DEPOSIT INSURANCE AND MONEY MARKET FREEZES

Max Bruche & Javier Suarez CEMFI

10th Annual Bank of Finland/CEPR Conference Helsinki, 15-16 October 2009

Introduction

We examine the causes & consequences of money market (MM) freezes

- Money markets (MM) facilitate reallocation of funds across regions...
- Deposit insurance (DI) creates an asymmetry in marginal funding costs across banks...
- The asymmetry only becomes aparent when the risk of bank failure becomes significant:
 - Borrowers who depend on deposit-poor banks face large financing costs & cut down on investment...

- The MM freezes

Key ingredients

- 1. Interregional savings/investment *imbalances*:
 - Regions with heterogeneous endowments of savings
 - Regionally segmented labor & retail bank markets
 - \Rightarrow Banks use MM to reallocate savings across regions
- 2. Deposits are insured
- 3. Crisis = *exogenous* rise in counterparty risk:
 - ⇒ Lending banks remain financed at cheap deposit rate Borrowing banks pay high MM spread (or high deposit rate)
 - \Rightarrow The allocation of capital across regions becomes asymmetric

[Spreads of $\simeq 200$ bp \rightarrow reductions $\simeq 75\%$ in MM volumes]

Related literature

• On interbank market freezes:

Bhattacharya-Gale (87); Freixas-Holthausen (04); Freixas-Jorge (08); Heider-Hoerova-Holthausen (09); Allen-Carletti-Gale (09)

• On financial market freezes, more generally:

Huang-Ratnovski (08); Brunnermeier-Pedersen (09); Acharya-Gale-Yorulmazer (09); Diamond-Rajan (09)

- Other:
 - On DI: many papers, but this distortion is not mentioned
 - On banks¯oeconomics: no paper looks at interbank markets

[Romer (85), , Bernanke-Gertler (87), Williamson (87), Holmstrom-Tirole (97), Chen (01), Bolton-Freixas (06), Van den Heuvel (08)]

Features of the model

- Tractable general equilibrium model with regionally-segmented bankbased financial system
- \bullet Perfect competition, t=0,1, $j \in [0,1]$ regions, single good per period, risk-neutral agents
- \bullet Representative household in each region, exogenous savings, inelastic labor supply at t=0
- Continnum of firms in each region, CRS technologies, failure risk (idiosyncratic + regional component)
- Representative shareholder-managed bank subject to diversification
 & capital requirements
- \bullet Interregional MM in which lenders require expected return r and borrowers pay spread s
- Baseline no-DI economy compared with DI economy

The Model*

Perfect competition, t=0,1, $j \in [0,1]$ regions, single good per period, risk-neutral agents

A representative household (in each j)

• Exogenous initial savings:

 $\begin{cases} S_H & \text{in fraction } \pi \text{ of savings-rich regions} \\ S_L < S_H & \text{in fraction } 1 - \pi \text{ of savings-poor regions} \\ & [\Rightarrow \text{ in the aggregate } \overline{S}] \end{cases}$

- Inelastically supply labor $n_j = 1$ at (pre-paid) wage w_j
- Only means of transferring wealth are
 - Regional deposits d_j with expected return r_{dj}
 - Bank equity e_j (residual claim)

- A continuum of firms (owned by penniless entrepreneurs)*
 - CRS technology

$$(k_i, n_i) \to \widetilde{z}_{ij}[AF(k_i, n_i) + (1 - \delta)k_i] + (1 - \widetilde{z}_{ij})(1 - \lambda)k_i$$

where: $\widetilde{z}_{ij} \in \{0, 1\}$ indicates success or failure $F(k_i, n_i) = k_i^{\alpha} n_i^{1-\alpha}$, with $\alpha \in (0, 1)$ δ, λ are depreciation rates A is TFP

• Regional failure rate is

 $x_j = \begin{cases} 1 \text{ with prob. } \varepsilon & \text{(all firms fail at once)} \\ p \text{ with prob. } 1 - \varepsilon & \text{(iid failures with pr } p) \end{cases}$

• Firms pay in advance for (k_i, n_i) using a bank loan

Obtain
$$l_{ij} = k_{ij} + w_j n_{ij} \longrightarrow \text{Pay } \min\{R_{ij}, (1-\lambda)k_{ij}\}$$

A representative bank (owned by coalition of households)*

Assets	Liabilities				
l _i Loans	Deposits d_j				
$\ddot{a_j}$ Net MM assets	Equity $e_j^{'}$				

 $[a_j: \text{ net lending } (>0) \text{ or net borrowing } (<0)]$

- Perfect competition (free entry)
- Owners contribute e_j (and require expected return r_{dj})
- Firm-bank contract sets $(k_{ij}, n_{ij}, l_{ij}, R_{ij})$ By virtue of competition:
 - Entrepreneur's surplus is maximized
 - Bank breaks even: $\max E[\text{final net worth}] (1 + r_{dj})e_j = 0$

The money market*

- MM liabilities = unsecured debt, junior to deposit liabilities
- Banks fail with pr. ε (upon negative regional shock)
- MM lending requires an (endogenous) expected return r
 - \Rightarrow MM lending charges a spread s over r
 - \Rightarrow In parameterizations with no recovery, the *spread* is flat

$$(1-\varepsilon)(1+r+s) = 1+r \implies s = \frac{\varepsilon}{1-\varepsilon}(1+r)$$

Prudential regulation & the government*

- Government imposes
 - $-\operatorname{Diversification}$ of MM lending
 - Diversification of lending across regional firms
 - Minimum capital requirement: $e_j \ge \gamma l_j$
- Two economies:
 - Without DI
 - -With DI (funded with lump-sum taxes at t = 1)

Banks' participation constraints in economy without DI*

• MM borrower

$$\begin{split} (1-\varepsilon)[(1-p)R+p(1-\lambda)k-(1+r+s)(l-d-e)-(1+r_d+s_d)d] &\geq (1+r_d)e\\ \text{with } (1-\varepsilon)(1+r_d+s_d)d+\varepsilon(1-\lambda)k = (1+r_d)d \end{split}$$

• MM lender

$$\begin{split} (1-\varepsilon)[(1-p)R + p(1-\lambda)k + (1+r)(d+e-l) - (1+r_d+s_d)d] &\geq (1+r_d)e \\ \text{with } (1-\varepsilon)(1+r_d+s_d)d + \varepsilon[(1-\lambda)k + (1+r)(d+e-l)] = (1+r_d)d \end{split}$$

$$\Downarrow (1-\varepsilon)[(1-p)R + p(1-\lambda)k] - \varepsilon(1-\lambda)k - (1+r)(l-d-e) - (1+r_d)d \geq (1+r_d)e$$

Equilibrium in the economy without DI

- $r_d = r$ & capital requirement is not binding
- Firm-bank problems internalize all expected returns from production
- Relevant gross marginal cost of funds is c(r) = 1 + r for all firms
- Capital k = k(r), wages w & output y are equal in all regions
- Market clearing leads to $k(r^*) = \overline{S}$ & MM is always operative

	ŀ				÷	
	L			C	L	

					4.1		
	L	5		C	u		

Banks' participation constraints in economy with DI*

• MM borrower

$$\begin{split} (1-\varepsilon)\{(1-p)R + p(1-\lambda)k - [(1+r_d)d + (1+r+s)(l-d-e)]\} &\geq (1+r_d)e \\ & \text{with } (1-\varepsilon)(1+r+s) = (1+r) \end{split}$$

• MM lender

$$(1-\varepsilon)\{(1-p)R + p(1-\lambda)k - [(1+r_d)d - (1+r)(d+e-l)]\} \ge (1+r_d)e$$

Do not collapse into the same expression!

 \Downarrow

Equilibrium in the economy with DI

- $r_d = r + \xi s$ & capital requirement is binding
- Firm-bank problems do not internalize bank-failure returns
- Gross marginal cost of funds is $c(r + \xi s) = (1 + r + s\xi)[1 \varepsilon(1 \gamma)]$
- Capital $k = k_{DI}(r + \xi s)$, wages w & output y differ across regions
- Market clearing leads to $\pi k_{DI}(r_H) + (1-\pi)k_{DI}(r_L) = \overline{S}$
- MM may or may not be operative

$$[\xi = 1: \text{ borrower}; \xi = 0: \text{ lender}]$$

Quantitative analysis

We compare pre-crisis scenario (ε =0) with some crisis scenarios (ε >0)

- Table 1: Calibration
- Table 2: Counterparty risk
- **Table 3: Amplification via demand externalities**

Table 1: Calibration

Parameters		Baseline
Measure of savings-rich regions	π	0.5
Savings asymmetry	$\mu \equiv \pi S_H / \bar{S}$	0.6
Capital elasticity parameter in F	α	0.3
Depreciation rate if success	δ	4.5%
Depreciation rate if failure	λ	35%
Probability of idiosyncratic firm failure	p	3%
Probability of regional solvency shock	arepsilon	0%-2%
Capital requirement	γ	8%

Comments on Table 1 (calibration)

$$\begin{split} &\varepsilon = 2\% \rightarrow \text{crisis spread} \simeq 200 \text{bp} \\ &\pi = 0.5, \ \pi S_H/\overline{S} = \!\!60\% \rightarrow \text{suff. large pre-crisis MM (30\% of GDP)} \\ &\overline{S} \rightarrow \text{pre-crisis } r_H = r_L = \!\!4\%. \\ &\alpha \rightarrow 30\% \text{ capital share} \\ &\delta, \ \lambda \rightarrow \text{capital-to-output ratio} \simeq \!\!3, \ \text{LGD} \simeq \!\!45\%. \\ &p \rightarrow \text{PD: 3\% (pre-crisis) to 5\% (crisis)} \\ &\gamma = \!\!8\% \end{split}$$

Table 2: Counterparty risk

Levels (%)		$\varepsilon = 0\%$	1%	2%	3%
Deposit rates	Н	4.00	3.43	2.92	2.62
	L	4.00	4.48	5.02	5.33
MM / baseline GDP	Aggr.	31.86	19.29	6.93	0.00
DI costs / baseline GDP	Н	0.00	1.70	3.53	5.41
	L	0.00	1.14	2.63	4.24
	Aggr.	0.00	1.42	3.08	4.83

Changes (%)		1%	2%	3%
Capital	Н	7.89	15.65	20.00
GDP	Н	1.28	2.37	2.45
	L	-3.41	-6.88	-9.28
	Aggr.	-1.06	-2.25	-3.41

Comments on Table 2 (counterparty risk)

Subsequently larger crisis: $\varepsilon = 1\%$, 2%, 3%

- Deposit rates & (k_H, k_L) become asymmetric across regions
- MM freezes
- Channel: cost of loans
- Output & wages variations:
 - very asymmetric across regions
 - rather modest in the aggregate
- DI costs: 3% of pre-crisis GDP

Amplification via demand externalities

Regions' interdependence (e.g. due to trade) is captured by making A a CES aggregator of the levels of activity of the various regions:

$$A = \left[\int_0^1 k_j^{\rho} dj\right]^{\frac{\tau}{\rho}}$$

where k_j : activity in region j

 $\rho \leq 1:$ importance of regional interdependencies

 $\tau < 1 - \alpha$: (innocuous) returns-to-scale parameter

Table 3: Amplification via demand externalities

Levels (%)			$\varepsilon = 0\%$	1%	2%	3%
Deposit rates		Н	4.00	3.36	2.64	2.23
		L	4.00	4.40	4.73	4.82
MM / baseline	GDP	Aggr.	31.86	19.20	6.22	0.00
DI costs / baseline GDP		Н	0.00	1.69	3.48	5.27
		L	0.00	1.13	2.60	4.12
		Aggr.	0.00	1.41	3.04	4.70
Changes (%)	nanges (%)		= 1%	2%		3%
Capital	Н	7	7.95	16.10	C	20.00
GDP	Н	C).51	-0.67		-2.30
	L		1.18	-9.89		-13.49
	Aggr.	-1	L.84	-5.28	3	-7.89

Comments on Table 3 (amplification)

Same crisis scenarios with $\rho = -4$ and $\tau = 0.5$

- Small differences: Panel A variables & reallocation of capital
- Big differences: size & distribution of output losses

Discussion and robustness

- Results are robust to having a less "repressed" financial structure
- The crucial part is having some limits to banks'...
 - insured deposit taking in foreign regions
 - loan making in foreign regions
- Possible remedies
 - 1. Eliminating DI
 - 2. Charging fair risk-sensitive DI premia
 - 3. Subsidizing/absorbing counterparty risk

		$\varepsilon = 1\%$	2%	3%
Cost of subsidies / base GDP	Aggr.	0.33	0.66	0.99
Fall in DI costs / base GDP	Н	80.0	0.30	0.57
	L	0.18	0.72	1.39
\rightarrow Without d. externalities	Aggr.	0.13	0.51	0.98
	Η	0.07	0.25	0.43
	L	0.17	0.69	1.27
\rightarrow With d. externalities	Aggr.	0.12	0.47	0.85
Gain in GDP / base GDP	Н	-2.28	-4.37	-5.45
	L	2.41	4.88	6.28
\rightarrow Without d. externalities	Aggr.	0.06	0.25	0.41
	Η	-1.51	-1.33	-0.70
	L	3.18	7.89	10.49
\rightarrow With d. externalities	Aggr.	0.84	3.28	4.89

Table 4: Subsidizing counterparty risk

Comments on Table 4 (subsidizing counterparty risk)

- Various forms of intervention are equivalent to direct subsidization of the MM spreads by the government:
 - direct borrowing/lending by government or CB (charging no or below-market spreads)
 - extension of (cheap) guarantees on MM liabilities
- We look at the effects of full subsidization of the spreads
 - Cost of the policy is not too large (0.7% of pre-crisis GDP)
 - DI costs fall (0.5% of pre-crisis GDP)
 - With demand externalities, gains in GDP are large (3.3%)

Conclusions

- The model highlights
 - the role of money markets in providing structural funding to banks
 - the distortions arising from DI when the risk of bank failure becomes significant
- Modest rise in counterparty risk can make MM freeze, causing severe distortions to allocation of credit
- With demand externalities the implications for aggregate output can be large
- Absorption or subsidization of counterparty risk by the government can reduce the effects of the distortion

Background material

Analytical details

Economy without DI: Firm-bank problems (i)

$$\begin{aligned} \max_{\substack{(k,n,l,R)\\ \text{ s.t. }}} (1-\varepsilon)(1-p)[AF(k,n) + (1-\delta)k - R] \\ \text{ s.t. } \\ (1-\varepsilon)[(1-p)R+p(1-\lambda)k] - \varepsilon(1-\lambda)k - (1+r)(l-d-e) - (1+r_d)d \geq (1+r_d)e \\ l = k + wn \\ e \geq \gamma l \end{aligned}$$

Proposition 1

Without DI, (PC) binds; $r_d = r$; and $e \ge \gamma l$ is not binding

Economy without DI: Firm-bank problems (& ii)

But, then, the problem can be compactly written as:

$$\begin{array}{l} \max_{(k,n)} & (1-\varepsilon)\{(1-p)AF(k,n) + [(1-p)(1-\delta) + p(1-\lambda)]k\} \\ & + \varepsilon(1-\lambda)k - c(r)(k+wn) \end{array}$$

where

$$c(r) = 1 + r$$

(the firm's gross *marginal cost of funds* without DI)

Economy without DI: Equilibrium (i)

 \bullet FOC for optimal (k,n) decisions & n=1

$$\begin{split} & \Downarrow \\ k = k(r) \equiv \left[\frac{(1-\varepsilon)(1-p)\alpha A}{r+(1-\varepsilon)[(1-p)\delta+p\lambda]+\varepsilon\lambda} \right]^{\frac{1}{1-\alpha}} \end{split}$$

 \bullet The regional wage rate w & output y can be obtained recursively

Proposition 2

Without DI, k, w and y are equal across regions

Economy without DI: Equilibrium (& ii)

- (r, k) such that agents optimize and all markets clear at t = 0
- MM clearing requires

$$\begin{aligned} \pi a_H + (1 - \pi) a_L &= 0, \text{ with} \\ a_j &= (d_j + e_j) - l_j = (S_j + w_j) - (k_j + w_j) = S_j - k_j \\ &\Rightarrow \pi k(r) + (1 - \pi) k(r) = \overline{S} \Rightarrow k(r) = \overline{S} \end{aligned}$$

Proposition 3

- MM is always operative: $a_H = S_H \overline{S} > 0 \& a_L = S_L \overline{S} < 0$
- Aggregate expected output cannot be increased by reallocating capital across regions

Economy with DI: Firm-bank problems (i)

$$\max_{\substack{(k,n,l,R) \\ \text{s.t.:} \\ (1-\varepsilon)\{(1-p)R+p(1-\lambda)k-[(1+r_d)d+(1+r+s)(l-d-e)]\} \ge (1+r_d)e \\ l = k + wn \\ e \ge \gamma l, \\ l - d - e > 0 }$$

or

$$\max_{(k,n,l,R)} (1-\varepsilon)(1-p)[AF(k,n) + (1-\delta)k - R]$$

s.t.:

$$\begin{array}{l} (1-\varepsilon)\{(1-p)R+p(1-\lambda)k-[(1+r_d)d-(1+r)(d+e-l)]\}\geq (1+r_d)e\\ l=k+wn\\ e\geq \gamma l,\\ d+e-l>0 \end{array}$$

Economy with DI: Firm-bank problems (& ii)

Proposition 4

With DI, (PC) binds; $e = \gamma l$; $r_d = r + \xi s$ (= mg funding rate)

Then, both problems can be compactly written as:

 $\max_{(k,n)} (1-\varepsilon) \left\{ (1-p)AF(k,n) + \left[(1-p)(1-\delta) - p(1-\lambda) \right]k \right\} - c(r+\xi s)(k+wn)$

where

 $\xi = \begin{cases} 1 & \text{if borrower} \\ 0 & \text{if lender} \end{cases}$

$$c(r+\xi s) = (1+r+s\xi)[1-\varepsilon(1-\gamma)]$$

(the firm's gross marginal cost of funds with DI)

Economy with DI: Equilibrium (i)

 \bullet FOC for optimal (k,n) decisions & n=1

$$\begin{split} & \Downarrow \\ k = k_{DI}(r + \xi s) \equiv \left[\frac{(1 - \varepsilon)(1 - p)\alpha A}{(1 - \varepsilon)[(1 - p)\delta + p\lambda] + [1 - \varepsilon(1 - \gamma)](r + s\xi) + \gamma \varepsilon} \right]^{\frac{1}{1 - \alpha}} \end{split}$$

• The regional wage rate w & output y can be obtained recursively

Proposition 5

With DI and s > 0, k, w and y are lower in borrowing regions (and the asymmetries are increasing in s)

Economy with DI: Equilibrium (& ii)

- $((r_H, r_L), (k_H, k_L))$ s.t. agents optimize & markets clear at t = 0 $[r_j:$ deposit rate]
- MM clearing requires

$$\pi a_H + (1 - \pi)a_L = 0$$

$$\Rightarrow \pi k_{DI}(r_H) + (1 - \pi)k_{DI}(r_L) = \overline{S}$$

Proposition 6

- Two possible equilibrium configurations: with operative MM & autarkic
- Aggregate expected output can be increased by reallocating capital across regions