(Inter-state) Banking & (Inter-state) Trade: Does Real Integration Follow Financial Integration?

Tomasz Michalski & Evren Örs
HEC Paris
The Research Question

- Does Financial Integration lead to Real Integration?
 - Is there a trade channel to the *finance-growth nexus*?

- Our theory model:
 - Channels of bank integration that spur real integration through trade.

- Our empirical model:
 - We rely on the U.S. inter-state banking entry deregulation to estimate the “gravity model” obtained from our theory model with data from the Commodity Flow Survey.
Finance & Growth Nexus

- Finance and growth:
 - King and Levine (1993a, b)

- Channels through which finance leads to growth:

- Finance and trade (exports):
Finance & Growth Nexus

- Morgan, Rime and Strahan (MRS, 2003, 2004):
 - Financial integration & transmission of macroeconomic shocks
 - No pattern in out-of-state shipments for states that are financially integrated with the rest of the U.S.
Finance & Growth Nexus

- Morgan, Rime and Strahan (MRS, 2003, 2004):
 - Financial integration & transmission of macroeconomic shocks
 - No pattern in out-of-state shipments for states that are financially integrated with the rest of the U.S.

- Our paper: A new testable hypothesis
 - Our theory suggests an increase in trade shares for state-pairs that become financially integrated after bank entry deregulation.
 - If our theory is economically insignificant or simply wrong, we should not observe a change in trade shares as bank integration increases.
 - For ex., an easing of credit constraints alone after deregulation would increase all trade flows leaving trade shares unchanged.
Theory Model: Set-up and Intuition

- Firm

State i → State j

State i → State k
No bank integration between states i and k
Theory Model: Set-up and Intuition

Type 1: successful with probability $q > 0$

Type 2: *never* successful

Bank is unable to determine the type of the project; it quotes an average (high) interest rate

No bank integration between states i and k
Theory Model: Set-up and Intuition

Type 1: successful with probability $q > 0$

Type 2: *never* successful
Theory Model: Set-up and Intuition

Bank integration between states i and j

Type 1: successful with probability $q > 0$

Type 2: \textit{never} successful
Theory Model: Set-up and Intuition

The bank quotes a loan rate (lower than in the case of no information acquisition)

Bank integration between states i and j

Type 1: successful with probability $q > 0$

Type 2: *never* successful

The bank does not lend
Implications

- Each of our channels implies (separately and altogether) that there will be higher trade flows between states i and j than between states i and k.
Implications

- Each of our channels implies (separately and altogether) that there will be higher trade flows between states i and j than between states i and k

- We embed this mechanism in a standard trade model with monopolistic competition and obtain a “gravity” equation:

$$\ln S_{im} = -\Theta_i + \lambda_1 \ln(I_m) - \lambda_2 \ln(P_m) + \Xi_{im} + \lambda_3 \ln(T_{im})$$
A Conservative Calibration Exercise

- The impact of the **loan price channel on trade flows**, embedded into a standard trade model with monopolistic competition, depends on:
 - the industry markups (the level of industry competition) and,
 - the fall in the marginal costs for manufacturers thanks to cheaper (appropriately priced) bank financing
A Conservative Calibration Exercise

- The impact of the loan price channel on trade flows, embedded into a standard trade model with monopolistic competition, depends on:
 - the industry markups (the level of industry competition) and,
 - the fall in the marginal costs for manufacturers thanks to cheaper (appropriately priced) bank financing

<table>
<thead>
<tr>
<th>Markup</th>
<th>Fall in marginal costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>10%</td>
<td>10.5%</td>
</tr>
<tr>
<td>15%</td>
<td>6.9%</td>
</tr>
<tr>
<td>20%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>
Data

- **The Commodity Flow Survey:**
 - We use the 1977 and 1993 surveys for the 48 contiguous states
 - 4,512 origin-destination state-pair-and-year observations
 - Problems: sampling errors that vary over time & “0” trade flows
Data

- **The Commodity Flow Survey:**
 - We use the 1977 and 1993 surveys for the 48 contiguous states
 - 4,512 origin-destination state-pair-and-year observations
 - Problems: sampling errors that vary over time & “0” trade flows

- **Bank data:**
 - Bank deregulation dates (Amel, 2000)
 - Bank ownership from Call Reports
Data

- **The Commodity Flow Survey:**
 - We use the 1977 and 1993 surveys for the 48 contiguous states
 - 4,512 origin-destination state-pair-and-year observations
 - Problems: sampling errors that vary over time & “0” trade flows

- **Bank data:**
 - Bank deregulation dates (Amel, 2000)
 - Bank ownership from Call Reports

- **State-level Macro data: BEA**
 - Destination-state GDP and Wage index

- **Geographic characteristics of origin-destination state-pairs**
“Regional reciprocal” deregulation mode
Bank Entry Deregulation: Michigan 1987
Bank Entry Deregulation: Michigan 1988

“National reciprocal” deregulation mode
Bank Entry Deregulation: Michigan 1989
Bank Entry Deregulation: Michigan 1990
“White” states:
Michigan deregulates towards them during the 1995 Federal deregulation
“White” states:
Michigan deregulates towards them during the 1995 Federal deregulation
Difference-in-Differences: Michigan up to 1993
Empirical Specifications

- **Difference-in-Differences models:**
 - Did interstate banking deregulation between origin-destination state-pairs lead to higher trade *shares* compared to non-deregulating state-pairs over time?
 - We treat interstate bank-entry deregulation as exogenous:
 - the way state-pair bank-entry deregulations took place
Empirical Specifications

- **Difference-in-Differences models:**
 - Did interstate banking deregulation between origin-destination state-pairs lead to higher trade *shares* compared to non-deregulating state-pairs over time?
 - We treat interstate bank-entry deregulation as exogenous:
 - the way state-pair bank-entry deregulations took place

\[
\ln(\text{TRADE } _ \text{SHARE}_{imt}) = \alpha_{it} + \beta_1 \ln(\text{GDP } _ \text{DEST}_{mt}) + \beta_2 \ln(\text{WAGE } _ \text{DEST}_{mt}) \\
+ \beta_3 D _1993_t + \beta_4 D _ \text{DEREG}_{imt} + \beta_5 D _1993_t \times D _ \text{DEREG}_{imt} \\
+ X _ \text{GEOGRAPHIC } _ \text{CONTROLS}_{im} + \epsilon_{imt}
\]
Empirical Specifications

- **Difference-in-Differences models:**
 - Did interstate banking deregulation between origin-destination state-pairs lead to higher trade shares compared to non-deregulating state-pairs over time?
 - We treat interstate bank-entry deregulation as exogenous:
 - the way state-pair bank-entry deregulations took place

\[
TRADE_FLOW_{int} = \exp\left[\alpha_{it} + \beta_1 \ln(GDP_DEST_{mt}) + \beta_2 \ln(WAGE_DEST_{mt}) + \beta_3 D_1993_t + \beta_4 D_DREG_{int} + \beta_5 (D_1993_t \times D_DREG_{int}) + X _GEOGRAPHIC_CONTROLS_{int}\right] + \nu_{int}
\]
Empirical Specifications

- **Difference-in-Differences models:**
 - Did interstate banking deregulation between origin-destination state-pairs lead to higher trade shares compared to non-deregulating state-pairs over time?
 - We treat interstate bank-entry deregulation as exogenous:
 - the way state-pair bank-entry deregulations took place

\[
\text{TRADE}_\text{FLOW}_{int} = \exp \left[\alpha_i + \beta_1 \ln(GDP_\text{DEST}_{mt}) + \beta_2 \ln(WAGE_\text{DEST}_{mt}) + \beta_3 D_1993_t + \beta_4 D_\text{DEREG}_{int} + \beta_5 (D_1993_t \times D_\text{DEREG}_{int}) + X \text{ GEOGRAPHIC_CONTROLS}_{int} \right] + v_{int}
\]

- But deregulation need not result in actual entry
Bank Integration: Michigan as of 1993

- 0.215%
- 1.256%
- 4.359%
- 1.775%
- 7.247%
Empirical Specifications

- **Instrumental Variable (IV) regression models:**
 - Test variable: fraction of common bank assets for a state-pair
 - Bank entry is potentially endogenous.
 - IVs as in Morgan, Strahan and Rime (2003):
 - Banking deregulation in the state-pair occurred
 - Years since deregulation (both origin and destination)
 - We test for potential identification problems.
Empirical Specifications

- **Instrumental Variable (IV) regression models:**
 - Test variable: fraction of common bank assets for a state-pair
 - Bank entry is potentially endogenous.
 - IVs as in Morgan, Strahan and Rime (2003):
 - Banking deregulation in the state-pair occurred
 - Years since deregulation (both origin and destination)
 - We test for potential identification problems.

\[
\ln(\text{TRADE_SHARE}_{imt}) = \alpha_{it} + \gamma_1 \ln(\text{GDP_DEST}_{mt}) + \gamma_2 \ln(\text{WAGE_DEST}_{mt}) \\
+ \gamma_3 D_{1993_t} + \gamma_4 \text{BANK_INTEGRATION}_{imt} \\
+ \Gamma \text{GEOGRAPHIC_CONTROLS}_{im} + \phi_{imt}
\]
Empirical Specifications

- **Instrumental Variable (IV) regression models:**
 - Test variable: fraction of common bank assets for a state-pair
 - Bank entry is potentially endogenous.
 - IVs as in Morgan, Strahan and Rime (2003):
 - Banking deregulation in the state-pair occurred
 - Years since deregulation (both origin and destination)
 - We test for potential identification problems.

\[
TRADE_{FLOW_{int}} = \exp\left[\alpha_{it} + \gamma_1 \ln(GDP_{DEST_{mt}}) + \gamma_2 \ln(WAGE_{DEST_{mt}}) \\
+ \gamma_3 D_{1993} + \gamma_4 BANK_{INTEGRATION_{int}} \\
+ \Gamma GEOGRAPHIC_{CONTROLS_{int}} \right] + \omega_{int}
\]
Difference-in-Differences Results

Coefficient estimate for D_DEREG×D_1993:

- Log-linear model with fixed-effects:

 Pooled-OLS: 0.0752 * Within: 0.0598 (not significant)
 ➔ 7.52% increase in trade shares on average over 11 years

Sub-sample with $10 million trade flows: 3,512 observations

Pooled-OLS: 0.0921 *** Within: 0.0924 ***
Difference-in-Differences Results

- Coefficient estimate for D_DEREG×D_1993:
 - Log-linear model with fixed-effects:
 Pooled-OLS: 0.0752 *
 Within: 0.0598 (not significant)
 ➔ 7.52% increase in trade shares on average over 11 years

Sub-sample with $ 10 million trade flows: 3,512 observations
- Pooled-OLS: 0.0921 ***
 Within: 0.0924 ***

- Poisson regressions with fixed effects:
 Pooled-Poisson: 0.1986 ***
 Within-Poisson: 0.1434 ***

Sub-sample with trade flows ≥ $ 10 million:
- Pooled-Poisson: 0.1864 ***
 Within-Poisson: 0.1414 ***
Difference-in-Differences Results

- **Coefficient estimate for D_DEREG×D_1993:**
 - Log-linear model with fixed-effects:
 - Pooled-OLS: \(0.0752\) *
 - Within: 0.0598 (not significant)
 - \(7.52\%\) increase in trade shares on average over 11 years

 Sub-sample with $10 million trade flows: 3,512 observations
 - Pooled-OLS: \(0.0921\) ***
 - Within: \(0.0924\) ***

- **Poisson regressions with fixed effects:**
 - Pooled-Poisson: \(0.1986\) ***
 - Within-Poisson: \(0.1434\) ***

 Sub-sample with trade flows \(\geq\) $10 million:
 - Pooled-Poisson: \(0.1864\) ***
 - Within-Poisson: \(0.1414\) ***
IV-Regression Results

- **Coefficient estimate for BANK_INTEGRATION:**
 - Instrumented as in Morgan, Strahan, and Rime (2003)

- Log-linear model (IV-GMM2S & state-pair fixed-effects):
 - “Full” sample: $7.3626 \, **$
 - “$10 million” sample: $11.0970 \, ***$
IV-Regression Results

- **Coefficient estimate for BANK_INTEGRATION:**
 - Instrumented as in Morgan, Strahan, and Rime (2003)

- Log-linear model (IV-GMM2S & state-pair fixed-effects):
 - “Full” sample: 7.3626 **
 - “$10 million” sample: 11.0970 ***

Bank integration were to increase from 0% to 2.28% (the mean of the data), trade share would increase by 16.79%.
IV-Regression Results

- **Coefficient estimate for BANK_INTEGRATION:**
 - Instrumented as in Morgan, Strahan, and Rime (2003)

- Log-linear model (IV-GMM2S & state-pair fixed-effects):
 - “Full” sample: \(7.3626^{**}\)
 - “$10 million” sample: \(11.0970^{***}\)

 Bank integration were to increase from 0% to 2.28% (the mean of the data), trade share would increase by **16.79%**.

- Identification tests:
 - Under-identification test: \(H_0\) of under-identification rejected \(✓\)
 - Weak-identification tests: \(H_0\) of weak instruments rejected \(✓\)
 - Over-identification test: joint-\(H_0\) of valid instruments & appropriate exclusion restrictions cannot be rejected \(✓\)
IV-Regression Results

- Poisson-IV model (with time-varying origin-state fixed-effects and geographical controls):

 “Full” sample: 6.5961 ***
 “$10 million” sample: 6.8093 ***
IV-Regression Results

- Poisson-IV model (with time-varying origin-state fixed-effects and geographical controls):
 “Full” sample: 6.5961 *** “$10 million” sample: 6.8093 ***

If bank integration were to increase from 0% to 2.28% (the mean of the data) leads to an increase in trade shares by 15.04%
IV-Regression Results

- Poisson-IV model (with time-varying origin-state fixed-effects and geographical controls):
 "Full" sample: 6.5961 *** "$10 million" sample: 6.8093 ***

If bank integration were to increase from 0% to 2.28% (the mean of the data) leads to an increase in trade shares by **15.04%**

- Poisson-IV with trade-shares
 - Highly similar results
Conclusion (I)

- We model & estimate the impact of financial barriers on trade flows:

 - For the 48 contiguous states, we find that the removal of such barriers prior to 1995 lead to approximately 14% higher trade shares between state-pairs that deregulate banking entry.

 - Actual entry that increases bank integration from 0% to 2.28% (the mean of the data) leads to 11% to 25% increase in trade on average.
Conclusion (II)

These results:

- are robust to different specifications
- are economically important
- are consistent with a 10-20% markup range and a 1-2.5% fall in marginal costs as a result of the banking deregulation.
Additional robustness checks

- Excluding state pairs with large trade shares (more than 5%)
 - Similar results as before.

 - The treated group: the state-pairs that were federally forced to deregulate
 - The control group: all the remaining state-pairs
 - Again, the treated groups’ trade shares increase relative to the control group, though they do not “catch” up with the control group shares (between 1993 and 1997).
 - This indicates the effects we study are “level” effects.