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Abstract

This paper provides a simulated moments estimator of the Sticky In-
formation Phillips Curve. A crucial feature of this model is that inflation
is a persistent process, i.e. the effect of a shock on inflation lasts in time
because firms acquire information sporadically. Therefore, I propose to
estimate the degree of information stickiness in the economy using the
model to match the covariances between actual inflation and exogenous
shocks.

The paper provides estimates for U.S. postwar economy. The main
result is that the SIPC model does not fit the data. This finding is very
different to what has been found in the literature until now. I show
that this difference depends on how much information about the inflation
process we use. In particular, when the model is estimated matching only
the covariances between inflation and lagged shocks, then the estimates
of firms’ frequency of information updating λ are in accordance with that
of the other papers that estimated the SIPC, i.e. λT ∈ [.35, .57].

Differently, when the model is estimated matching the conditional vari-
ance of inflation alone, the estimates of λ are significantly higher than
before, i.e. λT ∈ [.71, .86].

The distance between these two ranges is crucial for the implications
of the model. Indeed, for λ close to 1 the SIPC predicts an inflation
dynamics with little persistence, which is at odd with the data.
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1 Introduction
This paper estimates the degree of information stickiness in U.S. post-war econ-
omy. The model I refer to is the Sticky Information Phillips Curve (henceforth
SIPC), proposed by Mankiw and Reis (2002, henceforth MR) as structural the-
ory of inflation.
MR goal was to understand why actual inflation responds gradually to a

large number of different shocks, as observed in post-war U.S. data. As a mat-
ter of fact, several theories of prices, such as the neoclassical model with no
nominal rigidities and the New Keynesian Phillips Curve, predict an inflation
dynamics far less persistent than what we observe in actual data.1 In general,
if firms maximize profits and have rational expectations, they will react to any
exogenous shock adjusting their prices to the new target level as soon as they ac-
quire information about the shock. Hence, the effect of a shock on price changes
disappears rapidly, and the only source of persistence in inflation dynamics can
be the one of the exogenous shocks (e.g. cost push shocks, monetary policy
shocks, demand shocks).
To overcome the lack of intrinsic persistence in inflation dynamics, MRmodel

is based on the idea that firms absorb only sporadically the information they
need to choose their price plans. In those periods when information inflows
are limited or absent, firms set prices based on outdated information. When a
shock occurs only a fraction of firms adjust the price contemporaneously, while
the others delay some periods to get aware of the shock, meanwhile relying on
outdated price plans. Thus, the overall effect of a shock on changes of prices
lasts in time, and inflation turns out to be a persistent process as real data
suggest.
Regarding the issue of inflation persistence, the key parameter in the model

is the frequency of firms’ information updating λ. In fact, for high (low) values
of λ the SIPC model predicts low (high) persistence of inflation. An example is
useful to see this point. Following Reis (2004),2 I simulate the SIPC assuming
a simple univariate AR(1) model for the exogenous shocks. In figure (1) I plot
for all the values of λ ∈ (0, 1] the ratio between the first autocovariance function
acf(1) of fitted inflation from the SIPC model over the acf(1) of actual U.S.
postwar inflation. As we can see from figure (1) the higher is λ, the smaller is
the persistence explained by the model.
In the literature there isn’t consensus on the estimates of λ. Reis (2004)

suggested that λ = 0.253 is the best parameter for the SIPC to match the per-

1Actually, MR presented the SIPC as an alternative theory to the New Keynesian Phillips
Curve, which was criticized because it lacks of persistence. The criticisms pointed out that:
(i) actual inflation responds gradually to monetary policy shocks, while NKPC implies an
immediate adjustment (Mankiw 2001); (ii) output losses typically accompany a reduction in
inflation, while this is not true with NKPC (Able and Bernanke, 1998); (iii) NKPC implies
that announced disinflation causes a boom, while in real economy it is the opposite (Ball
1994).

2 I thank Ricardo Reis for making the rutine of his papers freely available on his webpage.
3This is the calibration originally used in MR (2002) paper. In a model where a period is

equal to one quarter, λ = 0.25 implies that firms update information on average once a year.
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sistence of U.S. postwar inflation. After, Khan and Zhu (2002, 2006), Kiley
(2006) and Korenok (2005) estimated the model using limited information esti-
mators, and they found λT ∈ [0.15, 0.4]. While Laforte (2006) and Mankiw and
Reis (2006) estimated λT ∈ [0.7, 0.85] using full information estimators.4 As we
can see from figure (1), between the first and the second range there is a relevant
difference in the degree of actual inflation persistence the model explains.5

In this paper I try to reconcile these different estimates proposing a simu-
lated moments GMM estimator that exploits the information contained in the
covariance functions between current inflation and current and lagged exoge-
nous shocks that are relevant in firms’ pricing decisions. The intuition is that,
if the model is true, the more firms’ are inattentive to new shocks (low λ), the
longer time a shock today will affect future price plans, and so the longer it will
be correlated with inflation.
To implement this estimator it is worth writing the expectations terms that

appear in the SIPC as functions of forecast errors, and then the forecast errors
in terms of exogenous shocks.6 Once the model is transformed in this way, it is
easy to derive a set of orthogonality conditions that are based on the covariances
between inflation and exogenous shocks. I show them in section 3.1. Then, these
orthogonality conditions are estimated pursuing a two steps approach: first, I
fit a vector autoregression (VAR) model for the exogenous shocks, which is used
to calculate the covariances we need. Second, I use the simulated moments to
estimate λ with the GMM.
With respect to the other papers that estimated the SIPC using limited infor-

mation estimators, e.g. Khan and Zhu (2002, 2006), Kiley (2006) and Korenok
(2005), this econometric strategy has two advantages: (i) since my orthogonality
conditions have a finite number of terms, I avoid the infinite dimensions problem
usually associated with the SIPC without using any truncation or approxima-
tion of the model. (ii) I use more information about the inflation process to pin
down λT . This last point is not straightforward to see because the other papers
use different methodologies from mine. I try to make the comparison in section
2.2.
In summary, the objective of this paper is twofold: (i) to estimate the SIPC

model to see whether it is a valid explanation of U.S. inflation; (ii) to show the
implications of the resulting estimates of λ on inflation persistence.
The paper is organized as follows: in section 2 I review the SIPC model

and the literature about sticky information and inflation persistence. In section
3 I present econometric strategy and results. Section 4 analyzes whether the
degree of information stickiness changed during the sample. Some conclusions
are given in section 5.

4These are "full information" estimators in the sense that the SIPC is estimated — as
aggregate supply equation — joint with an equation for aggregate demand, and an equation
for nominal interest rate adjustment (e.g. the Taylor rule) in a fully fledge model of the
aggregate economy.

5Note that the SIPC with λ = 1 encompasses the RE model with monopolistic competitive
firms and flexible prices.

6This way of writing the model is similar to that in Mankiw and Reis (2006), and ??
However, our results are contemporaneous and independent.
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2 The Model

2.1 The Sticky Information Phillips Curve

The main assumption in the SIPC model is that in every period there is a frac-
tion λ, out of a continuum (0, 1) of monopolistic competitive firms operating
on the market, which update the information about the current economic con-
ditions of the markets (e.g. exogenous demand shocks, changes in the nominal
marginal cost, etc.). These firms charge a price p∗t for their production in or-
der to maximize profits conditional on the newly updated information, while
the rest of firms sets their prices according to old price plans. In other words,
the firms that don’t updated information set a price to maximize profits condi-
tional on outdated information. Each firm has the same probability to update
information, regardless of how long has been since its last update.
Since all firms are ex-ante identical, optimal price is the same for all those

firms that have information dated t− j, and any firm that updated its informa-
tion j periods ago adjusts today price according to:

xjt = E [p∗t | Ωt−j ] (1)

where xjt is price adjustment at period t. All the variables are expressed in logs,
and Ωt−j is the information set at period t− j.
MR solved the aggregate dynamics of prices, and showed that inflation in

this model evolves according to:

πt =
αλ

1− λ
yt + λ

∞X
j=0

(1− λ)j E [πt + α∆yt | Ωt−1−j ] (2)

where ∆yt = yt−yt−1 is the growth rate of output gap, and λ is the probability
that the agent updates his information in period t.7

As we can see from equation (2), in the SIPC model inflation is persistent
because current inflation depends on past periods expectations about the current
inflation and output growth, where past expectations are weighted with a weight
that fades out at the rate (1− λ). The mechanism is the following: suppose that
in period t occurs a shock εt that increases the output gap. The information
about this shock is included in period t information, i.e. εt ⊂ Ωt. Accordingly to
(2), inflation raises contemporaneously because of the trade off term

³
αλ
1−λyt

´
.

In period t+1, when (2) holds for πt+1, a fraction λ of agents gets aware of the
shock occurred in t, so inflation raises again because E

£
∆yt+1 | Ω(t+1)−1−j

¤
is

positive for j = 0. Same happens in t+ 2, when a fraction λ (1− λ) gets aware
of the shock, and then in all the following periods t + j for j > 1, when the
effect of the shock on inflation fades out at rate (1− λ)j . Hence, in this model
a shock today affects future inflation level for infinite periods. This implies that
the inflation process is serially correlated for many periods, as real data suggest.

7For the proof and the details see Mankiw and Reis (2002).
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2.2 Sticky Information and Inflation Persistence

The model of sticky information belongs to the literature about Rational Inat-
tention.8 This conjecture has been proposed as explanation of the stickiness
observed in macroeconomic variables, and it is related with the early papers
on limited information of Lucas (1973), Fischer (1977), Taylor (1980), Sims
(1998), and Woodford (2001). MR combined some elements of Fisher’s and
Lucas’s contributions and proposed the Sticky Information Phillips Curve to
model inflation dynamics.
In their original paper, MR assumed that producers get new informations

in every period with an exogenous probability λ, and they calibrated firms’
average information duration of 1 year (in a model where each period is a quarter
this corresponds to λ = 0.25). In that paper MR achieved their goal: fitted
inflation responded gradually to several exogenous shocks like demand shock
and monetary policy shock.
After the original MR work, the SIPC model has been estimated in different

ways. Reis (2004) proposed a validation test based on the simulation of the
model. First, he provided a rigorous microfoundation of SIPC based on cost-
benefit analysis: firms gather new information only if the expected benefit of
changing the price is higher than the cost of acquiring the information.9 Then,
he simulated the SIPC calibrating model parameters. Parameter α, which he
found to be function of intertemporal elasticity of substitution, of Fisher elastic-
ity of labor, and of the elasticity of demand of single-variety goods, is calibrated
within the interval α ∈ (0.1, 0.2), following the RBC literature about these deep
parameters. For λ Reis used the calibration λ = 0.25 originally proposed by
MR. Finally, he showed that the model did a good job in matching some mo-
ments of the aggregate distribution of prices, including the first autocovariance
function of inflation, which he used as measure of persistence.
Reis (2004) gave an important contribution to support the SIPC as possible

explanation of inflation persistence, but there are some reasons of concern with
his results. In the simulations of the SIPC he assumed an arbitrary process for
exogenous shocks that is highly persistent itself. Therefore, we don’t know how
much persistence of fitted inflation came from the intrinsic dynamics of inflation
with sticky information and how much from the exogenous shocks process.
A different approach is followed in Mankiw Reis and Wolfers (2003) that

showed how the sticky information conjecture explains well the main features of
expectations about inflation, as they are observed in the Michigan Consumers
Survey and in the Survey of Professional Forecasters. Moreover, they showed
that λ = 0.25 was the best value for the SIPC to match the moments of the
distribution of inflation expectations.
Although Mankiw Reis and Wolfers surely provided an evidence to support

8The name Rational Inattention first appeared in Sims (2003).
9Reis (2004) is not the only paper that provide a microfoundation of inattentive agents.

Branch (2004) explains individual inattentiveness as function of the increase in forecasts accu-
racy once new information is processed. Hence, the more new information improves the Thail
index of forecasts (with respect to outdated information), the more agents are attentive.
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the SIPC model to explain micro data, it is less clear whether their work can
be used also to support MR calibration of λ. In fact, there is a good number of
examples in the literature where macro models calibrated with micro data does
not match the moments of aggregate variables distributions, which is our goal
here.10 I don’t want to get into this issue here. My point is just to underline
that a proper estimation of the SIPC using macro data seems of necessity to
draw conclusions about the relationship between sticky information and inflation
persistence.
In the last two years this has been done by several papers. Among the oth-

ers, Khan and Zhu (2002, 2006), Kiley (2006) Korenok (2005), Laforte (2006),
Mankiw and Reis (2006). The reason why I propose another estimation of the
SIPC is mainly because the estimates of λT vary a lot among those papers.
Also, the estimator I pursue here improves the ones used by the other papers

because it exploits more information about inflation. To show that I focus
on those papers that use limited information estimators (e.g. Khan and Zhu,
Coibion, Kiley) as I do here.
In general, the estimation strategies of the other papers have a common

first step. They truncate the infinite sum of expectations in equation (2) at
t − jmax, and then they substitute the remaining expectations terms with the
predictions of a VAR model set ad-hoc to forecast inflation and output gap. For
instance, today expectations conditional on information dated t−5 are replaced
by projt−5 (πt + α∆yt).
Thus, the specification they estimate is:

πt =
αλ

1− λ
yt+λprojt−1 (πt + α∆yt)+...+λ(1−λ)jmaxprojt−1−jmax (πt + α∆yt)

Now, since the projt−j (πt + α∆yt) is a linear combination of lagged inflation
and output gap,11 what they do is a nonlinear regression of inflation at time
t on t − jmax lags of inflation and output gap. In turns, this means that they
exploit the covariances between inflation and lagged inflation and output gap
terms.
Hence, they don’t use any information regarding the covariance between

current inflation and contemporaneous shocks. On the contrary, the simulated
moments estimator allows us to estimate λ matching jointly the moments that
measure inflation persistence, i.e. the covariances between inflation and lagged
shocks, and the moments that measure the conditional variance of inflation, i.e.
the covariance between current inflation and contemporaneous shocks. Clearly,
if the SIPC model is the true DGP of the data we use as observables, then it
10One example is the Frish labor supply elasticity in the standard RBC model. The mi-

cro evidences about this elasticity point a value around 1/6, whereas to fit aggregate labor
volatility the RBC model need a value of close to 1, so much higher.
11The sentence should read: "since the projt−j (πt + α∆yt) is a linear combination of

lagged inflation and output gap, plus past values of other variables possibly included in the
VAR." The specification of the VAR model differs in all the papers cited above, therefore
it is not possible to make general statement about the information that come from other
variables. However, the bulk of the argument remains true, since that information regards
lagged variables.
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should be able to match all the moments jointly, plus the estimates of λ shouldn’t
differ significatively matching one set of moments at the time. Unfortunately,
the bulk of my results points out that this is not the case, as the reader will see
in section 3.3.

3 The Estimation

3.1 Econometric strategy

I use here the standard assumption that the dynamics of inflation and output
gap result from the interaction of n macroeconomic variables, which I define as
elements of a covariance-stationary vector process Zt. This assumption poses
very few structure on inflation and output gap processes, nonetheless it allows
to find a useful result:

Lemma 1 Let {Zt}∞t=0 be a covariance stationary (n× 1) vector process s.t.
{πt,∆yt} ⊂ Zt. Then SIPC (2) implies:

αλ

1− λ
yt + α∆yt =

∞X
i=0

(1− λ)
i
δAiεt−i (3)

where the (n× n) matrices Ai are the dynamic multipliers of the Zt process,
and εt is a (n× 1) vector of exogenous shocks. δ is a (1× n) row vector that
picks up (πt + α∆yt) within Zt.

Proof. See Appendix B.12

Equation (3) is useful to derive a set of orthogonality conditions. Multiplying
(3) by a vector of lagged shocks εt−i for i = 0, ..., l and taking the expectations,
I obtain:

E

∙µ
αλ

1− λ
yt + α∆yt

¶
(δεt−i)

0
¸

= (1− λ)i δAiΣδ
0 (4)

for i = 0, . . . , l

where Σ ≡ E [εtε
0
t] is the VCV matrix of the shocks.

13

Is useful to see that each orthogonality condition in (4) matches a lag of the
covariance between Zt and a linear combination of εt. Also, the RHS of (4) is a
linear combination of the impulse response functions (IRF) of Zt, weighted by
the frequency of firms’ that don’t update information. Intuitively, in the SIPC
model this linear combination is function of the output gap process, which is the
driving force of prices, and of λ, which measure how many firms are attentive
to the shocks, i.e. how rapidly the effect of the shocks on prices fades out.
12This result is similar to those found by Mankiw and Reis (2006) and Wang and Wen

(2006). However, I obtained it contemporaneously and independently from those papers.
13Equation (4) follows multiplying (3) by (δεt−j)0 and taking the expectations conditional

on information at time t. It uses the fact that E [εtεt−j ] = 0 , j = 1, . . .
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The moments (4) depend on the unknown regressors {εt, Ai,Σ}.14 Hence,
in order to estimate them I pursue a two steps approach. First, I estimate a
vector autoregression model of Zt to obtain consistent estimates of {εt, Ai,Σ}.
Second, I estimate the orthogonality conditions (4) with the GMM usingnbεt (β) , bAi (β) ,ΣT (β)

o
|β=βVART

as regressors.

This econometric strategy implies that some variables in the second step are
generated regressors from the first step. Therefore, to make statistical inference
the asymptotic standard errors calculated from the GMM estimator should be
corrected.
To do it, we can compute the asymptotic standard errors of λ in a model

that estimates jointly the parameters of the VAR(p) and the SIPC. The problem
is described formally in the Appendix. The corrected variance of λT is then:

V (λT ) =

∙
(TVna(λT ))

−1 −E
∂g01,t
∂λ
Σ−1g1 E

∂g1,t
∂β0

·µ
E
∂g01,t
∂β
Σ−1g1 E

∂g1,t
∂β0

+E
∂g02,t
∂β
Σ−1g2 E

∂g2,t
∂β0

¶−1
·

E
∂g01,t
∂β
Σ−1g1 E

∂g1,t
∂λ

¸−1
/T (5)

where g1,t is the vector of orthogonality conditions (4), g2,t is the vector the
orthogonality conditions used to estimate the VAR(p) in the first step,15 β is
the vec of the VAR(p) matrices of parameters, and Σx is the variance of moments
x.
I write the correct variance (5) as function of the not-adjusted one, Vna(λT ).

It is useful to see that V (λT ) ≥ Vna(λT ).
Finally, note that if the residuals from the first step estimation are uncorre-

lated with the ones from the second step, then the two steps estimator is also
the most efficient among the GMM estimators of (4).

3.2 VAR estimation

I provide estimates for two main specifications of the V AR(p) model. (i) the
baseline, where Zt includes inflation, output gap and interest rate; (ii) a second
one that I named min RMSE, where Zt includes the most relevant variables to
forecast inflation and output gap according to Stock and Watson (2003a).16

14 It can be shown that if
nbεt, bAi,ΣT

o
are consistent estimators of {εt, Ai,Σ}, then the

sample analog

1

T

TX
t=1

∙µ
αλ

1− λ
yt + α∆yt

¶
(δbεt−i)0 − (1− λ)i δ bAiΣT δ0¸

converges almost surely to the population moment (4).
15The VAR(p) is estimated LS equation by equation.
16 Stock and Watson (2003a) analyzed the contribution of several variables in forecasting

inflation and output gap.
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In details, I estimate

Zt =

pX
j=1

Bj · Zt−j + εt (6)

where
Zt|{z}
n×1

=
£
∆yt πt X 0

t

¤0
and Xt can be either Xt = it (the baseline specification), or a (n− 2× 1) vector
that includes: short term interest rate (the Fed Fund Rate), the term spread
(10 years Government bond minus short term interest rate), the real Stocks
Price Index (S&P500, deflated by CPI); IMF price index of commodities; real
money (real M2 minus small time deposits); unemployment rate; total capacity
utilization rate (TCU).
I estimate both the specifications for inflation measured either with CPI, or

with the implicit GDP deflator. Output gap is detrended with the HP filter.
All the variables are taken in logs except for unemployment, TCU, and interest
rates.
The variables have been detrended or taken in first difference when necessary,

so all the series used in the VAR(p) are stationary. Also, the VAR(p) model
has the minimum number of lags in order for the residuals to be not serially
correlated. These two conditions assure that the VAR(p) estimator is consistent.
The sample goes from 1957q1 to 2005q4; The database come from FRED II

database of U.S. economy.17

3.3 GMM Estimation

To control for the small sample bias problem that affect nonlinear GMM es-
timators I estimate two alternative specifications of (4). The first one is (4)
multiplied by (1− λ), the second one is (4) multiplied by

¡
1−λ
αλ

¢
. They are re-

ferred to as (1) and (2) in next tables. The sample goes from 1958q4 to 2005q4
(189 observation).18

I provide estimations only for parameter λ, while I calibrate α. In the original
model α depends on the intertemporal elasticity of substitution of consumers,
on Fisher elasticity of labor, and on the elasticity of demand of single-variety
goods. Since I don’t use data on neither about consumption or about labor or
about firms’ markup, then I don’t attempt to estimate α.

3.3.1 Results

My first attempt has been to estimate (4) using all the orthogonality conditions,
i.e. for i = 0, ..., l.

17Available at Federal Reserve Bank of St. Louis.
18The GMM sample is shorter than the VAR one because I loose 7 observations to obtain

the VAR(6) estimates.
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The results are not encouraging. We never accept the null hypothesis of
overidentifying restrictions in Hansen’s J-test, no matter the order of lags l I
choose (2, 4, 6, 8, 12), the inflation index I choose (either CPI or GDP deflator),
the VAR(p) specification I use to generate the regressors (either the baseline,
or the min RMSE). Apparently, the model can’t match the selected moments
all together.
From this first evidence we should argue that there are some sources of

mispecification in the SIPC model. However, since the main call of the SIPC
was to explain inflation persistence, I check whether the model can do better
matching the lagged moments alone. To do this, I discard the first equation
in (4), and I focus on the other orthogonality conditions, i.e. equations (4) for
i = 1, ..., l.
The following table 1 summarizes the results.

Restricted Adjusted Null t-stat Null t-stat J-stat

α = .2 Specif. λ2sT std.err. MR cal. (p-val) RE (p-val) (p-val)

O.C. (4) i = 1, ..., 6
defl; VAR (1) 0.35 0.149 0.25 0.71 1 -4.30 2.22

{∆yt, πt, it} (0.47)* (0.00) (0.81)*

(2) 0.36 0.055 0.25 2.17 1 -11.41 1.95

(0.03) (0.00) (0.85)*

defl; VAR (1) 0.38 0.106 0.25 1.35 1 -5.70 2.18

minRMSE (0.17)* (0.00) (0.82)*

(2) 0.41 0.075 0.25 2.15 1 -7.81 2.79

(0.03) (0.00) (0.87)*

cpi; VAR (1) 0.47 0.061 0.25 3.67 1 -8.44 2.70

{∆yt, πt, it} (0.00) (0.00) (0.74)*

(2) 0.49 0.057 0.25 4.21 1 -8.85 2.24

(0.00) (0.00) (0.81)*

cpi; VAR (1) 0.54 0.101 0.25 2.88 1 -4.48 3.38

minRMSE (0.00) (0.00) (0.64)*

(2) 0.57 0.094 0.25 3.48 1 -4.47 2.74

(0.00) (0.00) (0.73)*

Table 1. 2-step GMM with optimal weighting matrix. U.S. data, sample 1958q4
— 2005q4. Output gap filtered with HP filter. Newey-West HAC standard errors
adjusted for stochastic regressors. p-values in parenthesis. J-statistics is Hansen test
of overidentifying restrictions (5 d.o.f.).

The estimates are reasonable and quite precise. The model fits very well all
the moments according to the J-test. We can never reject the null hypothesis
of overidentifying restrictions.
The estimates of the frequency of information updating λ are our main con-

cern. In all specifications λ2sT is in the range assumed by the theory, i.e. within
the (0, 1] interval. More precisely, it ranges between [0.35, 0.57] . In column 4
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of table 1 I report the p-value for the null hypothesis λ = 0.25, which is the
calibration used by Reis (2004) to match actual inflation persistence with the
SIPC model. λ2sT does not significantly differs from the original MR calibration,
at least when we use the GDP deflator as inflation index.
Finally, it seems that the smaller are forecast errors {bεt}Tt=1, the bigger is

λ2sT , as we can see comparing the estimates of the min RMSE model against
those of the baseline.19

Using this restricted set of moments, the results are substantially different
from the ones found before. Now the model fit well the data, and the estimates
of firms’ average information updating comfort MR calibration. We could have
expected this result: Reis (2004) showed that λ = 0.25 is the correct value for
the SIPC model to reproduce the persistence of actual U.S. inflation. Therefore,
if we force the model to match the moments that measure persistence, then it
is likely that the best parameter to do it is indeed the 0.25 proposed by Reis.
It is worth noticing that the estimates in table 1 are in line with the ones of

the other empirical papers that estimate the SIPC. For the sake of comparison,
I estimate λ using exactly the same information those papers used, which turns
out to be the information contained in the first acf(i) of δZt for i = 1, ..., l.
Using lagged δZt as instruments, I derive and estimate the following simu-

lated orthogonality conditions:

E

∙µ
αλ

1− λ
yt + α∆yt

¶
(δZt−i)

0
¸

=
∞X
j=0

(1− λ)
i+j

δAi+jΣA
0
jδ
0

for i = 1, ..., l

In this case the estimates of λ2sT ranges between [0.30, 0.41]. This result is
close to the one obtained using lagged εt as instruments, and resembles much
the ones found by Khan and Zhu (2002, 2006), Kiley (2006) Korenok (2005). In
conclusion, it seems we can reproduce the same results they found once we use
the same information they used, although the estimators are different. Aside,
this works as a double check on the correctness of the methodology that I use
in this paper.
At this point, the question that naturally follows is whether the SIPC model

can match the conditional variance of inflation alone. To do it, I estimate the
first orthogonality condition in (4). In order to obtain more precise estimates,
that orthogonality condition is multiplied by a vector of instruments xt, which
contains all variables dated t−1 and before.20 Using the additional assumption
that the errors ε0ts are i.i.d. I obtain

E

∙µµ
αλ

1− λ
yt + α∆yt

¶
(δbεt)0 − δΣT δ

0
¶
· xt
¸
= 0 (7)

19Recall that the min RMSE VAR(p) predicts better Zt than the baseline specification
because it uses more information. Therefore, the residuals bεt in the min RMSE are smaller
than the ones in the baseline VAR(p).
20 I use a total of 19 instruments, namely: a constant, 4 lags of inflation, 4 lags of output

gap, two lags of unemployment rate, interest rate, marginal cost, money growth, and the term
spread.
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which is a new set of orthogonality conditions with dimensions 19 × 1 (the
number of instruments used).
(7) is estimated using the same procedure as before. In this case the GMM

estimator turns out to be the Non-linear IV estimator, but with smaller variance.
To minimize the standard errors of the estimates, the weighting matrix is chosen
to be the inverse of the variance of moments. The results are summarized in
table 2.

Restricted Adjusted Null t-stat Null t-stat J-stat

α = .2 λ2sT std.err. MR cal. (p-val) RE (p-val) (p-val)

O.C. (7) Specif.

defl; VAR (1) 0.75 0.089 0.25 5.58 1 -2.76 22.21

{∆yt, πt,it} (0.00) (0.00) (0.22)*

(2) 0.86 0.084 0.25 7.24 1 -1.59 15.29

(0.00) (0.11)* (0.64)*

defl; VAR (1) 0.71 0.099 0.25 4.64 1 -2.90 22.62

minRMSE (0.00) (0.00) (0.205)*

(2) 0.84 0.103 0.25 5.70 1 -1.55 15.55

(0.00) (0.12)* (0.623)*

cpi; VAR (1) 0.82 0.073 0.25 7.83 1 -2.43 20.26

{∆yt, πt,it} (0.00) (0.01) (0.318)*

(2) 0.85 0.067 0.25 9.03 1 -2.11 13.97

(0.00) (0.03) (0.731)*

cpi; VAR (1) 0.80 0.083 0.25 6.61 1 -2.39 22.93

minRMSE (0.00) (0.01) (0.197)*

(2) 0.85 0.079 0.25 7.70 1 -1.79 16.39

(0.00) (0.07)* (0.565)*

Table 2. 2-step GMM with optimal weighting matrix. U.S. data, sample 1958q4
— 2005q4. HP filter for output gap. Newey-West HAC standard errors adjusted for
stochastic regressors. p-values in parenthesis. J-statistics is Hansen test of overidenti-
fying restrictions (18 d.o.f.).

Again, the estimates are quite precise and lie in the range assumed by the
theory. The model fits quite well the moments according to the J-test. We can
never reject the null hypothesis of overidentifying restrictions.21

λ2sT now ranges in the interval [0.71, 0.86], which is significantly higher than
the one found in table 2. This value implies that average information duration
ranges from 3.5 to around 4 months. As before, I report the p-value for the null
hypothesis λ = 0.25: it is rejected in all the specifications, suggesting that MR

21A yellow flag should be lied here. Standard distributions for hypothesis testing with IV
estimators are reliable only if the instruments are not weak.
Unfortunately, is still unclear how to check for weak instruments in nonlinear estimators

with possibly nonspherical residuals.
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calibration should be dismissed if we want the SIPC to match the conditional
variance of inflation.
In some specification, however, λ2sT is close to 1. Since the SIPC with λ =

1 encompasses RE equilibrium with flexible prices, then I test whether the
hypothesis of RE is accepted or rejected by the data. In column 6 of table
2 I report the t-statistics and the p-value for the null hypothesis λ = 1. The
evidences are not overwhelming, the null is rejected at 5% level in most of the
specifications, but it is accepted in more than half of them at 1%. We can’t say
anything about the RE equilibrium, at least from this estimation.
All in all, this second estimation suggests that the SIPC can fit also the

conditional variance of inflation, although the model needs an higher frequency
λ of firms’ information updating to achieve it.

3.3.2 Interpretation of the results and the Hybrid SIPC

Understanding these results is not immediate. Basically, we can say that if we
use the SIPC model to match inflation persistence, then it predicts an inflation
volatility higher than the one we observe in the data. While if we use the model
to match the conditional variance of inflation, then it predicts a lower inflation
persistence with respect to the actual one.
A possible explanation of these results is the following. The SIPC has been

criticized because it predicts that all producers change the price in every period,
while there are robust (across countries and times) evidences that a sizeable
fraction of firms change the price only sporadically.
According with this evidence, the SIPC model would be mispecified because

it does not take into account that in every period a fraction of producers keep last
period price. Would this argument be useful to understand the results above?
In a model with both adaptive and inattentive producers the effect of a shock on
inflation lasts in time for two reasons. First, since inattentive agents take some
periods to get aware of a shock, then a current shock will affect prices in the
future. Second, since adaptive producers use lagged prices to set their current
price, then a shock that shift inflation today will affect also prices tomorrow.
Thus, the covariance between current inflation and lagged shocks in such model
depends both on the frequency of information updating and on the size of the
fraction of adaptive producers. In particular, that covariance may be high even
with a low degree of information stickiness insofar as there is a big fraction of
adaptive producers. In this latter case, if we estimated the (mispecified model)
SIPC matching the orthogonality conditions (4) with i = 1, ..., l we may find
(downward) biased estimates of λT .22

Following this intuition, it would be useful to derive and test a model with
heterogeneous agents, where some of them are inattentive and some others use
adaptive pricing rules. Dupor, Kitamura and Tsuruga (2006) goes in this di-
rection. They proposed a model of "dual stickiness" where producers change

22 It is easy to see that. If the RHS of (4) increases because there are more adaptive producers
and inflation is more persistent, helding fixed yt,∆yt and εt, then λ must decrease in order
for the equality (4) to hold.
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prices only sporadically, plus they absorb the relevant information for pricing
in random periods, as in the SIPC.
Basically, what DKT do is to nest together Calvo’s sticky price framework

with the sticky information of Mankiw and Reis. In DKT model inflation in
period t is function of all past periods expectations of a stream of future variables
from t+1 onwards. It is not immediate to accommodate such inflation dynamics
in the framework I use in this paper, and I leave it for future research. Instead,
in this paper I do a simpler. I test whether the SIPC model is able to fit the
data once we introduce a fraction of pure adaptive firms.
So, I assume that in the economy there are two types of producers. The

first type, a fraction ϕ of adaptive firms, set the price price equal to last period
aggregate price level, either adding the inflation over the previous quarter (in-
dexation of prices), or not. The other (1− ϕ) producers are inattentive firms
as in the SIPC model.
In this economy the aggregate price index is given by:

pt = (1− ϕ) pSIt + ϕpbt

where

pSIt = λ
∞X
j=0

(1− λ)j Et−j (pt + αyt)

pbt =

½
pt−1 case (a)
pt−1 + πt−1 case (b)

Inflation in this "hybrid" model evolves according to:

πt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− ϕ)

h
αλ
1−λyt + λ

P∞
j=0 (1− λ)j Et−j−1 (πt + α∆yt)

i
+ϕπt−1

(1− ϕ)
h
αλ
1−λyt + λ

P∞
j=0 (1− λ)j Et−j−1 (πt + α∆yt)

i
+ϕ (2πt−1 − πt−2)

case (a)

case (b)

(8a)
Applying to the models in (8a) the econometric procedure presented in sec-

tion 3.1, I obtain the following sets of orthogonality conditions:

E

∙µ
αλ

1− λ
yt + α∆yt − ϕ

1− ϕ
(πt − πt−1)

¶
(δεt−i)

0
¸

= (9)

= (1− λ)i δAiΣδ
0

case (a)

E

∙µ
αλ

1− λ
yt + α∆yt − ϕ

1− ϕ
(πt − 2πt−1 + πt−2)

¶
(δεt−i)

0
¸

= (10)

= (1− λ)i δAiΣδ
0

case (b)

for i = 0, ..., l
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Orthogonality conditions (9) and (10) are estimated by GMM. Analogously with
previous estimation, I substitute regressors {εt, Ai,Σ} withnbεt (β) , bAi (β) ,ΣT (β)

o
|β=βVART

.23

Hybrid SIPC (a) O.C. (9) (b) O.C. (10)

i = 0, ..., l λ2sT ϕ2sT J-stat λ2sT ϕ2sT J-stat

Restr. α = .2 Specif. (s.e.) (s.e.) (p-val) (s.e.) (s.e.) (p-val)

defl; VAR (1) 0.41 -1.23* 3.56 0.62 -0.66* 3.08

{∆yt, πt,it} (0.055) (0.775) (0.61)* (0.101) (0.476) (0.68)*

(2) 0.44 -1.33* 3.18 0.67 -0.81* 2.05

(0.060) (0.885) (0.67)* (0.101) (0.664) (0.84)*

defl; VAR (1) 0.45 -1.08* 1.85 0.64 -0.54* 1.37

minRMSE (0.054) (0.813) (0.86)* (0.104) (0.479) (0.92)*

(2) 0.46 -1.14* 1.76 0.66 -0.60* 1.03

(0.056) (0.884) (0.88)* (0.107) (0.568) (0.95)*

cpi; VAR (1) 0.55 -1.37* 8.05 0.75 -0.66* 4.65

{∆yt, πt,it} (0.065) (0.986) (0.15)* (0.064) (0.416) (0.45)*

(2) 0.64 -2.40* 6.35 0.77 -0.79* 3.39

(0.080) (2.628) (0.27)* (0.065) (0.553) (0.64)*

cpi; VAR (1) 0.69 -0.83* 6.18 0.78 -0.34* 3.88

minRMSE (0.087) (0.671) (0.28)* (0.070) (0.265) (0.56)*

(2) 0.78 -0.97* 4.46 0.80 -0.39* 3.21

(0.101) (1.09) (0.48)* (0.072) (0.330) (0.66)*

Table 3. 2-step GMM with optimal weighting matrix. U.S. data, sample 1958q4 —
2005q4. HP filter for output gap. Newey-West HAC standard errors not adjusted for
stochastic regressors. * means that the coefficient is not significatively different from
zero. J-statistics is Hansen test of overidentifying restrictions (18 d.o.f.).

As we can see in table 3 the good result is that now all the specification
are accepted by the data: according to the J-statistics in all specifications the
selected moment are "close enough" to zero at parameter estimates. Also, λ2sT
lies in between the estimates found before, implying an average information
duration of 6 months, or twice a year, which seems reasonable. On the contrary,
the estimates of the fraction of adaptive producers are a reason of concern.
The coefficient ϕ2sT has the wrong sign in all the specifications, and it is never
significantly different from zero.
All in all, the results with the hybrid model don’t seem satisfying. The

hypothesis of non-maximizers adaptive producers seems not the key issue to
improve the sticky information model, and eventually a different explanation
should be find.
23Notice that the VAR(p) model I used in previous section to obtainnbεt (β) , bAi (β) ,ΣT (β)

o
encompasses both the SIPC model and this hybrid version,

since the reduced form AR representations of the two models are observationally equivalent.
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3.4 Robustness analysis

I check the robustness of previous results along three dimensions.

1. Whether the results are sensitive to the calibration of α (Table 4)

2. Whether they change using a different filter to get the output gap, i.e.
Quadratic Detrend instead of the Hodrick-Prescott (Table 5)

3. Whether a different assumption about the dynamics of Zt changes the
estimates of λ. In particular, I assume that St ≡ (πt + α∆yt) ∼ AR(2),
and I estimate jointly λ and the parameters of the AR(2) model (see the
appendix) (Tables 6-7)

The evidences about λ are broadly confirmed. Again we find that the model
cannot match all the moments (4) together, but it does a good job in matching
a subset of them once we separate the conditional variance from the lagged
covariances. The null hypothesis of λ = 0.25 is always rejected when we match
the variance, and accepted in most of the specifications when we match the
lagged covariances. Finally, the estimations with α = 0.1 point out a a stable
inverse relationship between α and the estimates of λ.

4 Structural Breaks
During the 1990’s the U.S. economy experienced a disinflation accompanied by a
fall of inflation persistence.24 In the SIPC model inflation persistence is inversely
related to firms’ knowledge about the economy: the more that knowledge is
outdated, the more persistent inflation is. Therefore, we might expect that
average information duration decreased (λ increased) during the sample, and
this would explain the reduction in inflation persistence.
To test the hypothesis of an increase in λ, I perform Andrews’s supLM test

of structural breaks.25 This test cuts the tails of the sample and computes
the most likely point in time where a break might have occurred in the middle
subsample.
The test is applied to both the estimations reported above, and the results

are summarized in table 8.
24See Bayoumi and Sgherri (2004) for references.
25 I choose Andrews’s (1993) supLM because it is the most powerful test when timing of

(possible) breaks is unknown.
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Structural breaks supLM Asymptotic critical values

H0 : no S.B. 10% 5% 1%

O.C. (4) π0= .2 1.18*** 6.80 8.45 11.69

with i = 1, ..., 6
π0= .1 1.18*** 7.63 9.31 12.69

O.C. (7) π0= .2 2.08*** 6.80 8.45 11.69

π0= .1 1.89*** 7.63 9.31 12.69

Table 8. π0 indicates the percent of each tail cut. SupLM test has non-standard
distribution. The asymptotic critical values are given in Andrews (1993). * , ** , ***
means significance respectively at 1%, 5%, and 10% level.

According to Andrews’s test there is an overwhelming evidence that no struc-
tural break to λ occurred during the sample. However, there is one reason of
concern with this result. During late 1970’s inflation volatility increased sharply
because of the oil shock, which was an exogenous event with respect to this anal-
ysis, but it could possibly biases the results of Andrews test. To see it, in Figure
(2) I plot the residuals from the estimation of (4).26
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Figure 4.

Therefore, I perform a second test controlling for the effect of the oil shock in
the 1970’s. Under the null hypothesis that the same model holds throughout the
sample, I test whether λ is equal in two subsamples: one that goes from 1959q1

26The figure refers to the estimation of (4) with i=0. The figure for the estimation of (4)
with i=1,...,l is similar and it is not reported here.
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to 1970q1, and the second from 1990q4 to 2005q4. I compare the coefficients
using LM and Wald tests. Results are in table 9.

Structural breaks λ60 λ90 Wald LM
H0 : no S.B. (s.e.) (s.e.) (p-val) (p-val)

O.C. (4) 0.44 0.74 3.83 5.25

with i = 1, ..., 6
(0.069) (0.140) (0.05)** (0.03)*

O.C. (7) 0.61 0.95 44.51 1871.1

(0.049) (0.025) (0.00) (0.00)

Table 9. Wald and LM tests both have standard χ2 distribution with 1 d.o.f. * ,
** , *** means significance respectively at 1%, 5%, and 10% level.

The null hypothesis λGmm
60 = λGmm

90 is now rejected almost always at 5%
level. According to this test, it is likely that a structural break have occurred
between the first and the last years of the sample. Now, it make sense that in
recent years firms have had better knowledge of the economy and the markets
they operate in than 40 years ago. In the past information is likely to have been
stickier: less media to channel macroeconomic news, less accurate forecasts
about the markets, less experienced authorities, less data gathering, etc. It
is not surprising that firms acquired the relevant information slower, therefore
taking longer time to react to new events.

5 Conclusions
In this paper I find that SIPC is not a valid model to explain U.S. post-war
inflation dynamics. The main reason is that the model cannot explain at the
same time inflation persistence and inflation variance. In particular, if we use
the model to match inflation persistence, then it predicts an inflation volatility
higher than what we observe in the data; while if we use the model to match the
conditional variance of inflation, then it predicts a lower inflation persistence
with respect to the actual one.
However, once we estimate the model matching only the covariances between

current inflation and lagged shocks, the estimates of the frequency of information
updating are in accordance with that of the other papers that estimate the SIPC
using limited information estimators. I show that this is due to the fact that we
are exploiting the same information about the inflation process. In this case I
find λ2sT ∈ [0.35, 0.57]. This value implies an average information duration from
6 to 9 months.
Differently, once we use the model to match the conditional variance of

inflation I find λ2sT ∈ [0.71, 0.86]. This value implies an average information
duration from 3.5 to 4 months, which is just slightly higher than the average
information duration in the neoclassical model with RE and flexible prices.
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Also, using one set of moments at the time there is a robust evidence that
firms’ average information duration was significantly higher in the first years of
the sample (1960’s) than in the last ones (1990’s). This finding suggests that
sticky information might have been an important source of inflation persistence
in past times, while today is not anymore.
All in all, my analysis suggests that sticky information theory cannot be the

main explanation of inflation persistence, at least as it is modeled in the SIPC.
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A Sticky information and inflation persistence

Figure 1.
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B Proof of Lemma 1
In order to write the Sticky Information Phillips Curve,

πt =
αλ

1− λ
yt + λ

∞X
j=0

(1− λ)j Et−1−j [πt + α∆yt] (11)

as function of the exogenous shocks, first we define the j-periods-ahead forecast
error as:

εFt|t−j = Zt −E [Zt | Ωt−j ] (12)

Then, using (12) to substitute out the expectations in (11) we obtain:

πt =
αλ

1− λ
yt + λ

∞X
j=0

(1− λ)j δ
³
Zt − εFt|t−j−1

´
(13)

where δ is a (1× n) row vector that picks (πt + α∆yt) within Zt. Equation (13)
can be written as:

αλ

1− λ
yt + α∆yt = λ

∞X
j=0

(1− λ)
j
δεFt|t−j−1 (14)

Let’s focus now on the RHS of (14). Using the Wold decomposition of Zt,

Zt = c+
∞X
i=0

Aiεt−i (15)

we have:

εFt|t−j−1 =
jX

i=0

Aiεt−i (16)

Thus, using (15) to substitute out εFt|t−j−1 in the RHS of (14) we find:

λ
∞X
j=0

(1− λ)j δεFt|t−1−j = λ
∞X
j=0

(1− λ)j δ

jX
i=0

Aiεt−i

=
³
δεt + (1− λ) δεt + (1− λ)

2
δεt + . . .

´
+
³
(1− λ) δA1εt−1 + (1− λ)

2
δA1εt−1 + . . .

´
+ . . .

=
λ

1− (1− λ)

∞X
i=0

(1− λ)i δAiεt−i (17)

Finally, plugging (17) into (14) we obtain

αλ

1− λ
yt + α∆yt =

∞X
i=0

(1− λ)i δAiεt−i

which proves the Lemma.
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C Adjusted V
¡
λ2sT
¢

The problem is defined as follows: let

E [g1 (λ, β, yt)] = 0 (18)

be the set of orthogonality conditions (4), where β is the vec of the matrices of
parameters in (6).

λ2sT in section 3.3 is obtained estimating the sample analog

1

T

TX
t=1

h
g1

³
λ, βV arT , yt

´i
= 0

where βV arT are estimated coefficients of a pth-order vector autoregression model
(henceforth VAR(p)) with errors εt ∼ i.i.d. N (0,Σ). This VAR(p) model hasm
endogenous variables and it is estimated LS equation by equation. The vector
βV arT has (m (mp+ 1)× 1) elements.
Also, let

E

"
g2 (β, yt)
km×1

#
= 0 (19)

be the orthogonality conditions that we use to estimate βV arT in the first step,
where k = mp+ 1.
Now, to estimate jointly {λ, β} we could stack (18) and (19) in a (km+ n)×1

vector of moments and estimate it by GMM, i.e.

E

⎡⎣ g1 (λ, β, yt)
n×1

g2 (β, yt)
km×1

⎤⎦ = 0 (20)

In this model there are no stochastic regressors, and the (correct) VCV
matrix of coefficients if optimal weighting matrix is used is

V

µ
λT
βT

¶
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
TE

⎛⎜⎜⎝ ∂

µ
g1,t
g2,t

¶
∂
¡
λ β0

¢
⎞⎟⎟⎠

| {z }
≡G

0

·

µ
E

µ
g1,t
g2,t

¶¡
g01,t g02,t

¢¶
| {z }

≡Ω

−1
E

⎛⎜⎜⎝ ∂

µ
g1,t
g2,t

¶
∂
¡
λ β0

¢
⎞⎟⎟⎠
⎤⎥⎥⎥⎦
−1

where G is a (km+ n) × (km+ 1) matrix, and Ω is the (km+ n) × (km+ n)
VCV matrix of moments.
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By construction ∂g2,t
∂λ = 0, so matrix G can be written as

G = E

Ã
∂g1,t
∂λ

∂g1,t
∂β0

0
∂g2,t
∂β0

!

In addition, if we assume no covariance between SIPC and VAR residuals,27

then the inverse of the variance of moments is

Ω−1 =
µ
Σ−1g1 0
0 Σ−1g2

¶
(21)

Using these two facts (??) is:

V

µ
λT
βT

¶
=

"
E

Ã
∂g01
∂λ 00
∂g01
∂β

∂g02
∂β

!µ
Σ−1Gmm 0
0 Σ−1V ar

¶
E

Ã
∂g1
∂λ

∂g1
∂β0

0 ∂g2
∂β0

!#−1
/T

(22)
or, after some algebra manipulation,

V

µ
λT
βT

¶
=

⎛⎝ E
∂g01,t
∂λ Σ

−1
g1 E

∂g1,t
∂λ E

∂g01,t
∂λ Σ

−1
g1 E

∂g1,t
∂β0

E
∂g01,t
∂β Σ

−1
g1 E

∂g1,t
∂λ E

∂g01,t
∂β Σ

−1
g1 E

∂g1,t
∂β0 +E

∂g02,t
∂β Σ

−1
g2 E

∂g2,t
∂β0

⎞⎠−1 /T
(23)

Now, the not-adjusted variance of the two steps estimator λ2sT obtained from
the estimation of the orthogonality conditions (18) alone is:

Vna(λ
2s
T ) =

µ
TE

∂g01,t
∂λ
Σ−1g1 E

∂g1,t
∂λ

¶−1
(24)

So, using the definition (24) and the formula for the inverse of partitioned ma-
trices, the variance of λT in (23) can be written as

V (λT ) =

Ã¡
TVna(λ

2s
T )
¢−1 −E

∂g01,t
∂λ
Σ−1g1 E

∂g1,t
∂β0

µ
E
∂g01,t
∂β
Σ−1g1 E

∂g1,t
∂β0

+E
∂g02,t
∂β
Σ−1g2 E

∂g2,t
∂β0

¶−1
E
∂g01,t
∂β
Σ−1g1 E

∂g1,t
∂λ

¶−1
/T (25)

Thus, (25) is the variance of the estimator of λ in this model, and it turns out
to be also the variance of λ2sT once we adjust for the stochastic regressors.
Actually, we don’t need to estimate (20) to get (25), since we can compute it

with the information we have from the two steps estimator. In particular, ∂g1,t∂λ
and Σ−1g1 are respectively the Jacobian and the weighting matrix of the second

step.
³
E

∂g02,t
∂β Σ

−1
g2 E

∂g2,t
∂β0

´
is the VCV matrix of the VAR(p) parameters in the

27 It can be shown that this is indeed the case when the errors εt are normally distributed.
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first step, and ∂g1,t
∂β0 is the vector of derivatives of (4) with respect to β evaluated

at βV arT , λ2sT .
It is worth noticing that (25) is the correct variance of λT only if the covari-

ance between g1,t and g2,t is zero. Otherwise, it would be optimal to estimate
jointly λ, β because we could exploit the information in g1,t to pin down βT .
But this means a non linear optimization over a large set of parameters, while
in this paper I do simpler: I estimate β by OLS, then I estimate λ by GMM,
using Σ−1g1 as weighting matrix. This is akin to estimate (20) with the GMM
using

W =

µ
Σ−1g1 O
O0 Ikm

¶
(26)

as weighting matrix.
Now, if E [g2,tg1,t] 6= 0 then Ω−1 in (21) is not diagonal, and (26) is not the

optimal weighting matrix to estimate (20). In this case, the correct variance of
λT is the upper left cell of:

V

µ
λT
βT

¶
= (G0WG)

−1
G0WΩWG (G0WG)

−1
/T (27)

and the two-steps estimator is no longer the most efficient estimator of λT among
GMM estimators of (20).

D Robustness Analysis: Tables
• Calibration of α.
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Restricted Adjusted Null t-stat Null t-stat J-stat

α = .1 Specif. λ2sT std.err. MR cal. (p-val) RE (p-val) (p-val)

O.C. (4) i = 1, ..., 6
defl; VAR (1) 0.51 0.071 0.25 3.74 1 -5.18 1.91

{∆yt, πt, it} (0.00) (0.00) (0.86)*

(2) 0.53 0.073 0.25 3.82 1 -6.36 1.62

(0.00) (0.00) (0.89)*

defl; VAR (1) 0.54 0.099 0.25 2.93 1 -4.64 1.76

minRMSE (0.00) (0.00) (0.88)*

(2) 0.55 0.104 0.25 2.90 1 -4.28 1.54

(0.00) (0.00) (0.90)*

O.C. (7)

defl; VAR (1) 0.93 0.047 0.25 14.42 1 -1.38 17.47

{∆yt, πt, it} (0.00) (0.16)* (0.49)*

(2) 0.94 0.047 0.25 14.54 1 -1.12 13.39

(0.00) (0.26)* (0.76)*

defl; VAR (1) 0.92 0.06 0.25 11.14 1 -1.23 20.61

minRMSE (0.00) (0.21)* (0.29)*

(2) 0.94 0.058 0.25 11.75 1 -1.02 14.11

(0.00) (0.30)* (0.72)*

Table 3. Calibration of α. 2-step GMM estimator with optimal weighting matrix.
Orthogonality conditions (4). U.S. data, sample 1958q4 — 2005q4. HP filter for output
gap. Newey-West HAC standard errors adjusted for stochastic regressors. p-values in
parenthesis. J-statistics is Hansen test of overidentifying restrictions.

• Quadratic detrend (QD) filter.
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Restricted Adjusted Null t-stat Null t-stat J-stat

α = .2 λ2sT std.err. MR cal. (p-val) RE (p-val) (p-val)

Specif.

O.C. (4) i = 1, ..., 6
defl; VAR (1) 0.29 0.055 0.25 0.83 1 -12.61 1.35

{∆yt, πt, it} (0.40)* (0.00) (0.92)*

(2) 0.30 0.040 0.25 1.31 1 -17.37 1.17

(0.18)* (0.00) (0.94)*

defl; VAR (1) 0.33 0.099 0.25 0.84 1 10.73 1.02

minRMSE (0.40)* (0.00) (0.96)*

(2) 0.34 0.060 0.25 1.56 1 10.73 1.29

(0.11)* (0.00) (0.93)*

O.C. (7)

defl; VAR (1) 0.64 0.081 0.25 4.82 1 -4.38 29.99

{∆yt, πt, it} (0.00) (0.00) (0.03)

(2) 0.78 0.090 0.25 5.89 1 -2.37 10.88

(0.00) (0.00) (0.89)*

defl; VAR (1) 0.58 0.11 0.25 3.01 1 -3.77 35.44

minRMSE (0.00) (0.00) (0.00)

(2) 0.90 0.15 0.25 4.22 1 -0.58 11.87

(0.00) (0.56)* (0.85)*

Table 4. QD 2-step GMM estimator with optimal weighting matrix. Orthogonality
conditions (4). U.S. data, sample 1958q4 — 2005q4. Quadratic Detrend filter for output
gap. Newey-West HAC standard errors adjusted for stochastic regressors. p-values in
parenthesis. J-statistics is Hansen test of overidentifying restrictions.

• Univariate process for the exogenous shocks, i.e. (πt + α∆yt) ∼ AR(2)

Let’s define St ≡ (πt + α∆yt). I assume here that demeaned inflation and
output gap follow an univariate second order autoregressive process, i.e.

St = φ1St−1 + φ2St−2 + εt

This assumption simplifies the model at issue, and we can estimate jointly the
parameters of the AR(2) process and the firms’ frequency of information up-
dating parameter λ.
To do that, I estimated jointly the following orthogonality conditions:

E

∙µ
St−1
St−2

¶
· (St − φ1St−1 − φ2St−2)

¸
= 0

E
h
(St − φ1St−1 − φ2St−2)

2 − σ2ε

i
= 0 (28)

E

∙µ
αλ

1− λ
yt + α∆yt

¶
· εt−i − (1− λ)iAiσ

2
ε

¸
= 0
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In Table 5 I estimate all the moments (28) together. The results are similar to
that found before, when I estimate the orthogonality conditions (4) all together.
The moments are rejected by the data. In other words this model cannot fit
inflation variance and perisistence together.

Restricted λGmm
T φ1 φ2 σ2ε H0: λ = .25 J-stat

α = .2 Specif. (s.e.) (s.e.) (s.e.) (s.e.) (p-val) (p-val)

O.C. (4) i = 0, ..., 6
GDP deflator (1) 0.90 0.67 0.28 1.2e-5 7.00 11.24

πt + α∆yt ∼AR(2) (.093) (.062) (.065) (0.2e-5) (0.00) (0.08)*

(2) 0.24 0.69 0.27 0.2e-5 -0.07 23.88

(.030) (.063) (.067) (0.1e-5) (0.94)* (0.00)

CPI (1) 0.70 0.62 0.32 1.3e-5 5.84 17.72

πt + α∆yt ∼AR(2) (.077) (.047) (.044) (0.3e-5) (0.00) (0.00)

(2) 0.83 0.60 0.32 2.0e-5 9.97 9.04

(.058) (.046) (.046) (0.3e-5) (0.00) (0.17)*

Table 5. Forecast technology. 1-step GMM with optimal weighting matrix. U.S.
data, sample 1958q4 — 2005q4. HP filter for output gap. Newey-West HAC standard
errors (no stochastic regressors). p-values in parenthesis. J-statistics is Hansen test of
overidentifying restrictions.

However, following the same strategy as before, I discard first the conditional
variance and I estimate the other moments, and then I discard the moments re-
lated with the lagged covariances and I estimate the contemporaneous covariance
alone. Results are in Table 6.
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Restricted λGmm
T φ1 φ2 σ2ε H0: λ = .25 J-stat

α = .2 Specif. (s.e.) (s.e.) (s.e.) (s.e.) (p-val) (p-val)

O.C. (4) i = 1, ..., 6
GDP deflator (1) 0.51 0.61 0.33 1.4e-5 3.92 0.97

πt + α∆yt ∼AR(2) (.067) (.061) (.064) (0.2e-5) (0.00) (0.96)*

(2) 0.52 0.62 0.32 1.4e-5 4.02 0.83

(.068) (.060) (.063) (0.2e-5) (0.00) (0.97)*

CPI (1) 0.54 0.66 0.28 1.9e-5 6.74 2.27

πt + α∆yt ∼AR(2) (.043) (.051) (.048) (0.3e-5) (0.00) (0.80)*

(2) 0.55 0.64 0.29 1.9e-5 6.35 1.86

(.058) (.058) (.048) (0.3e-5) (0.00) (0.86)*

O.C. (7)

GDP deflator (1) 0.91 0.61 0.34 1.4e-5 7.66 exacly

πt + α∆yt ∼AR(2) (.086) (.066) (.074) (0.2e-5) (0.00) identif.

with 0.96 0.58 0.38 1.0e-5 9.75 24.72

instr. (.072) (.044) (.048) (0.2e-5) (0.00) (0.13)*

CPI (1) 0.81 0.66 0.28 2.1e-5 9.59 exacly

πt + α∆yt ∼AR(2) (.058) (.060) (.056) (0.4e-5) (0.00) identif.

with 0.98 0.64 0.31 0.9e-5 10.08 24.69

instr. (.072) (.038) (.037) (0.2e-5) (0.00) (0.13)*

Table 6. Forecast technology. 1-step GMM with optimal weighting matrix. U.S.
data, sample 1958q4 — 2005q4. HP filter for output gap. Newey-West HAC standard
errors (no stochastic regressors). p-values in parenthesis. J-statistics is Hansen test of
overidentifying restrictions.
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