Debt as Safe Asset "Fiscal Debt and Inflation"

Markus K. Brunnermeier Sebastian Merkel Yuliy Sannikov

Bank of Finland and CEPR Conference 11. September 2021

Motivation

- What is a safe asset? What are its features: Retrading?
- How much government debt can the market absorb?
 - "Debt Laffer Curve" and debt sustainability analysis?
 - When can governments run a deficit without ever paying back its debt, like a Ponzi scheme?
- Why is there debt valuation puzzle for US, Japanese,...?
- This paper: safe asset nature of government debt
 - Model of government debt as a countercyclical safe asset (negative β)
 - Safe asset nature matters qualitatively and quantitatively for debt valuation
- Central bank intervention Loss of safe asset status \neq rollover risk (multiplicity)

Valuating Government Debt

Think of a representative agent holding all gov. debt

FTPL]

- His cash flow is primary surplus
- $\frac{\mathcal{B}_t}{\wp_t} = E_t [PV_r (\text{primary surpluses})] + \cdots$
- In link to inflation
- Can surpluses be negative forever?

Valuating Government Debt

- Think of a representative agent holding all gov. debt
 - His cash flow is primary surplus
 - $\frac{\mathcal{B}_t}{\mathcal{G}} = E_t[PV_r(\text{primary surpluses})] + Bubble$ FTPL] \mathscr{D}_t
 - In link to inflation
 - Can surpluses be negative forever? Yes, if r < g (e.g. due to safe asset nature)

Primary surplus, *r* **and** *g* **for the United States**

Negative surplus in recession

Negative primary surplus forever?

- without creating inflation (devaluing debt)?
- Yes, if *r* < *g*

$$\frac{\mathcal{B}_{t}}{\mathscr{P}_{t}} = E_{t} [PV_{r}(\operatorname{primary surpluses})] + \underbrace{\lim_{g \to \infty} PV_{r}}_{g \circ T} \underbrace{\mathcal{B}_{T}}_{g \circ T} \\ \operatorname{discount at } r \\ (\operatorname{agents' SDF}) \\ \xrightarrow{\qquad \rightarrow -\infty} \qquad \qquad \rightarrow +\infty$$

To determine real value of gov. debt and price level FTPL equation is not enough (goods market clearing and wealth effect)

Negative primary surplus forever?

- without creating inflation (devaluing debt)?
- Yes, if r < g

$\blacksquare \frac{\mathcal{B}_t}{\omega_t}$	$= E_t [PV_r(pr)]$	rimary surpluses)]	$+\lim_{T\to\infty} PV_r \frac{\mathcal{B}_T}{\omega_T}$
0° L	discount at <i>r</i> (agents' SDF)	constant deficit/GDP	Bubble
	· · · · · · · · · · · · · · · · · · ·	$\rightarrow -\infty$	$\rightarrow +\infty$

- Discount at a different rate $r^{**} > g$ instead, so that
 - Both terms meaningful
 - Discount rate r^{**} = representative agents' risk-free rate $\neq m$ (Reis)

 $\frac{\mathcal{B}_t}{\wp_t} = E_t [PV_{r^{**}}(\text{primary surpluses})] + E_t [PV_{r^{**}}(\text{service flow})]$

• $\frac{\mathcal{B}_t}{\mathcal{D}_t} = E_t [PV_{r^{**}}(\text{primary surpluses})] + E_t [PV_{r^{**}}(\text{service flow})]$

• $\frac{\mathcal{B}_t}{\mathcal{D}_t} = E_t [PV_{r^{**}}(\text{primary surpluses})] + E_t [PV_{r^{**}}(\text{service flow})]$

0

CF

0

Value come from re-trading

В

0

CF

Insures by partially completing markets

Α

 $\left(\right)$

CF

Can be = fragile

In recessions:

 \bullet

Risk is higher • Service flow is more valuable Cash flows are lower (depends on fiscal policy)

Safe Assets \supseteq (Narrow) Money

• Asset Price = $E_t[PV_{r^{**}}(\text{cash flow})] + E_t[PV_{r^{**}}(\text{service flow})]$

dividends/interest Service flows/convenience yield

- 1. Collateral: relax constraints (Lagrange multiplier)
- [good friend analogy] 2. Safe asset:
- When one needs funds, one can sell at stable price ... since others buy
- Partial insurance through retrading market liquidity!

3. Money (narrow): relax double-coincidence of wants

- Higher Asset Price = lower expected return
- Problem: safe asset + money status might burst like a bubble
 - Multiple equilibria: [safe asset tautology]

Covariance with economy

From r^f to r^{f**}

for log utility, $\gamma = 1$

Convenience yield { λ(Collateral Constr)}

Outline

- Model
 - Setup
 - Closed-Form Solution for Steady State
 - Debt Valuation Two Perspectives
- Countercyclical Safe Asset and Valuation Puzzles
 - Calibrated Model Solution
 - Debt Valuation Puzzles
- Safe Asset and the Stock Market

Model Overview

- Continuous time, infinite horizon, one consumption good
- Continuum of agents
 - Operate capital with time-varying idiosyncratic risk, AK production technology
 - Can trade capital and government bond, Extension: add diversified equity claims
- Government
 - Exogenous spending
 - Taxes output
 - Issues (nominal) bonds
- Financial Frictions: incomplete markets
 - Agents cannot trade idiosyncratic risk
 - Extension with equity: must retain skin in the game
- Aggregate risk: fluctuations in volatility of idio risk (& capital productivity)

Model with Capital + Safe Asset

• Each heterogenous citizen $\tilde{\iota} \in [0,1]$

$$E\left[\int_0^\infty e^{-\rho t} \log c_t^{\tilde{\iota}} dt\right] \text{ s.t. } \frac{dn_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}} = -\frac{c_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}} dt + dr_t^{\mathcal{B}} + (1 - \theta_t^{\tilde{\iota}}) \left(dr_t^{\mathcal{B}}\right) dt + dr_t^{\mathcal{B}} + (1 - \theta_t^{\mathcal{B}}) dt + dr_t^{\mathcal{B}} + (1$$

 $\tau_t a_t k_t^{\tilde{\iota}} dt$

- Each citizen operates physical capital $k_t^{\tilde{l}}$
 - Output (net investment) $y_t^{\tilde{\iota}} = (a_t \iota_t^{\tilde{\iota}})k_t^{\tilde{\iota}}dt$
 - Output tax

$$\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = \left(\Phi(\iota_t^{\tilde{i}}) - \delta\right) dt + \tilde{\sigma}_t d\tilde{Z}_t^{\tilde{i}} + d\Delta_t^k$$

$$\frac{d\tilde{Z}_t^{\tilde{i}}}{d\tilde{Z}_t^{\tilde{i}}} \text{ idiosyncratic Brownian}$$

- Aggregate risk: $\tilde{\sigma}_t$, a_t , g_t exogenous process by aggregate Brownian dZ_t
- Financial Friction: Incomplete markets: no $d\tilde{Z}_t^{\tilde{\iota}}$ claims

 $C_t^{K,\tilde{\iota}}(\iota_t^{\tilde{\iota}}) - dr_t^{\mathcal{B}})$

Government: Taxes, Bond/Money Supply, Gov. Budget

- Policy Instruments ($K_t \coloneqq \int k_t^{\tilde{\iota}} d\tilde{\iota}$)
 - Government spending $g_t K_t$ (with exogenous g_t)
 - Proportional output tax $\tau_t a_t K_t$
 - Nominal government debt supply $\frac{dB_t}{B_t} = \mu_t^{\mathcal{B}} dt$
 - Floating nominal interest rate i_t on outstanding bonds
- Government budget constraint (BC)

$$\underbrace{\left(\mu_t^{\mathcal{B}} - i_t\right)}_{\widecheck{\mu}_t^{\mathcal{B}} :=} \mathcal{B}_t + \mathcal{D}_t K_t \underbrace{\left(\tau_t a_t - \mathcal{G}_t\right)}_{s_t :=} = 0$$

Primary surplus (per K_t)

Calibration

- Exogenous processes: **Recessions** feature high idiosyncratic risk and low consumption
 - $\tilde{\sigma}_t$: Heston (1993) model of stochastic volatility

$$d\tilde{\sigma}_t^2 = -\psi\left(\tilde{\sigma}_t^2 - \left(\tilde{\sigma}^0\right)^2\right)dt - \sigma\tilde{\sigma}_t dZ_t$$

• $a_t: a_t = a(\tilde{\sigma}_t)$ such that in equilibrium

$$\frac{c}{K}(\tilde{\sigma}_t) = \alpha_0 - \alpha_1 \tilde{\sigma}_t$$

•
$$g_t = 0$$

- Government (bubble-mining policy) $\check{\mu}_t^{\mathcal{B}} = -\nu_0 + \nu_1 \tilde{\sigma}_t$
- Calibration to US data (1966-2019, period length is one year)

Two Debt Valuation Puzzles

- Properties of US primary surpluses
 - Average surplus ≈ 0
 - Procyclical surplus (> 0 in booms, < 0 in recessions)
- Two valuation puzzles from standard perspective: (Jiang, Lustig, van Nieuwerburgh, Xiaolan, 2019, 2020) 1. "Public Debt Valuation Puzzle"
 - Empirical: E[PV(surpluses)] < 0, yet $\frac{B}{\omega} > 0$
 - Our model: bubble/service flow component overturns results
 - 2. "Gov. Debt Risk Premium Puzzle"
 - Debt should be positive β asset, but market don't price it this way
 - Our model: can be rationalized with countercyclical bubble/service flow

Bond and Capital Value for time-varying idiosyncratic risk $\tilde{\sigma}_t$

Safe Asset – Cash flow and Service flow

Asset Price = E[PV(cash flows)] + E[PV(service flows)]

Debt Laffer Curve \neq **MMT Debt Sustainability Analysis 1**

- Issue bonds at a faster rate $\check{\mu}^B$ (esp. in recessions)
 - \Rightarrow tax precautionary self insurance \Rightarrow tax rate
 - ⇒ real value of bonds, $\frac{\mathcal{B}}{\wp}$, ↓ ⇒ "tax base"

Loss of Safe Asset Status – Equilibrium selection

- When government debt has a (stationary) bubble, other equilibria possible
 - Stationary no bubble equilibrium
 - Nonstationary equilibria that converge to the no bubble equilibrium
- Implies fragility: bubbles may pop, loss of safe asset status
- Are there policies to prevent a loss of safe asset status?
 - 1. Create a "fundamentally safe asset"
 - Raise (positive) surpluses to generate safe cash flow component $q_{+}^{B,CF}$
 - If surpluses always exceed a (positive) fraction of total output, no bubble
 - But: gives up revenues from bubble mining
 - 2. Off-equilibrium tax backing
 - Sufficient to (credibly) promise policy 1 off equilibrium
 - See "FTPL with a Bubble"

Role of Central Banks: 2 Layers of Multiplicity

- Liquidity (Rollover Risk) Multiplicity
 - Replace short-term government debt with Reserves
 - Infinite maturity more like equity (no rollover risk)
 - Zero duration more like overnight debt
 - Banking system can't offload it
 - Financial Repression
- Safe Asset Multiplicity arises even absent of rollover risk
 - Central Bank as Market Maker of Last Resort ONLY
 - Simply promote tradability: keep bid-ask spread of government bond low

Conclusion

- Safe Asset = good friend
 - Individually: allows self-insurance through retrading
 - Aggregate: appreciates in bad times (negative β)
- Fiscal Debt Sustainability Analysis
 - Gov can "mine the bubble" within limits (max 2% of GDP)
 - Extra space, but Debt Laffer Curve (≠ MMT)
 - Bubble can pop: loss of safe asset status
 - Central Banks: Loss of safe-asset-status ≠ rollover risk multiplicity
- Asset pricing with safe assets
 - Service Flow term >> convenience yield
 - Flight to Safety creates
 - Countercyclical safe asset valuation
 - Large stock market volatility
- Remark: Competing Safe Assets
 - Within country private bonds are partial safe assets
 - Across countries ⇒ Spillover of US Monetary Policy