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Introduction

Motivation for estimating a medium—scale model with

learning

@ Most empirical DSGE models retain the hypothesis of RE in
the sense that expectations of agents are model consistent.
How restrictive is this hypothesis for an estimated DSGE
model?

@ DSGE-VAR methodology of Del Negro et al (2007) measures
and identifies potential mis-specification in the Smets &
Wouters model. Is the RE assumption responsible for this
observation? Can adaptive learning process contribute to a
solution?

e Milani (2004), Orphanides & Williams (2003) claim that
learning can significantly influence the macroeconomic
dynamics and increase the persistence especially in the
inflation process. How robust are these claims in a
medium-scale DSGE model that fits the data relatively well?
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How do we introduce learning in the model?

e We follow Evans & Honkapohja (2001), Milani and
Orphanides & Williams by assuming that economic agents do
not have perfect knowledge of the reduced form parameters of
the model when forming expectations about the future.

@ Agents forecast future values of the lead variables with a
linear function in the state and exogenous variables. These
beliefs are updated with a constant—gain Recursive Least
Squares (CG RLS) procedure.
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Main results of the paper

@ Relaxing the model—consistent expectations assumption can
improve the marginal likelihood of the model, and approach
the optimal fit obtained by the DSGE-VAR.

@ This result depends strongly on the specification of the initial
beliefs and on the information set used in the forecasting
equations. The best performing models are those where the
initial beliefs are optimised to maximise the in—sample fit.
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Introduction

Main results of the paper (Cont)

o Limiting the information set in the forecasting equations can
also improve the marginal likelihood.

@ The best performing learning models generate moderate time
variation in the IRF.
e The response of inflation to a monetary policy shock becomes
more gradual and more persistent.
@ The response of inflation to a productivity shock is immediate
and very short-lived.

@ These results resolve some of the shortcomings of the REE
model and come closer to the IRFs of the DSGE-VAR
approach.
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@ The medium-scale DSGE model based on CEE (2005) with
many real and nominal frictions (habit persistence, capital
adjustment costs, Calvo prices and wages, indexation to past
price and wage inflation for non—optimizers, interest—rate
smoothing) is linearized around the REE with a deterministic
trend growth rate.



Review of Smets & Wouters (2007)

The REE model of Smets and Wouters (2007)

@ The medium—scale DSGE model based on CEE (2005) with
many real and nominal frictions (habit persistence, capital
adjustment costs, Calvo prices and wages, indexation to past
price and wage inflation for non—optimizers, interest—rate
smoothing) is linearized around the REE with a deterministic
trend growth rate.

@ Augmented with seven stochastic shocks: five AR(1)
processes (TFP productivity shock, risk premium shock,
investment specific technology shock, public spending shock
and monetary policy shock) and two ARMA(1,1) (price and
wage mark—up).
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The REE model of Smets and Wouters (2007) (Cont)

Estimated on US data over the period 1966:1 - 2005:4 using seven
macro variables
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Review of Smets & Wouters (2007)

The REE model of Smets and Wouters (2007) (Cont)

DSGE-VAR (model restrictions are imposed as a prior on the
VAR(4) ) with optimised weight (A = 1.25) improves the marginal
likelihood compared to the strict REE-DSGE model.

Benchmark REE-DSGE model DSGE-VAR model (h=1.25)

Posterior Mode -541.46 -534.17
Log Data Density (Laplace) -923.05 -g9raT
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Review of Smets & Wouters (2007)

The REE model of Smets and Wouters (2007) (Cont)

Impulse Responses of a monetary policy and a productivity shock
on inflation in the DSGE-VAR model and in the REE-DSGE model
suggest misspecification in the restrictive REE-DSGE model.
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The grey lines represent the benchmark DSGE-VAR IRF (mode in bold and 90% interval).

The black line is the response in the DSGE model.
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@ Model representation in DYNARE:
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where y; is a vector of 31 endogenous variables, and w; a
vector of 9 exogenous processes including the moving average
innovations.
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Learning set-up

@ Model representation in DYNARE:

Ao [ et ] + A [ 3/; ] + AsEtyiy1 + Ber =0,
t

Wi—1

where y; is a vector of 31 endogenous variables, and w; a
vector of 9 exogenous processes including the moving average
innovations.

@ The RE solution of this system is:

{yt ] :;1+T{ Vit }JrRet.

Wi W1
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Learning set-up (Cont)

@ With learning, agents forecast future variables of the lead
variables with a linear function of states and exogenous
variables (under MSV learning):
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Learning set-up (Cont)

@ With learning, agents forecast future variables of the lead
variables with a linear function of states and exogenous
variables (under MSV learning):

F T | Yi
Yy = &¢—1 + ﬁt—l .

Wt

@ Agents’ beliefs about the coefficients a (12x1) and B (12x20)
are updated using the constant-gain RLS algorithm:

¢ =P 1+ aR " Zalyl -9l 1 Z0)T
Ri = Ri—1 +g(Zt—th71 —Ri1),

where Z, = (yi 1, w/)", ¢ = (ar, B/ ), and g is the

constant gain parameter.
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@ We also consider other sets of variables used for forecasting:
— agents are learning the steady state values of inflation,
interest rate, hours, and the growth rate;

— agents use a limited set of information in forecasting (VAR

beliefs in model counterparts of observables; only levels are
used).
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The learning set up

Learning set-up (Cont)

@ We also consider other sets of variables used for forecasting:
— agents are learning the steady state values of inflation,
interest rate, hours, and the growth rate;

— agents use a limited set of information in forecasting (VAR

beliefs in model counterparts of observables; only levels are
used).

@ Thus obtained beliefs are used to solve the purely
backward—looking DYNARE model and to obtain a
representation

[ ye } =y, + T [ Vi } + Rér.
We—1

Wi
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Learning set-up (Cont)

@ Time—dependent matrices replace DYNARE-produced y, R,
and T, and are then used in the Kalman filtering step.

@ The updating of the belief coefficients at any time t depends
on the data (best estimates of the state, the lead and the
exogenous variables at respectively time t — 1 and t) and on
the initial beliefs.

@ Best estimates are filtered values of the model variables taken
from the Kalman filter that is used to construct the likelihood
function of the model.

@ In principle, one could use smoothed rather than filtered
estimates, re-smoothing every period and re-estimating past
beliefs. This would represent a more consistent usage of
available information, but is computationally very intensive
and is not performed here.
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Learning set-up: Initial beliefs

As it turns out that the results are very sensitive to the initial
beliefs, we consider four alternative ways of selecting them.

@ Initial beliefs are always consistent with the REE model
evaluated at the estimated parameters:

o = E[ZZT]El'ZT],
Ry = E[ZZT].

In particular, this implies that for different parameter sets in
the posterior, the initial beliefs are different.
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Learning set-up: Initial beliefs

As it turns out that the results are very sensitive to the initial
beliefs, we consider four alternative ways of selecting them.

@ Initial beliefs are always consistent with the REE model
evaluated at the estimated parameters:

o = E[ZZT]T'E 2T,
Ry = E[ZZT].

In particular, this implies that for different parameter sets in
the posterior, the initial beliefs are different.

@ Initial beliefs are consistent with a REE model estimated over
pre—sample data.
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Learning set-up: Initial beliefs (Cont)

@ Initial beliefs are consistent with some REE and are selected
to maximize the in—sample fit of the model. An extra model
used to construct the belief is estimated simultaneously with
the actual model; both models share the parameters of the
eXOgeNoUS ProCcesses.
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Learning set-up: Initial beliefs (Cont)

@ Initial beliefs are consistent with some REE and are selected
to maximize the in—sample fit of the model. An extra model
used to construct the belief is estimated simultaneously with
the actual model; both models share the parameters of the
EXOZENOUS processes.

@ Initial beliefs are based on a regression with pre-sample data,
using the filtered data from a model estimated under REE
using pre—sample data.



The learning set up

Learning set-up: Additional Issues

@ Agents are always assumed to have perfect information on the
properties of the exogenous processes under MSV learning
(under VAR learning, exogenous processes are excluded from
the PLM).



The learning set up

Learning set-up: Additional Issues

@ Agents are always assumed to have perfect information on the
properties of the exogenous processes under MSV learning

(under VAR learning, exogenous processes are excluded from
the PLM).

@ During updating, the transition matrix T; is restricted to the
stable domain by a version of a projection facility: if the
largest eigenvalue of T; is outside of the unit circle, we keep
last period ¢ and R.



The learning set up

Learning set-up: Additional Issues

@ Agents are always assumed to have perfect information on the
properties of the exogenous processes under MSV learning

(under VAR learning, exogenous processes are excluded from
the PLM).

@ During updating, the transition matrix T; is restricted to the
stable domain by a version of a projection facility: if the
largest eigenvalue of T; is outside of the unit circle, we keep
last period ¢ and R.

@ A standard projection facility (checking roots of the
forecasting Vector Autoregression) cannot be implemented, as
the relationship between lead (LHS of the PLM) and state
(RHS of the PLM) variables depends on the solution of the
model. T; is the forecasting VAR for all model variables,
including lead, state, and static.
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Learning set-up: Additional Issues (Cont)

@ The effective gain gR, ! is prevented from becoming too large
with a ridge correction mechanism: if the smallest eigenvalue
of R! is lower than some A, we use (R: + Al)~1 instead.

e Optimization of the initial beliefs together with the model
tends to generate Ry with tiny smallest eigenvalue.

@ Such initial beliefs exploit initial data points and adjust ¢ very
fast. They are likely to perform poorly for slightly different
data or parameter values.

@ As a result, optimization runs with Ry with tiny smallest

eigenvalue tend to converge to bad posterior mode, produce
low marginal likelihood, or both.
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Simulation results

Simulation results

e We generate random time series (1000 obs.) for REE model
and different versions of the learning model: MSV learning
(with and without constant) and VAR learning, and analyse
the transitional (first 150 obs.) and permanent dynamics (last
150 obs.)

@ For each model, we draw 1000 random initial beliefs from the
posterior distribution of the REE model: initial beliefs are
consistent with the REE implied moment matrixes for ¢, and
Ro.

@ We repeat the exercise for different values of the learning gain
g =[0.01,0.02,0.05].

@ We impose the projection facility during the updating process.
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REE model Learning with M3V beliefs
v=001 v =0.05
o o o o
@?@ @re-‘"z & 6@3\“@ 6;‘9{\ 6\“"@
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St. Dev
Output growth 0.94 0.94 0.94 0.94 0.98 1.89
Hours 233 243 2.20 244 243 h.89
Inflation 0.50 0.51 0.48 0.51 0.60 2.40
Interest rate 054 0.55 0.54 055 059 250
Autocorrelation
Output growth 027 0.28 0.26 0.28 0.30 0.46
hours 0.97 0.97 0.96 0.97 0.97 0.ar
Inflation 0.82 0.82 0.80 0.83 0.83 0.81

Interest rate 0.89 0.89 0.89 0.90 091 0.91
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Learning with MSV beliefs Leaming with M3V beliefs + cte
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St. Dev
Output growth 0.94 0.94 0.98 1.89 0.94 0.95 0.99 2.56
Hours 220 244 243 589 220 244 247 9.89
Inflation 043 051 060 240 048 052 0.61 425
Interest rate 0.54 055 059 250 0.54 0.56 0.60 5.16
Autocorrelation
Output growth 0.26 0.28 030 0.46 0.26 0.28 0.3 0.52
hours 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97
Inflation 0.80 0.83 0.83 0.81 0.60 0.83 0.66 0.84

Interest rate 089 0.90 091 0.91 0.89 090 0.93 0.93
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Learning with M3V heliefs + cte Learning with VAR beliefs
y=0.01 ¥y =005 T=001 =005
L N o N
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$ ¢ $ ¢ < ¢ $ ¢
5t Dev
Output growth 094 085 039 256 0.98 0.88 1.66 293
Hours 220 244 247 9.89 3.00 243 411 10.87
Inflation 0.48 052 0.61 425 0.76 0.56 1.86 8.68
Interest rate 0.54 0.56 0.60 5.16 0.69 0.60 145 9.39
Autocorrelation
Output growth 0.26 0.28 0.3 052 0.39 0.30 0.59 0.55
hours 098 0ar 097 087 0.98 0.96 0a7 097
Inflation 0.80 083 0.86 0.84 0.85 0.84 0.89 083

Interest rate 0.89 0.90 0.93 093 092 0.90 0.96 097
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MSV learning - gain = 0.05
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ip Simulation results

REE model Learning with MSV beliefs + cte (gain = 0.02) Learning with VAR beliefs (gain = 0.02)
including escapes excluding escapes including escapes excluding escapes

St. Dev

Output growth 0.94 0.94 0.94 0.96 0.94 0.95 124 112 1.07 0.88
Hours 233 243 2.26 2.50 225 245 3.44 341 3.16 2.38
Inflation 0.50 0.51 0.50 0.57 0.49 0.52 1.20 1.35 0.91 0.66
Interest rate 0.54 0.55 0.54 0.59 0.54 0.56 0.89 151 0.77 0.79
Autocorrelation

Output growth 0.27 0.28 0.26 0.29 0.26 0.28 0.51 0.39 0.48 0.30
hours 0.97 0.97 0.96 0.97 0.96 0.97 0.97 0.97 0.98 0.96
Inflation 0.82 0.82 0.81 0.83 0.81 0.83 0.86 0.88 0.87 0.87

Interest rate 0.89 0.89 0.89 0.90 0.89 0.90 0.93 0.94 0.93 0.93
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Impact of modest changes in the beliefs on the IRF of monetary
policy and productivity shocks on inflation under MSV learning
with learning gain = 0.02.

Monetary Palicy shock on inflation Productivity shock on inflation
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Impact of modest changes in the beliefs on the IRF of monetary
policy and productivity shocks on inflation under VAR learning
with learning gain = 0.02.
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Simulation results  Estimation results

Model comparison in terms of Marginal Likelihood.

REE-DSGE model -922
DSGE-VAR(A=1) -898
Learning with MSV beliefs
Consistent initial beliefs -922
Consistent initial beliefs + cte -922
Optimised initial beliefs -911
Presample model based initial beliefs 944
Presample regression based initial beliefs tha
Learning with VAR beliefs
Consistent initial beliefs -922
Optimised initial beliefs -904
Presample model based initial beliefs -938
Presample regression based initial beliefs tba




Estimation results

0 A |y " P, | gam
REE-DSGE model 549 1 071 | 074 | 039 | 066 | 023 | 0.82
DSGE-VAR(=1) 384 | 066 | 0.69 | 051 | 065 | 039 | 0.78
Leaming with MSV beliefs
Consistent mitial beliefs 530 1071 | 074 | 062 | 0.62 | 020 | 0.82 | 0.012
Consistent initial beliefs + cte 530 | 071 | 074 | 0.62 | 062 | 020 | 0.82 [0.012
Optimised initial beliefs 283 1079 | 064 | 059 | 060 | 0.18 | 0.84 |0.017
Presample model based nitial beliefs 311 | 062 | 058 | 053 | 049 | 053 | 052 |0.024
Presample regression based beliefs
Leaming with VAR beliefs
Consistent initial beliefs 389 | 072 | 074 | 061 | 0.68 | 0.07 | 0.82 |0.001
Optimised imtial beliefs 339 | 074 | 0.71 | 057 | 062 | 0.07 | 0.85 |0.001
Presample model based inifial beliefs 425 | 079 | 0.75 | 047 | 061 | 057 | 0.87 |0.002

presample regression based beliefs




Estimation results

Estimation results

@ MSV learning with model consistent initial beliefs generates
IRFs that remain constant over time, although the gain is
relatively high. These IRFs are very similar to the REE-DSGE
model.



Estimation results

Estimation results

@ MSYV learning with model consistent initial beliefs generates
IRFs that remain constant over time, although the gain is
relatively high. These IRFs are very similar to the REE-DSGE
model.

@ MSV learning with optimised initial beliefs generates IRFs with
modest time variation. The IRFs for inflation are closer to the
DSGE-VAR IRF: the misspecification is reduced considerably.



Estimation results

Estimation results

@ MSYV learning with model consistent initial beliefs generates
IRFs that remain constant over time, although the gain is
relatively high. These IRFs are very similar to the REE-DSGE
model.

@ MSV learning with optimised initial beliefs generates IRFs with
modest time variation. The IRFs for inflation are closer to the
DSGE-VAR IRF: the misspecification is reduced considerably.

@ MSV learning with pre-sample based initial beliefs generates
mixed results.



Estimation results

IRFs for the MSV learning with optimized initial beliefs.
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Estimation results

IRFs for the MSV learning with pre-sample based initial beliefs.

Productivity shock on Output Productivity shock on Inflation
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Estimation results

Estimation results (Cont)

VAR learning with any initial belief specification generates a more
gradual and persistent response of inflation to monetary policy, in
line with the DSGE-VAR.



Estimation results

IRFs for VAR learning with model consistent initial beliefs.
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Estimation results

IRFs for VAR learning with optimised initial beliefs.
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mation results

IRFs for VAR learning with pre-sample based initial beliefs.
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Estimation results: GSG Learning

@ We also tried estimation with the second matrix moments
fixed at its initial value Ry, which amounts to a Generalised
Stochasic Gradient estimation.
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Estimation results: GSG Learning

@ We also tried estimation with the second matrix moments
fixed at its initial value Ry, which amounts to a Generalised
Stochasic Gradient estimation.

@ For MSV learning with model—consistent beliefs, posterior
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Estimation results: GSG Learning

@ We also tried estimation with the second matrix moments
fixed at its initial value Ry, which amounts to a Generalised
Stochasic Gradient estimation.

@ For MSV learning with model—consistent beliefs, posterior
mode and the estimated parameters are almost the same as
for CG RLS.

o For other specifications: MSV learning with pre—sample
REE—consistent beliefs, pre—sample regression—based beliefs,
or any VAR learning, even finding a posterior mode did not
succeed.

@ We did not perform estimation with optimised initial beliefs
for either MSV or VAR learning yet.
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@ Is the RE hypothesis restrictive? Yes, relaxing the
model—consistent expectations assumption can improve the
marginal likelihood of the model, and approach the optimal fit
obtained by the DSGE-VAR.

@ Can learning solve the misspecification in the DSGE model as
detected by the DSGE-VAR approach? The answer is: yes,
the best performing models (with optimised initial beliefs)
generate IRFs that resemble the results of the DSGE-VAR
approach.

@ The response of inflation to a monetary policy shock becomes
more gradual and more persistent. The response of inflation
to a productivity shock is immediate and very short-lived.

@ Does learning change the dynamics? Yes, but the estimated
structural frictions remain quite robust.



Conclusions
°

Remaining issues

@ Estimating models with higher gains is computationally
difficult. We need to develop more robust estimation
approaches.



Conclusions
°

Remaining issues

@ Estimating models with higher gains is computationally
difficult. We need to develop more robust estimation
approaches.

@ What is the relative contribution of the specific initial beliefs
versus the learning updating process to the improved fit?



Conclusions
°

Remaining issues

@ Estimating models with higher gains is computationally
difficult. We need to develop more robust estimation

approaches.

@ What is the relative contribution of the specific initial beliefs
versus the learning updating process to the improved fit?

@ We need to test alternative information sets in the belief
regression.



Conclusions
°

Remaining issues

@ Estimating models with higher gains is computationally
difficult. We need to develop more robust estimation
approaches.

@ What is the relative contribution of the specific initial beliefs
versus the learning updating process to the improved fit?

@ We need to test alternative information sets in the belief
regression.

@ We need to evaluate alternative, and more efficient learning
mechanism like the Kalman filter based approach.
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Why is VAR learning different?

@ The model can be represented as

Ve = BEtyry1 +0yr1 + xwy,
Wi — th_]_ + €t.

@ Instead of the Perceived Law of Motion (PLM) given by
Yt = byr—1+ cwy
(MSV solution consistent beliefs), the agents use

Yr = byt?fl = bHy; 1.
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Why is VAR learning different? (Cont)

The Actual Law of Motion (ALM), instead of

ye = (I —Bb) 0ye—1+ (I — Bb) "' (Bcp + 1) ws,
for MSV solution consistent beliefs, becomes

ye = (I = BHb) *oyr—1 + (I — BHb) 'kwe = Tyye—1 + Tuws.
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Why is VAR learning different? (Cont)

@ Value of b that equates T, and bH, even if it exists, does not
set T, to zero.

@ The updating equations become
b = bi—1 + nglzt—l(Yt — thlet—1>T

= b1+ nglzt—l(Tthfl + Tyw; — thf1Zt—1)T
= b1 48R 'z (vl WtT)(TyT' T)" —gR 21zl 1be1.
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Why is VAR learning different? (Cont)

o After taking time limits and expectations, the E-stability ODE

becomes
@—R—lE[z "7, + RLE] " Tw—b
P t=1Ye—1lly Zr AW | Tw )
dR
E = E[zt_lth,l] —R.

@ The equilibrium is a fixed point of this system of equations.

@ However, expectations are themselves complicated functions
of b: for example,

E[Zt*thT] = HE[yfflthfl]PT = HMprT,
My, = TyMyWPT + TwE{Wtflthfl]r
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Why is VAR learning different? (Cont)

@ Thus, VAR learning probably changes the variance-covariance
matrix of the endogenous model variables. The equilibrium is
a complicated restrictive perceptions equilibrium.

@ There is no guarantee that the 'REE model consistent’ VAR
beliefs are close to the equilibrium under VAR learning.

@ This might explain the simulation puzzle, when for g = 0.01
transitional dynamics exhibit more volatility than the
permanent one. With MSV, volatility changes in the opposite
direction, as we are guaranteed to start from the exactly
correct beliefs.

@ How to find equilibrium — simulate E—stability ODE? Is it
E—stable?
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