Investment During the Korean Financial Crisis: The Role of Foreign Denominated Debt.

Simon Gilchrist

Boston University and NBER

Jae Sim

Boston University

Issues:

- Do exchange rate devaluations stimulate investment during financial crises?
- Do financial factors influence investment during financial crises (or more generally)?
- We use unique panel of Korean firm-level data during Korean financial crisis to analyze these questions.

Exchange rates and investment:

- Competiveness channel: increase exports and raise marginal product of capital.
 - Strength depends on amount of exports and imported materials
- Finance channel: Devaluation increases domestic value of foreign-denominated debt.
 - Negative shock to balance sheet.
 - Increases cost of external funds.

This paper:

- Reduced-form regression analysis:
 - Firms differ in degree of foreign debt exposure devaluation is exogenous to firm's pre-crisis choice of foreign debt.
 - This provides a natural experiment to assess the effect of the devaluation working through the finance channel on investment.
- Structural approach:
 - Specify dynamic model of investment with financial frictions.
 - Estimate model using indirect inference
 - Quantify the effect of finance channel for investment.

Previous literature:

- Dollar-denominated debt and investment (Bleakley and Cowan, Aguiar)
- Financial market imperfections and investment:
 - Reduced-form: e.g. Fazzari, Hubbard and Peterson,
 - Natural Experiments: Blanchard et al., Lamont.
 - Structural: Hennesey and Whited, Cooper and Ejarque
- Both reduced form and structural estimation face same identification problem: how to distinguish balance sheet effects from fundamentals.

Figure 1: Investment, sales and debt during financial crisis.

Figure 2: Investment rates.

Investment Model

• Value function:

$$v(k, b_d, b_f, \mathbf{z}) = \max_{k', b'_d, b'_f, d} \{ d + E[\Lambda' v(k', b'_d, b'_f, \mathbf{z}') | \mathbf{z}] \}$$

• Dividends:

$$d = \left(\sum_{j=d,f} \pi_j(a,e,z)k^{\alpha_j} - \sigma\right) - i - c(i,k) + b'_d + eb'_f - R_d b_d - eR_f b_f$$

- Profitability indices $\pi_j(a, e, z)$ depend on e, the real exchange rate, a an aggregate shock and z an iid idiosyncratic shock.
- σ denotes fixed cost to production.

Financial Market Imperfections:

• No equity issuance:

 $d \ge 0.$

• Borrowing cost can be decomposed into a risk-free interest rate and an external-finance premium:

 $R_f = (1 + r_f)(1 + \eta)$ $R_d = (1 + r_d)(1 + \eta)$

- Common external-finance premium on domestic and foreign debt combined with uncovered interest parity implies that firm cares about the total debt obligation $b = b'_d + eb'_f$ but is indifferent exante between the currency composition of debt.
- This allows us to simplify model and eliminate one state variable.

Restated value function:

$$v(k, b, \mathbf{z}; \omega) = \max_{k', b', d} \{ (1 + \lambda) d + E \left[\Lambda' v(k', b', \mathbf{z}'; \omega) | \mathbf{z} \right] \}$$

where

$$\omega \equiv \frac{e_{-1}b_f}{b_d + eb_f}$$
$$d = \left(\sum_{j=d,f} \pi_j(\mathbf{z})k^{\alpha_j} - \sigma\right) - i - c(i,k) - \Omega\left(e, e_{-1}; \omega\right) R_d b + b'$$

and

$$\Omega(e, e_{-1}; \omega) \equiv \left[\omega \frac{e/e_{-1}}{E(e/e_{-1} | \mathbf{z}_{-1})} + (1 - \omega) \right]$$

and $\frac{e/e_{-1}}{E(e/e_{-1}|\mathbf{z}_{-1})}$ denotes the surprise to the exchange rate.

Functional form for external finance premium:

• Assume:

$$\eta(x) \equiv \kappa \left[\exp\left(x \right) - 1 \right]$$

where

$$x(k, b, \mathbf{z}_{-1}) = \frac{b}{\sum_{j=d, f} \pi_j(\mathbf{z}_{-1})k}$$

and $\sum_{j} \pi_{j}(z_{-1})$ measures profitability of installed capital.

• η is strictly convex with curvature $x\eta''(x)/\eta'(x) = x$. Thus the slope of the premium rises more rapidly as leverage increases.

The Efficiency Conditions

• Debt arbitrage condition:

$$1 = E\left[\Lambda'\left(\frac{1+\lambda'}{1+\lambda}\right)\Omega(e',e;\omega)\left(1+r'_d\right)\left(1+\eta'+\frac{\partial\eta'}{\partial b'}b'\right)|\mathbf{z}\right]$$

• Investment euler equation:

$$1 + \frac{\partial c}{\partial i}(i,k) = E\left[\Lambda'\left(\frac{1+\lambda'}{1+\lambda}\right)\left(\frac{d}{dk'}d' + (1-\delta)\left(1 + \frac{\partial c}{\partial i'}(i',k')\right)\right)|\mathbf{z}\right]$$

where

$$\frac{d}{dk'}d' = \sum_{j=d,f} \alpha_j \pi_j(\mathbf{z}')k'^{\alpha_j-1} - \frac{\partial c}{\partial k'}(i',k') - \Omega\left(e',e;\omega\right)\left(1+r'_d\right)\frac{\partial \eta'}{\partial k'}b'.$$

	Full Sample		Pre-Crisis	Post-Crisis
	Mean	Std. Dev.	Mean	Mean
$(i/k)_{j,t}$	0.169	0.244	0.230	0.136
$(s/k)_{i,t}$	3.756	3.195	3.939	3.657
$(\pi/k)_{j,t}$	0.764	0.866	0.785	0.753
$(b/a)_{i,t}$	0.371	0.211	0.392	0.363
$\left(s^{f}/s\right)_{it}$	0.284	0.279	0.251	0.307
$(b^f/b)_{it}$	0.140	0.189	0.140	0.140
$\langle \cdot \cdot \rangle J, \iota$				
$corr\left(s^{e}/s,b^{e}/b ight)$	0.1669		0.251	0.120

 Table 1: Summary Statistics

Table 2: Quantiles of Pre-Crisis Firm Means							
	0%	25%	50%	75%	100%	mean	
$(b/a)_j$	0.000	0.261	0.399	0.504	1.632	0.391	
$\left(s^f/s\right)_j$	0.000	0.034	0.158	0.419	0.983	0.255	
$\left(b^f/b\right)_j$	0.000	0.024	0.081	0.185	1.000	0.141	

Measuring fundamentals and financial variables

- Measure fundamentals using both foreign and domestic sales to capital ratios.
- Measure shock to balance sheet:

$$\hat{\omega}_{j} = 1/T_{j}^{pc} \sum \left(b_{j,t}^{f} / b_{j,t} \right)$$
$$\Omega_{jt} = 1 - \omega_{j} + \omega_{j} \left(e_{t} / e_{t-1} \right)$$
$$AC_{j,t} \equiv \Omega_{j,t} \left(b_{j,t} / a_{j,t} \right)$$

• Ω_{jt} captures contemporaneous effect of exchange rate through balance sheet.

Table 4: Investment Equation							
	IV Fixed	d Effects	First Diff. GMM				
	$(i/k)_{j,t}$	$(i/k)_{j,t}$	$(i/k)_{j,t}$	$(i/k)_{j,t}$			
$(s^d/k)_{j,t}$	0.069	0.069	0.054	0.051			
	(0.007)	(0.006)	(0.006)	(0.022)			
$(s^e/k)_{j,t}$	0.047	0.047	0.035	0.035			
	(0.011)	(0.011)	(0.005)	(0.005)			
$(\hat{\Omega}b/a)_{j,t}$	-0.208	_	-0.177	_			
	(0.037)		(0.041)				
$(b/a)_{j,t}$		-0.194		-0.160			
		(0.038)		(0.049)			
$\hat{\omega}_j e_t$	_	-0.503	_	-0.205			
2		(0.124)		(0.074)			
$(i/k)_{j,t-1}$	_	—	0.204	0.201			
			(0.018)	(0.022)			
Rsq (within)	0.19	0.20					
Sargan			106.34	105.89			
(p-val)	_		(0.39)	(0.17)			
No. of Obs.	2490	2490	1990	1990			
No of Inds.	419	419	412	412			

	H-fob/L Exp	H-fob/H-evp	I-Fob/I-exp	L-Foh/H-evp
	$\binom{i}{i/k}$	(i/k)	$\binom{i}{k}$	(i/k)
	$(\iota/n)_{j,t}$	$(\iota / \kappa)_{j,t}$	$(\iota/n)_{j,t}$	$(\iota / \kappa)_{j,t}$
$\left(\frac{d}{d}/I_{0}\right)$	0.060	0.099	0.041	0.059
$(S^*/\kappa)_{j,t}$		0.082	0.041	0.038
	(0.004)	(0.004)	(0.002)	(0.002)
$(s^e/k)_{j,t}$	0.028	0.064	0.150	0.041
	(0.001)	(0.002)	(0.014)	(0.003)
		``		× ,
$(\hat{\Omega}b/a)_{it}$	-0.401	-0.203	-0.197	-0.021
$\langle I \rangle J, c$	(0.022)	(0.019)	(0.026)	(0,000)
		(0.010)		(0.000)
$(i/k)_{i+1}$	0 145	0 148	0 130	0 209
$(v/v)_{j,l-1}$	(0.004)	(0.005)	(0.011)	(0,000)
		(0.000)		(0.000)
<u> </u>	F7 19	100.00	00.01	F0 07
Sargan	57.13	100.28	88.91	58.97
	(0.99)	(0.56)	(0.84)	(0.99)
m2	-0.63	-0.99	0.51	-0.94
	(0.53)	(0.32)	(0.61)	(0.35)
No of Obs.	349	640	686	315
No of Inds.	70	137	136	69

Table 5: Investment: First Differenced GMM by sub-groups

Profit Function

• Profit function is weighted average of domestic and foreign sales:

$$\pi_{j,t} = \Gamma\left(\chi_d\right) s_{j,t}^d + \Gamma\left(\chi_f\right) s_{j,t}^f$$

where $\Gamma(\chi_i)$ depends on market power and production shares of capital and labor.

• Taking logs:

$$\log s_{j,t}^d = \varsigma_d \log \theta_{d,j} - \xi_d \log e_t + \gamma_d \log k_{j,t} + \varsigma_d \log a_{d,t} + v_{d,j,t}$$
$$\log s_{j,t}^f = \varsigma_i \log \theta_{i,j} + \left[1 - \xi_f\right] \log e_t + \gamma_f \log k_{j,t} + \varsigma_f \log a_{f,t} + v_{f,j,t}$$

• By estimating these equations we identify all relevant coefficients to determine profit opportunities.

	$\log e_t$	$\log k_{j,t}$	$\log a_{d,t}$	$\log a_{f,t}$	rho_v	R^2	Obs/Inds
$\log s_{f,t}$	0.360 (0.086)	$0.545 \\ (0.038)$		5.355 (1.76)	0.325	0.41	$2544 \\ 416$
$\log s_{d,t}$	-0.120 (0.052)	0.412 (0.024)	1.479 (0.198)		0.223	0.62	2847 441

 Table 6: Profit Function: Export vs Domestic Sales

Structural parameters

- Capital adjustment cost γ
- External finance premium κ where:

$$\eta = \kappa \left[\exp \left(x \right) - 1 \right]$$

• No financial frictions: $\kappa = 0$.

Indirect Inference:

• Data: auxiliary regression estimated with IV fixed effects and time dummies:

$$(i/k)_{j,t} = c_j + \beta^d (s^d/k)_{j,t} + \beta^e (s^e/k)_{j,t} + \beta^f (\hat{\Omega}b/a)_{j,t} + \delta_t + \varepsilon_{j,t}$$

- Model: estimate auxiliary regression using simulated data.
- Match: auxiliary regression parameters from real and simulated data.

Firm-level heterogeneity:

- Allow heterogeneity in export status, foreign-denominated debt ratio and initial leverage.
- Specify types based on empirical distribution of firm-specific characteristics.
- Solve and simulate value function for each "type".

Macroeconomic environment:

- \bullet Real exchange rate follows an AR(1) process.
- \bullet Domestic interest rate determined by AR(1) shock to country risk premium combined with UIP.
- Aggregate demand shock to domestic sales.

	$(s^d/k)_{jt} \ (s^e/k)_{jt} \ (\hat{\Omega}b/a)_{jt}$
Data Moments	0.0692 0.0465 -0.2075
Simulated Moments Case 1. $\rho_e = 0.85$	0.0689 0.0464 -0.2060
Case 2. $\rho_e = 0.90$	0.0687 0.0468 -0.2006
Case 3. $\rho_e = 0.95$	0.0683 0.0405 -0.1931

Structural Parameter Estimates

	$\hat{\psi}$	$\hat{\kappa}$	\hat{J}
Case 1. $\rho_e = 0.85$	0.9530 (0.0079)	0.1443 (0.0042)	0.0042 (0.9483)
Case 2. $\rho_e = 0.90$	0.9569 (0.0762)	0.1355 (0.0220)	0.0442 (0.8335)
Case 3. $\rho_e = 0.95$	$\frac{1.0670}{(0.0055)}$	0.1429 (0.0017)	0.6544 (0.4185)

Figure 1: Low Export, High Foreign Debt ($\rho_e = 0.85, r$)

Figure 2: High Export, Low Foreign Debt ($\rho_e = 0.85, r$)

Figure 3: Aggregate Response (1), $r, \rho_e = 0.85$

Summary

- Financial market imperfections important to explain:
 - Firm-level heterogeneity in investment response.
 - Aggregate investment response.
- Role of foreign debt:
 - Firms with high foreign-debt ratio adversely affected through balance sheet mechanism.
 - Aggregate effects of foreign-denominated debt on investment explain 20% of investment decline.
- Broader message: variation in the balance sheet that is distinct from variation in fundamentals is key to identification of models with financial frictions.