0 4 8 12
Quarters

-0.08

-0.06

-0.04

-0.02

0

0.02

(f) TFP

0 4 8 12
Quarters

-1

-0.8

-0.6

-0.4

Notes: The panels depict the impulse responses of GDP, consumption, investment, hours worked, real interest rate and TFP shock (â)
to a unit shock to TFP, εa,t. The blue solid lines denote impulses responses with diagnostic expectations, whereas the red dashed lines
denote responses with rational expectations. See Table 2 for parameters corresponding to the RBC model.
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F A Medium-Scale DSGE model

F.1 Model Ingredients

The model follows the exposition in Blanchard, L’Huillier, and Lorenzoni (2013), hence-

forth referred to as BLL. The economy comprises of following agents: a continuum of

households supplying differentiated labor, a continuum of firms producing differen-

tiated goods, a perfectly competitive final goods firm, a perfectly competitive labor

agency that provides the composite labor input demanded by firms, and a government

in charge of fiscal and monetary policy.

F.1.1 Monopolistically Competitive Producers

Assume there is a continuum of differentiated intermediated good producers that sell

the intermediate good Yjt. A perfectly competitive firm aggregates intermediate goods

into a final composite good Yt =

[∫ 1

0
Y

εp,t−1

εp,t

jt dj

] εp,t
εp,t−1

, where εp > 1 is time-varying

elasticity of demand. The iso-elastic demand for intermediate good j is given by: Yjt =(
Pjt
Pt

)−εp,t
Yt, where Pt is the aggregate price index and Pjt is the price of intermediate

goods j. Each intermediate good j is produced by a price-setting monopolistically

competitive firm using labor Ljt and physical capital Kjt:

Yjt = (AtLjt)
1−α Kα

jt (54)

where the TFP process At is the sum of two components (in logs):

logAt = logZt + log Ξt (55)

The variable Zt denotes a non-stationary TFP series that evolves according to:

Zt
Zt−1

=

(
Zt−1

Zt−2

)ρζ
G

1−ρζ
ζ exp(εζ,t); εζ,t ∼ iid N(0, σ2

ζ )

where ρζ is the persistence of the shock process, and εζ,t is a random disturbance that

causes deviations of the TFP growth from its balanced growth rate Gζ . The stationary

TFP evolves as follows:

log Ξt = ρξ log Ξt−1 + εξ,t; εξ,t ∼ iid N(0, σ2
ξ )

where ρξ is the persistence of the shock process, and εξ,t is an i.i.d shock with variance
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σ2
ξ . (We define at ≡ logAt, ζt ≡ logZt, ξt ≡ log Ξt, Ga,t ≡ At/At−1, and Gζ,t ≡
Zt/Zt−1.)

Following BLL, we assume that

ρζ = ρξ ≡ ρ

and that the variances satisfy the following restriction43

ρσ2
ζ = (1− ρ)2σ2

ξ

While agents observe the TFP process as a whole, they do not observe two com-

ponents ζt and ξt separately. Considering the idea that agents have more information

than merely about productivity, agents observe a noisy signal st about the permanent

component of TFP:

st = ζt + εs,t; εs,t ∼ iid N(0, σ2
s) (56)

where εs,t is an i.i.d. normal shock, which affects agents’ beliefs but is independent of

fundamentals. This noisy signal relates to the additional informative signal that agents

receive which is a straightforward interpretation of Equation (56). Ultimately, the

presence of this noisy information helps the econometrician make inferences about the

(unobserved) long-term productivity trend by looking at the behavior of consumption.

Firms choose inputs to minimize total cost each period. Marginal cost, independent

of firm-specific variables, is given by mct = 1
A1−α
t

(
Rkt /Pt
α

)α (
Wt/Pt
1−α

)1−α
, where

Rkt
Pt

and
Wt

Pt
denote aggregate rental rate of capital and real wage. A firm j pays a quadratic

adjustment cost in units of final good (Rotemberg 1982) to adjust its price Pjt. The

cost is given by ψp
2

(
Pjt

Π̃t−1Pjt−1
− 1
)2

PtYt, where ψp ≥ 0 regulates the adjustment costs.

Price change is indexed to Π̃t−1 = Π̄1−ιpΠ
ιp
t−1, where ιp governs indexation between

previous period inflation rate Πt−1 and steady state inflation rate Π̄. Firm’s per period

profits are given by: Djt ≡ PjtYjt − PtmctYjt − ψp
2

(
Pjt

Π̃t−1Pjt−1
− 1
)2

PtYt. Each period,

the firm chooses Pjt to maximize present discounted value of real profits:

max
Pjt

{
ΛtDjt

Pt
+ Eθt

[
∞∑
s=1

Λt+sDjt+s

Pt+s

]}

where Λt is the marginal utility of consumption in period t, and Eθt [ · ] is the diag-

43As shown in BLL, these restrictions imply that the univariate process for at is a random walk with variance
σ2
a.
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nostic expectation operator regulated by parameter θ. Notice that we write dynamic

maximization problems by explicitly separating time t choice variables from the ex-

pectation of future choice variables. This separation is crucial for solving the model

with diagnostic expectations, and is a consequence of the technical issues discussed in

Section 2.

F.1.2 Households

There is a continuum of monopolistically competitive households, indexed by i ∈ [0, 1],

supplying a differentiated labor input Li,t. A perfectly competitive employment agency

aggregates various labor types into a composite labor input Lt supplied to firms, in

a Dixit-Stiglitz aggregator: Lt =

[∫ 1

0
L

εw,t−1

εw,t

i,t di

] εw,t
εw,t−1

, where εw,t > 1 is time-varying

elasticity of demand. The iso-elastic demand for labor input i is given by: Li,t =(
Wi,t

Wt

)−εw,t
Lt, where Wi,t is household i’s wage rate, and Wt is the aggregate wage rate

that the household takes as given.

The household i has following lifetime-utility at time t:(
log(Ci,t − hC̃t−1)− ω

1 + ν
L1+ν
i,t − ψwi,t

)
+Eθt

[
Σ∞s=t+1β

s−t
(

log(Ci,s − hC̃s−1)− ω

1 + ν
L1+ν
i,s − ψwi,s

)]
where h is the degree of habit formation on external habits over aggregate consumption

C̃t−1, which the household takes as given, ν > 0 is inverse of the Frisch elasticity of

labor supply, ω > 0 is a parameter that pins down the steady-state level of hours,

and the discount factor β satisfies 0 < β < 1. ψwi,t is the loss in utility in adjusting

wages. We assume a quadratic adjustment cost given by ψwi,t = ψw
2

[
Wit

Π̃wt−1Wit−1
− 1
]2

,

where ψw ≥ 0 is a parameter, and wage contracts are indexed to productivity and

price inflation. We assume Π̃w
t−1 = GaΠ̄

1−ιw (exp(εζ,tεξ,t)Πt−1)ιw with 0 ≤ ιw < 1.

The household’s budget constraint in period t is given by

PtCi,t + PtIi,t +
Bi,t+1

1 + it
= Bi,t +Wi,tLi,t +Dt + Tt +RK

t ui,tK
u
i,t − Pta(ui,t)K

u
i,t

where Ii,t is investment, Wi,tLi,t is labor income, and Bi,t is income from nominal

bonds paying nominal interest rate it. Households own an equal share of all firms, and

thus receive Dt dividends from profits. Finally, each household receives a lump-sum

government transfer Tt.

The households own capital, Ku
i,t, and choose the utilization rate, ui,t. The amount

of effective capital, Ki,t, that the households rent to the firms at nominal rate RK
t is
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given by Ki,t = ui,tK
u
i,t. The (nominal) cost of capital utilization is Ptχ(ui,t) per unit

of physical capital. As in the literature, we assume χ(1) = 0 in the steady state and

χ′′ > 0. Following GHLS, we assume investment adjustment costs, S
(

Ii,t
GaIi,t−1

)
, in the

production of capital, where Ga is the steady state growth rate of At. Law of motion

for capital is as follows:

Ku
i,t+1 = µt

[
1− S

(
Ii,t

GaIi,t−1

)]
Ii,t + (1− δk)Ku

i,t

where δk denotes depreciation rate, and µt is an exogenous disturbance to the marginal

efficiency of investment that follows:

log µt = ρµ log µt−1 + εµ,t; εµ,t ∼ iid N(0, σ2
µ)

As in the literature, we assume that S(1) = S ′(1) = 0, and calibrate S ′′(1) > 0.

F.1.3 Government

The central bank follows a Taylor rule in setting the nominal interest rate it. It

responds to deviations in (gross) inflation rate Πt from its target rate Π̄ and output.

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR [(Πt

Π̄

)φπ
Y
φy
t

]1−ρR

exp(λmpt ) (57)

with 0 < ρR < 1, φπ ≥ 0, and φy ≥ 0. iss is the steady state nominal interest rate,

and λmpt follows the process

log λmpt = ρmp log λmpt−1 + εmp,t; εmp,t ∼ N(0, σ2
mp)

We assume government balances budget every period PtTt = PtGt, where Gt is

the government spending. Gt is determined exogenously as as a fraction of GDP:

Gt =
(

1− 1
λgt

)
Yt where the government spending shock follows the process:

log λgt = (1− ρg) log λg + ρg log λgt−1 + εg,t; εg,t ∼ N(0, σ2
g)

λg is the steady state share of government spending in final output.
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F.1.4 Market Clearing

We focus on a symmetric equilibrium where all intermediate goods producing firms

and households make the same decisions. Therefore, we can drop subscripts i and j.

The aggregate production function, in the symmetric equilibrium, is then given by:

Yt = (AtLt)
1−αKα

t , since Kt = Ki,t = Kjt and Nt = Ni,t = Njt. The market clearing

for the final good, in the symmetric equilibrium, requires that

Yt = Ct + It + χ(ut)K
u
t +Gt +

ψp
2

[
Πt

Π̃t−1

− 1

]2

Yt

This completes the presentation of the DSGE model.

F.2 Stationary Allocation

We normalize the following variables :

yt = Yt/At

ct = Ct/At

kt = Kt/At

kut = Ku
t /At−1

It = It/At

wt = Wt/(AtPt)

rkt = Rk
t /Pt

λt = ΛtAt

Definition 1 (Normalized Equilibrium) 18 endogenous variables {λt, it, ct, yt, Πt,

mct, Π̃t−1, Πw
t , Π̃w

t−1, wt, Lt, k
u
t+1, r

K
t , It, qt, ut, kt, Ga,t}, 8 endogenous shock processes

{Gζ,t,Ξt, st, µt, λ
p
t , λ

w
t , λ

mp
t , λgt}, 8 exogenous shocks {εζ,t, εξ,t, εs,t, εµ,t, εp,t, εw,t, εmp,t, εg,t}

given initial values of kut−1.

Consumption Euler Equation

λt
Ga,tΠt

= β(1 + it)Eθt
[

λt+1

Ga,tGa,t+1

1

ΠtΠt+1

]
(58)

λt =
1

ct − hct−1

Ga,t

(59)
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Price-setting

(1−εp,t)+εp,t mct−ψp
(

Πt

Π̃t−1

− 1

)
Πt

Π̃t−1

+ψp
βΠt

λtyt
Eθt
[
λt+1

(
Πt+1

Π̃t

− 1

)
Πt+1

Π̃t

yt+1

Πt

]
= 0

(60)

Π̃t−1 = Π̄1−ιpΠ
ιp
t−1 (61)

Wage-setting

ψw

[
Πw
t

Π̃w
t−1

− 1

]
Πw
t

Π̃w
t−1

= ψwβEθt
[

Πw
t+1

Π̃w
t

− 1

]
Πw
t+1

Π̃w
t

+ Ltλtεw,t

[
ω
Lνt
λt
− εw,t − 1

εw,t
wt

]
(62)

Π̃w
t−1 = GaΠ̄

1−ιw(exp(εζ,t) exp(εξ,t)Πt−1)ιw (63)

Πw
t =

wt
wt−1

ΠtGa,t (64)

Capital Investment

kut+1 = µt

[
1− S

(
It
It−1

Ga,t

Ga

)]
It + (1− δk)

kut
Ga,t

(65)

qt =
βGa,t

λt
Eθt
[

λt+1

Ga,tGa,t+1

(
rKt+1ut+1 − χ(ut+1) + qt+1(1− δk)

)]
(66)

qtµt

[
1− S

(
It
It−1

Ga,t

Ga

)
− S ′

(
It
It−1

Ga,t

Ga

)
It
It−1

Ga,t

Ga

]
+
βGa,t

λt
Eθt

[
µt+1

λt+1

Ga,t

qt+1
Ga,t+1

Ga

(
It+1

It

)2

S ′
(
It+1

It
Ga,t+1

Ga

)]
= 1 (67)

Capital Utilization Rate

kt = ut
kut
Ga,t

(68)

rKt = χ′(ut) (69)

Production Technologies

yt = kαt L
1−α
t (70)

kt
Lt

=
wt
rkt

α

1− α
(71)

mct =
(rkt )

αw1−α
t

αα(1− α)1−α (72)

78



Government

1 + it
1 + iss

=

(
1 + it−1

1 + iss

)ρR [(Πt

Π̄

)φπ
Y
φy
t

]1−ρR

exp(λmpt ) (73)

Market Clearing

yt = ct + It + χ(ut)
kut
Ga,t

+

(
1− 1

λgt

)
yt (74)

TFP Growth Rate

logGa,t = logGζ,t + (log Ξt − log Ξt−1) (75)

Law of Motion of Shocks

logGζ,t = (1− ρ) logGζ + ρζ logGζ,t−1 + εζ,t (76)

log Ξt = ρξ log Ξt−1 + εξ,t (77)

st = logZt + εs,t (78)

log µt = ρµ log(µt−1) + εµ,t (79)

log λmpt = ρmp log λmpt−1 + εmp,t (80)

log λgt = ρg log λgt−1 + εg,t (81)

Disturbances

TFP growth shock εζ,t ∼ N(0, σ2
ζ ) (82)

Stationary TFP shock εξ,t ∼ N(0, σ2
ξ ) (83)

Noise shock εs,t ∼ N(0, σ2
s) (84)

MEI shock εµ,t ∼ N(0, σ2
µ) (85)

Monetary policy shock εmp,t ∼ N(0, σ2
mp) (86)

Government spending shock εg,t ∼ N(0, σ2
g) (87)

F.3 Steady State

1 = β
1

Ga

1 + i

Π
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λ =
Ga

c(Ga − h)

mc =
εp

εp − 1

ωLν

λ
=
εw − 1

εw
w

Πw = ΠGa

Π = Π̄

q = 1

u = 1

(1− 1− δk
Ga

)ku = I

1 = β

[
1

Ga

(
rK + (1− δk)

)]
k =

ku

Ga

rK = χ′(1)

y = kαL1−α ,

rk =
εp

εp − 1
α
y

k

w =
εp

εp − 1
(1− α)

y

L

y = c+ I +

(
1− 1

λg

)
y

S(1) = S ′(1) = 0;S” > 0

Ga = Gζ

F.4 Log-linearized Model

Consumption Euler Equation

λ̂t − Ĝa,t − πt = ît + Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 − πt − πt+1

]
(88)

λ̂t +
Ga

Ga − h
ĉt −

h

Ga − h

(
ĉt−1 − Ĝa,t

)
= 0 (89)
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Price-setting

πt = βEθtπt+1 − ιpβEθtπt + ιpπt−1 +
εp − 1

ψp
m̂ct + λ̂p,∗t (90)

where λ̂p,∗t is the normalized price-markup shock process. Let the un-normalized pro-

cess be denoted with λ̂pt . Then λ̂p,∗t = εp−1

ψp
λ̂pt . In steady state λp = εp

εp−1

Wage-setting

πwt = βEθtπwt+1−ιwβEθtπt−ιwβEθt Ĝa,t+1+ιwπt−1+ιwĜa,t+
εwωL

1+ν

ψw

[
νL̂t − ŵt − λ̂t

]
+λ̂w,∗t

(91)

where λ̂w,∗t is the normalized wage-markup shock process. Let the un-normalized wage

markup process be denoted with λ̂wt . Then λ̂w,∗t = εwωL1+ν

ψw
λ̂wt . In steady state λw =

εw
εw−1

πwt = ŵt − ŵt−1 + πt + Ĝa,t (92)

Capital Investment

k̂ut+1 =
I
ku

(
Ît + µ̂t

)
+

1− δk
Ga

(
k̂ut − Ĝa,t

)
(93)

q̂t − Ĝa,t + λ̂t = Eθt
[
λ̂t+1 − Ĝa,t − Ĝa,t+1 +

rK

rK + 1− δk
r̂Kt+1 +

1− δk
rK + 1− δk

q̂t+1

]
(94)

q̂t + µ̂t − S”(1)
(
Ît − Ît−1 + Ĝa,t

)
+ βS”(1)Eθt

(
Ît+1 − Ît + Ĝa,t+1

)
= 0 (95)

Capital Utilization Rate

k̂t = ût + k̂ut − Ĝa,t (96)

r̂Kt =
χ”(1)

χ′(1)
ût (97)

Production Technologies

ŷt = αk̂t + (1− α)L̂t (98)

r̂Kt = ŵt + L̂t − k̂t (99)

m̂ct = αr̂Kt + (1− α)ŵt (100)
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Government

ît = ρRît−1 + (1− ρR) (φππt + φyŷt) + εmp,t (101)

Market Clearing
1

λg
ŷt =

c

y
ĉt +

I
y
Ît +

χ′(1)k

y
ût +

1

λg
λ̂gt (102)

TFP Growth Rate

Ĝa,t = Ĝζ,t + ξ̂t − ξ̂t−1 (103)

ât = ζ̂t + ξ̂t (104)

where ât and ζ̂t are defined as log deviations of At and Zt from their initial values.

Law of Motion of Shocks

Ĝζ,t = ρζĜζ,t−1 + εζ,t (105)

ξ̂t = ρξ ξ̂t−1 + εξ,t (106)

µ̂t = ρµµ̂t−1 + εµ,t (107)

λ̂mpt = ρmpλ̂
mp
t−1 + εmp,t (108)

λ̂gt = ρgλ̂
g
t−1 + εg,t (109)

λ̂p,∗t = ρpλ̂
p,∗
t−1 + εp,t − φpεp,t−1 (110)

λ̂w,∗t = ρwλ̂
w,∗
t−1 + εw,t − φwεw,t−1 (111)

Disturbances

TFP growth shock εζ,t ∼ N(0, σ2
ζ ) (112)

Stationary TFP shock εξ,t ∼ N(0, σ2
ξ ) (113)

Noise shock εs,t ∼ N(0, σ2
s) (114)

MEI shock εµ,t ∼ N(0, σ2
µ) (115)

Monetary policy shock εmp,t ∼ N(0, σ2
mp) (116)

Government spending shock εg,t ∼ N(0, σ2
g) (117)

Price markup shock εp,t ∼ N(0, σ2
p) (118)

Wage markup shock εw,t ∼ N(0, σ2
w) (119)
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F.5 Posterior Distribution of Diagnosticity Parameter

Figure 5 shows the prior and the posterior distribution of the diagnosticity parameter

θ. The gray solid line denotes the prior distribution of θ. The diagnosticity parameter

is assumed to follow a uniform distribution between 0 and 1.7. Our prior on θ is based

on the estimated degree of diagnosticity in macro and financial variables.44 The black

solid line denotes the posterior distribution whereas the green dashed line denotes the

posterior mode at 0.9918. (The estimated posterior mode is very close to the estimated

posterior mean at 0.9992.) The data appear very informative, as indicated by the

lower variance of the posterior distribution relative to the priorly assumed uniform

distribution.

Figure 5: Posterior Distribution: Diagnosticity
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Notes: The figure depicts the prior and posterior distribution of the diagnosticity parameter θ. The gray solid line denotes the prior
distribution of θ, which follows a uniform distribution over 0 and 1.7. The black solid line (the green dashed) denotes the posterior
distribution (the posterior mode) of θ.

44See Table 4 of Bordalo, Gennaioli, Ma, and Shleifer (2020).
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F.6 Extra Volatility

Table 4 shows unconditional volatilities of output growth, consumption growth, invest-

ment growth, employment, capacity utilization, capital stock growth, inflation, and

the nominal interest rate under diagnostic and rational expectations. We simulate the

model using eight structural shocks with the estimated parameters in Table 1. Looking

at the amount of extra volatility afforded by DE, measured as the percentage increase

in unconditional volatility under DE from that under RE, DE generate a substantial

volatility increase in quantities such as output (23%), consumption (36%), investment

growth (23%). DE also generate a moderate volatility increase in employment (6%),

capacity utilization (7%), and capital stock (8%). On the contrary, implied volatilities

are lower for the nominal interest rate (−1%) and inflation (−10%) under DE.45

Table 4: Model-Implied Volatilities in the Medium-Scale DSGE Model

Variable Rational Expectations Diagnostic Expectations Percentage Increase

Output 0.8886 1.0905 23%
Consumption 0.5616 0.7634 36%
Investment 3.6365 4.4720 23%
Employment 4.2786 4.5188 6%
Capacity Utilization 0.9766 1.0424 7%
Capital Stock 0.5194 0.5619 8%
Inflation 0.6316 0.5718 -10%
Nominal Interest Rate 0.6668 0.6610 -1%

Notes: The table reports the standard deviations of output growth, consumption growth, investment growth, employment, capacity
utilization, capital stock growth, inflation, and the nominal interest rate in the medium-scale DSGE model. The final column entitled
“Percentage Increase” shows the percentage increase in standard deviation under the DE model relative to the RE benchmark (setting
θ = 0 along with parameter estimates in Table 1). There are eight structural shocks in the model, as in Blanchard et al. (2013):
monetary policy shocks, investment-specific shocks, government spending shocks, TFP growth rate shocks, stationary TFP shocks,
price and wage mark-up shocks, and noise shocks.

45The full set of IRFs is available upon request.
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F.7 Variance Decomposition

Turning to the variance decomposition, the contribution of each of the structural shocks

to the forecast error variance of the endogenous variables at various horizons is shown

in Table 5. We find that the noise and stationary TFP shocks are the main short-

run driver of consumption, accounting for about two-thirds of consumption volatility

in the very short run. A sizeable fraction of short-run consumption volatility is also

explained by the monetary policy shock. Virtually all short-run investment volatility is

due to the marginal efficiency of investment (MEI) shock. The responses of aggregate

output follow from those of consumption and investment. Consequently, the three most

important drivers of output are the stationary TFP, noise shock, and MEI shocks, with

the latter explaining about 40 percent of volatility at a 1-year horizon. On the contrary,

the TFP growth shock only explains 3 percent of output volatility at a 1-year horizon.

Table 5: Variance Decomposition

Quarter TFP
growth

Stationary
TFP

Noise MEI Price
markup

Wage
markup

Monetary Govt
spending

Cons.

1 0.003 0.314 0.378 0.000 0.001 0.000 0.230 0.074

4 0.048 0.401 0.271 0.000 0.015 0.003 0.164 0.099

8 0.223 0.358 0.167 0.001 0.022 0.011 0.095 0.122

12 0.439 0.249 0.101 0.004 0.015 0.017 0.058 0.118

Inv.

1 0.000 0.048 0.027 0.884 0.025 0.000 0.016 0.000

4 0.004 0.052 0.018 0.883 0.033 0.000 0.009 0.000

8 0.023 0.062 0.014 0.853 0.038 0.002 0.007 0.001

12 0.073 0.068 0.012 0.798 0.038 0.004 0.006 0.001

Output

1 0.002 0.216 0.250 0.316 0.005 0.002 0.150 0.059

4 0.027 0.245 0.150 0.421 0.038 0.003 0.087 0.029

8 0.131 0.237 0.095 0.405 0.051 0.008 0.051 0.023

12 0.310 0.197 0.066 0.316 0.040 0.013 0.036 0.021

Notes: The table reports the contribution of each of the structural shocks to the forecast error variance of the endogenous variables at
various horizons (1, 4, 8, and 12 quarters). We consider eight structural shocks - the TFP growth shock, stationary TFP shock, noise
shock, marginal efficiency of investment (MEI) shock, price markup shock, wage markup shock, monetary policy shock, and government
spending shock.
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F.8 Historical Decomposition of Agents’ Beliefs

Using data from times 1 to T , we can recover the best estimates of states and shocks

at any time t ≤ T with the Kalman smoother. Figure 6 plots the econometrician’s

smoothed estimate of the permanent, non-stationary component of TFP and the

smoothed series for the agents’ real time estimate regarding the permanent component

of TFP under rational and diagnostic expectations.46 The solid black line denotes the

econometrician’s smoothed estimate of this permanent component (ζ̂t|T ). The dashed

blue and solid red lines correspond to the smoothed series for the agents’ real-time ra-

tional estimate of this variable (ζ̂(t|t)|T ) and for the agents’ real-time diagnostic estimate

of the same variable (ζ̂θ(t|t)|T ).47 The smoothed estimate of the permanent component

of TFP under DE is 112% more volatile than under RE.

Figure 6: Smoothed Estimates of the Permanent Component of TFP and of Agents’ Real Time
Expectations
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Notes: The black solid line denotes the econometrician’s smoothed estimate of the permanent component of TFP (ζ̂t|T ) whereas the
blue solid and red dashed lines correspond to the smoothed series for agents’ real time expectations regarding the permanent component
of TFP under rational (ζ̂(t|t)|T ) and diagnostic expectations (ζ̂θ

(t|t)|T ), respectively. As in Blanchard, L’Huillier, and Lorenzoni (2013),

an aggregate TFP process ât is composed of two components, a permanent component ζ̂t and a transitory component ξ̂t: ât = ζ̂t + ξ̂t.

46It is worth noting that the permanent component of TFP is different from the long-run level of TFP discussed
in Figure 3. As in BLL, an aggregate TFP process ât is composed of two components, a permanent component ζ̂t
and a transitory component ξ̂t: ât = ζ̂t + ξ̂t, and the long-run level of TFP is given by ât+∞ = (ζ̂t− ρζ̂t−1)/(1− ρ),

where ζ̂t is the permanent component of TFP.
47Let It denotes data available from times 1 to T. The smoothed series for agents’ real time estimate regarding

the permanent component of TFP under diagnostic expectations is given by

ζ̂θ(t|t)|T = ζ̂(t|t)|T + θ
(
ζ̂(t|t)|T − ζ̂(t|t−1)|T

)
where ζ̂(t|t)|T ≡ Et[ζ̂t|IT ] and ζ̂(t|t−1)|T ≡ Et−1[ζ̂t|IT ].
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F.9 Prior Distribution of the Parameters

The following parameters are fixed in the estimation procedure as shown in Table 6.

The depreciation rate δk is fixed at 0.025, and the discount factor β is set to 0.99.

The Dixit-Stiglitz aggregator for the goods (εp) and for labor services (εw) are fixed

at 6. The parameter affecting the level of disutility from working (ω) is set to 1, and

the steady-state share of government spending to final output is fixed at 1.2. The

diagnosticity parameter θ is assumed to follow a uniform distribution between 0 and

1.7.

Table 6: Fixed Parameters

Parameter Value

β Discount factor 0.99

δk Capital depreciation rate 0.025

1− 1
λg

Government spending share 0.20

ω Labor preference 1

εp Elasticity of goods demand 6

εw Elasticity of labor demand 6

Notes: The table reports parameters fixed in the estimation procedure for both DE and RE.

Table 7 reports the prior distribution of structural parameters.
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Table 7: Prior Distribution of Structural Parameters

Parameter Distribution Mean St. Dev.

θ Diagnosticity Uniform 0.85 0.4907

h Habit Beta 0.5 0.1

α Capital share Normal 0.3 0.05

ν Inv. Frisch elasticity Gamma 2 0.75
a′′(1)
a′(1) Capital utilization cost Gamma 5 1

S′′(1) Investment Adjustment cost Normal 4 1

ψp Price adjustment Normal 100 25

ψw Wage adjustment Normal 3000 5000

φπ Taylor rule inflation Normal 1.5 0.3

φx Taylor rule output Normal 0.005 0.005

Technology and noise

ρ Beta 0.6 0.2

σa Inv. Gamma 0.5 1

σs Inv. Gamma 1 1

Investment-specific

ρµ Beta 0.6 0.2

σµ Inv. Gamma 5 1.5

Markups

ρp Beta 0.6 0.2

φp Beta 0.5 0.2

σp Inv. Gamma 0.15 1

ρw Beta 0.6 0.2

φw Beta 0.5 0.2

σw Inv. Gamma 0.15 1

Policy

ρR Beta 0.5 0.2

ρmp Beta 0.4 0.2

σmp Inv. Gamma 0.15 1

ρg Beta 0.6 0.2

σg Inv. Gamma 0.5 1

Notes: The table reports the prior distribution of structural parameters in the estimation procedure. The diagnosticity parameter θ is
fixed at 0 under RE.
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F.10 Posterior Estimates of the Parameters under RE

Table 8 reports the parameter estimates under RE. We use the prior distribution of

the parameters described in Tables 6 and 7.

Table 8: Imperfect Information RE: Estimated Parameters

Parameter Prior Posterior Conf. bands Distribution Prior SD

h Habit 0.5 0.4397 0.3832 0.4948 Beta 0.1

α Production function 0.3 0.1455 0.1353 0.1558 Normal 0.05

ν Inv. Frisch elasticity 2 1.5194 0.6509 2.3048 Gamma 0.75
a′′(1)
a′(1) Capital utilization cost 5 5.1804 3.5247 6.7867 Gamma 1

S′′(1) Investment Adjustment cost 4 4.4618 3.1785 5.7109 Normal 1

ψp Price adjustment 100 148.65 117.98 179.88 Normal 25

ψw Wage adjustment 3000 12990.06 7802.70 17980.37 Normal 5000

φπ Taylor rule inflation 1.5 1.0347 1.0001 1.0751 Normal 0.3

φx Taylor rule output 0.005 0.0080 0.0028 0.0130 Normal 0.005

Technology and noise

ρ 0.6 0.9304 0.9105 0.9503 Beta 0.2

σa 0.5 1.1669 1.0640 1.2668 Inv. Gamma 1

σs 1 1.4998 0.6487 2.3157 Inv. Gamma 1

Investment-specific

ρµ 0.6 0.5062 0.3738 0.6398 Beta 0.2

σµ 5 10.8984 6.6969 14.9452 Inv. Gamma 1.5

Markups

ρp 0.6 0.8343 0.7637 0.9083 Beta 0.2

φp 0.5 0.5549 0.3870 0.7272 Beta 0.2

σp 0.15 0.1916 0.1599 0.2232 Inv. Gamma 1

ρw 0.6 0.9415 0.9092 0.9758 Beta 0.2

φw 0.5 0.9621 0.9423 0.9830 Beta 0.2

σw 0.15 0.6135 0.5617 0.6651 Inv. Gamma 1

Policy

ρR 0.5 0.4827 0.4244 0.5402 Beta 0.2

ρmp 0.4 0.0346 0.0019 0.0662 Beta 0.2

σmp 0.15 0.3789 0.3427 0.4148 Inv. Gamma 1

ρg 0.6 0.9971 0.9942 0.9999 Beta 0.2

σg 0.5 0.3555 0.3276 0.3836 Inv. Gamma 1

log Marg. Likelihood -1590.66

Notes: The table reports mean posterior estimates, along with 2.5% and 97.5% percentiles. We ran 1,500,000 MH draws, discarding the
first 40% as initial burn-in. The observation equation is composed of U.S. time series for GDP, consumption, investment, employment,
the federal funds rate, inflation, and wages.
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