# Trade Dynamics in the Market for Federal Funds

Gara Afonso Ricardo Lagos

## The market for federal funds

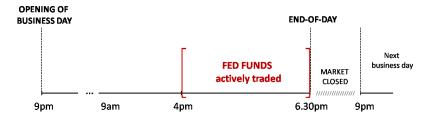
A market for loans of reserve balances at the Fed.

### The market for federal funds

- What's traded?
   Unsecured loans (mostly overnight)
- How are they traded?
   Over the counter
- Who trades?

Commercial banks, securities dealers, agencies and branches of foreign banks in the U.S., thrift institutions, federal agencies

### The market for federal funds



- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
   (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
   (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
   (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- It is an interesting example of an OTC market (Unusually good data is available)
- Reallocates reserves among banks
   (Banks use it to offset liquidity shocks and manage reserves)
- Determines the interest rate on the shortest maturity instrument in the term structure
- Is the "epicenter" of monetary policy implementation

- (1) Develop a model of trade in the fed funds market that explicitly accounts for the two key OTC frictions:
  - Search for counterparties
  - Bilateral negotiations

- (2) Use the theory to address some elementary questions:
  - Positive:
    - What are the determinants of the fed funds rate?
    - How does the market reallocate funds?
  - Normative:

Is the OTC market structure able to achieve an efficient reallocation of funds?

- (3) Calibrate the model and use it to:
  - Assess the ability of the theory to account for empirical regularities of the fed funds market:
    - Intraday evolution of reserve balances
    - Dispersion in fed funds rates and loan sizes
    - Skewed distribution of number of transactions
    - Skewed distribution of proportion of intermediated funds

- (3) Calibrate the model and use it to:
  - Assess the ability of the theory to account for empirical regularities of the fed funds market:
    - Intraday evolution of reserve balances
    - Dispersion in fed funds rates and loan sizes
    - Skewed distribution of number of transactions
    - Skewed distribution of proportion of intermediated funds
  - Conduct policy experiments:
    - What is the effect on the fed funds rate of a 25 bps increase in the interest rate that the Fed pays on reserves?

## The model

- A trading session in continuous time,  $t \in [0, T]$ ,  $\tau \equiv T t$
- Unit measure of *banks* hold reserve balances  $k(\tau) \in \mathbb{K} = \{0, 1, ..., K\}$
- $\{n_k(\tau)\}_{k\in\mathbb{K}}$ : distribution of balances at time  $T-\tau$
- Linear payoffs from balances, discount at rate r
- Fed policy:
  - ullet  $U_k$ : payoff from holding k balances at the end of the session
  - $\bullet$   $u_k$ : flow payoff from holding k balances during the session
- ullet Trade opportunities are bilateral and random (Poisson rate lpha)
- Loan and repayment amounts determined by Nash bargaining
- ullet Assume all loans repaid at time  $\mathcal{T}+\Delta$ , where  $\Delta\in\mathbb{R}_+$

#### Model

### Fed funds market

Search and bargaining

#### Model

Search and bargaining

#### Fed funds market

• Over-the-counter market

#### Model

- Search and bargaining
- [0, *T*]

#### Fed funds market

Over-the-counter market

#### Model

- Search and bargaining
- [0, *T*]

- Over-the-counter market
- 4:00pm-6:30pm

#### Model

- Search and bargaining
- [0, T]
- $\bullet \ \{n_k(T)\}_{k\in\mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm

#### Model

- Search and bargaining
- [0, T]
- $\{n_k(T)\}_{k\in\mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm

#### Model

- Search and bargaining
- [0, T]
- $\bullet \ \{n_k(T)\}_{k\in\mathbb{K}}$
- $\{u_k, U_k\}_{k \in \mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm

#### Model

- Search and bargaining
- [0, T]
- $\bullet \ \left\{ n_{k}\left( T\right) \right\} _{k\in \mathbb{K}}$
- $\{u_k, U_k\}_{k \in \mathbb{K}}$

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Reserve requirements, interest on reserves...

Bank with balance k contacts bank with balance k' at time T- au

Bank with balance k contacts bank with balance k' at time T- au

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

### Bank with balance k contacts bank with balance k' at time $T-\tau$

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

• The set of feasible loan sizes is:

$$\Gamma(k, k') = \{b \in \{-K, ..., 0, ..., K\} : (k - b, k' + b) \in \Pi(k, k')\}$$

### Bank with balance k contacts bank with balance k' at time $T-\tau$

• The set of feasible post-trade balances is:

$$\Pi\left(k,k'\right)=\left\{\left(k+k'-y,y\right)\in\mathbb{K}\times\mathbb{K}:y\in\left\{0,1,\ldots,k+k'\right\}\right\}$$

The set of feasible loan sizes is:

$$\Gamma\left(k,k'\right)=\left\{b\in\left\{ -K,...,0,...,K\right\} :\left(k-b,k'+b\right)\in\Pi\left(k,k'\right)\right\}$$

•  $V_{k}\left( au\right)$  : value of a bank with balance k at time T- au

## Bargaining

Bank with balance k contacts bank with balance k' at time  $T - \tau$ .

The *loan size b*, and the *repayment R* maximize:

$$\left[V_{k-b}\left(\tau\right)+e^{-r\left(\tau+\Delta\right)}R-V_{k}\left(\tau\right)\right]^{\frac{1}{2}}\left[V_{k'+b}\left(\tau\right)-e^{-r\left(\tau+\Delta\right)}R-V_{k'}\left(\tau\right)\right]^{\frac{1}{2}}$$

s.t. 
$$b \in \Gamma(k, k')$$
,  $R \in \mathbb{R}$ 

## Bargaining

Bank with balance k contacts bank with balance k' at time  $T - \tau$ .

The loan size b, and the repayment R maximize:

$$\left[V_{k-b}\left(\tau\right)+e^{-r\left(\tau+\Delta\right)}R-V_{k}\left(\tau\right)\right]^{\frac{1}{2}}\left[V_{k'+b}\left(\tau\right)-e^{-r\left(\tau+\Delta\right)}R-V_{k'}\left(\tau\right)\right]^{\frac{1}{2}}$$

s.t. 
$$b \in \Gamma(k, k')$$
,  $R \in \mathbb{R}$ 

$$b^{*} \in \arg\max_{b \in \Gamma(k,k')} \left[ V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right) \right]$$

$$e^{-r(\tau+\Delta)}R^* = \frac{1}{2}\left[V_{k'+b^*}(\tau) - V_{k'}(\tau)\right] + \frac{1}{2}\left[V_k(\tau) - V_{k-b^*}(\tau)\right]$$

## Value function

$$rV_{i}\left(\tau\right) + \dot{V}_{i}\left(\tau\right) =$$

$$= u_{i} + \frac{\alpha}{2} \sum_{j,k,s \in \mathbb{K}} n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) \left[V_{k}\left(\tau\right) + V_{s}\left(\tau\right) - V_{i}\left(\tau\right) - V_{j}\left(\tau\right)\right]$$

## Value function

$$rV_{i}\left(\tau\right) + \dot{V}_{i}\left(\tau\right) =$$

$$= u_{i} + \frac{\alpha}{2} \sum_{j,k,s \in \mathbb{K}} n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) \left[V_{k}\left(\tau\right) + V_{s}\left(\tau\right) - V_{i}\left(\tau\right) - V_{j}\left(\tau\right)\right]$$
which  $V_{s}\left(0\right) = U_{s}$  and

with  $V_{i}\left(0\right)=U_{i}$ , and

$$\phi_{ij}^{ks}\left( au
ight) = \left\{ egin{array}{ll} ilde{\phi}_{ij}^{ks}\left( au
ight) & ext{if } \left(k,s
ight) \in \Omega_{ij}\left[\mathbf{V}\left( au
ight)
ight] \\ 0 & ext{if } \left(k,s
ight) 
otin \Omega_{ij}\left[\mathbf{V}\left( au
ight)
ight] \end{array} 
ight.$$

## Value function

$$rV_{i}\left( au\right) +\dot{V}_{i}\left( au\right) =% V_{i}\left( au\right) =V_{i}\left( au\right)$$

$$=u_{i}+\frac{\alpha}{2}\sum_{i,k,s\in\mathbb{K}}n_{j}\left(\tau\right)\phi_{ij}^{ks}\left(\tau\right)\left[V_{k}\left(\tau\right)+V_{s}\left(\tau\right)-V_{i}\left(\tau\right)-V_{j}\left(\tau\right)\right]$$

with  $V_{i}(0) = U_{i}$ , and

$$\phi_{ij}^{ks}\left(\tau\right) = \begin{cases} \tilde{\phi}_{ij}^{ks}\left(\tau\right) & \text{if } (k,s) \in \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \\ 0 & \text{if } (k,s) \notin \Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right] \end{cases}$$

with

$$\Omega_{ij}\left[\mathbf{V}\left(\tau\right)\right]\equiv\arg\max_{\left(k',s'\right)\in\Pi\left(i,j\right)}\left[V_{k'}\left(\tau\right)+V_{s'}\left(\tau\right)-V_{i}\left(\tau\right)-V_{j}\left(\tau\right)\right]$$

where  $ilde{\phi}_{ij}^{ks}\left( au
ight)\geq 0$  and  $\sum\limits_{k\in\mathbb{Z}}\sum\limits_{a\in\mathbb{Z}} ilde{\phi}_{ij}^{ks}\left( au
ight)=1$ 

## Time-path for the distribution of balances

For all  $k \in \mathbb{K}$ ,

$$\dot{n}_{k}(\tau) = \alpha n_{k}(\tau) \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_{i}(\tau) \phi_{ki}^{sj}(\tau) 
-\alpha \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_{i}(\tau) n_{j}(\tau) \phi_{ij}^{ks}(\tau)$$

#### Definition

An equilibrium is a value function,  $\mathbf{V}$ , a path for the distribution of reserve balances,  $\mathbf{n}(\tau)$ , and a path for the distribution of trading probabilities,  $\boldsymbol{\phi}(\tau)$ , such that:

- (a) given the value function and the distribution of trading probabilities, the distribution of balances evolves according to the law of motion; and
- (b) given the path for the distribution of balances, the value function and the distribution of trading probabilities satisfy individual optimization given the bargaining protocol.

**Assumption A.** For any  $i, j \in \mathbb{K}$ , and all  $(k, s) \in \Pi(i, j)$ , the payoff functions satisfy:

$$u_{\lceil \frac{i+j}{2} \rceil} + u_{\lfloor \frac{i+j}{2} \rfloor} \ge u_k + u_s$$

$$U_{\left\lceil \frac{i+j}{2} \right\rceil} + U_{\left\lfloor \frac{i+j}{2} \right\rfloor} \ge U_k + U_s$$
, ">" unless  $k \in \left\{ \left\lfloor \frac{i+j}{2} \right\rfloor, \left\lceil \frac{i+j}{2} \right\rceil \right\}$ 

where for any  $x \in \mathbb{R}$ ,

$$\lfloor x \rfloor \equiv \max \{ k \in \mathbb{Z} : k \le x \}$$

$$\lceil x \rceil \equiv \min \{ k \in \mathbb{Z} : x \le k \}$$

### Proposition

Let the payoff functions satisfy Assumption A. Then:

- (i) An equilibrium exists. The paths  $\mathbf{V}(\tau)$  and  $\mathbf{n}(\tau)$  are unique.
- (ii) The equilibrium path for  $\phi\left( au
  ight)=\{\phi_{ij}^{ks}\left( au
  ight)\}_{i,j,k,s\in\mathbb{K}}$  is

$$\phi_{ij}^{ks}\left( au
ight) = \left\{ egin{array}{ll} ilde{\phi}_{ij}^{ks}\left( au
ight) & ext{if } (k,s) \in \Omega_{ij}^{*} \ 0 & ext{if } (k,s) 
otin \Omega_{ij}^{*} \end{array} 
ight.$$

where  $ilde{\phi}_{ij}^{ks}\left( au
ight)\geq0$  and  $\sum\limits_{(k,s)\in\Omega_{ij}^{*}} ilde{\phi}_{ij}^{ks}\left( au
ight)=1$ , with

$$\Omega_{ij}^* = \left\{ \begin{array}{l} \left\{ \left(\frac{i+j}{2}, \frac{i+j}{2}\right) \right\} & \text{if } i+j \text{ even} \\ \left\{ \left(\left|\frac{i+j}{2}\right|, \left\lceil\frac{i+j}{2}\right\rceil\right), \left(\left\lceil\frac{i+j}{2}\right\rceil, \left|\frac{i+j}{2}\right|\right) \right\} & \text{if } i+j \text{ odd.} \end{array} \right.$$

# Positive implications

The theory delivers:

- (1) Time-varying distribution of trade sizes, trade volume
- (2) Time-varying distribution of fed fund rates
- (3) Endogenous intermediation

## Trade volume

• Flow volume of trade at time  $T - \tau$ :

$$\bar{v}\left(\tau\right) = \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} v_{ij}^{ks}\left(\tau\right)$$

where

$$v_{ij}^{ks}\left(\tau\right) \equiv \alpha n_{i}\left(\tau\right) n_{j}\left(\tau\right) \phi_{ij}^{ks}\left(\tau\right) |k-i|$$

Total volume traded during the trading session:

$$\bar{v} = \int_0^T \bar{v}\left(\tau\right) d\tau$$

### Fed funds rate

• If a bank with i borrows k - i = j - s from bank with j at time  $T - \tau$ , the interest rate on the loan is:

$$\rho_{ij}^{ks}\left(\tau\right) = \frac{\ln\left[\frac{R_{ij}^{ks}\left(\tau\right)}{k-i}\right]}{\tau + \Delta} = r + \frac{\ln\left[\frac{V_{j}\left(\tau\right) - V_{s}\left(\tau\right)}{j-s} + \frac{\frac{1}{2}S_{ij}^{ks}\left(\tau\right)}{j-s}\right]}{\tau + \Delta}$$

### Fed funds rate

• If a bank with i borrows k - i = j - s from bank with j at time  $T - \tau$ , the interest rate on the loan is:

$$\rho_{ij}^{ks}\left(\tau\right) = \frac{\ln\left[\frac{R_{ij}^{ks}\left(\tau\right)}{k-i}\right]}{\tau+\Delta} = r + \frac{\ln\left[\frac{V_{j}\left(\tau\right) - V_{s}\left(\tau\right)}{j-s} + \frac{\frac{1}{2}S_{ij}^{ks}\left(\tau\right)}{j-s}\right]}{\tau+\Delta}$$

The daily average (value-weighted) fed funds rate is:

$$\bar{\rho} = \frac{1}{T} \int_0^T \bar{\rho} \left( \tau \right) d\tau$$

where

$$\begin{split} \bar{\rho}\left(\tau\right) & \equiv & \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} \omega_{ij}^{ks}\left(\tau\right) \rho_{ij}^{ks}\left(\tau\right) \\ \omega_{ii}^{ks}\left(\tau\right) & \equiv & v_{ii}^{ks}\left(\tau\right) / \bar{v}\left(\tau\right) \end{split}$$

## Endogenous intermediation

- Cumulative purchases:  $O^p = \sum\limits_{n=1}^N \max\left\{k_n k_{n-1}, 0\right\}$
- Cumulative sales:  $O^s = -\sum_{n=1}^{N} \min\{k_n k_{n-1}, 0\}$

## Endogenous intermediation

- ullet Cumulative purchases:  $O^p = \sum\limits_{n=1}^N \max \left\{ k_n k_{n-1}, 0 
  ight\}$
- Cumulative sales:  $O^s = -\sum_{n=1}^N \min\{k_n k_{n-1}, 0\}$

#### Bank-level measures of intermediation

• Excess funds reallocation:

$$X = O^p + O^s - |O^p - O^s|$$

## Endogenous intermediation

- Cumulative purchases:  $O^p = \sum_{n=1}^N \max\{k_n k_{n-1}, 0\}$
- Cumulative sales:  $O^s = -\sum_{n=1}^N \min\{k_n k_{n-1}, 0\}$

#### Bank-level measures of intermediation

• Excess funds reallocation:

$$X = O^p + O^s - |O^p - O^s|$$

• Proportion of intermediated funds:

$$\iota = \frac{X}{O^p + O^s}$$

# Payoff functions

$$u_{k} = \begin{cases} (k')^{1-\epsilon} i_{+}^{d} & \text{if } 0 \leq k' \\ (k')^{1+\epsilon} i_{-}^{d} & \text{if } k' < 0 \end{cases}$$
 with  $\epsilon \approx 0$ 

$$e^{r\Delta_f}U_k = \begin{cases} k' + i_f^r\bar{k} + i_f^e\left(k' - \bar{k}\right) & \text{if } \bar{k} \leq k' \\ k' + i_f^r\bar{k} - i_f^w\left(\bar{k} - k'\right) & \text{if } k' < \bar{k} \end{cases}$$

where 
$$k' \equiv k - \bar{k}_0$$
  $\bar{k}_0$  is a "shifter"

## Distribution of balances at 16:00 for "typical day" in 2007

- ullet Sample: N=142 commercial banks that traded fed funds at least once during 2007 Q2
- $\hat{k}^i$ : bank *i*'s average balance at 16:00 over a given two-week maintenance period during 2007 Q2, divided by bank *i*'s daily average required operating balance over the same period

## Distribution of balances at 16:00 for "typical day" in 2007

- ullet Sample: N=142 commercial banks that traded fed funds at least once during 2007 Q2
- $\hat{k}^i$ : bank *i*'s average balance at 16:00 over a given two-week maintenance period during 2007 Q2, divided by bank *i*'s daily average required operating balance over the same period

$$\mathbb{K} = \{0, \dots, 250\}, \quad \bar{k} = 1, \quad \mathbb{K}' \equiv \mathbb{K} - \bar{k}_0, \quad \bar{k}_0 = 50$$

$$n_k(T) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}_{\{\hat{k}^i \in [k - \bar{k}_0, k - \bar{k}_0 + 1)\}}$$

$$Q = \sum_{k=0}^{250} (k - \bar{k}_0) n_k (T) \approx 1.04$$

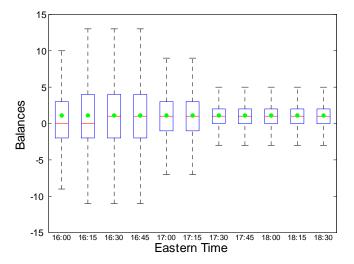
## Policy parameters as in 2007

| T         | $\Delta_f$ | Δ               | $i_+^d$               | i <u>_</u>          | $i_f^r$ | $i_f^e$ | $i_f^w$             | $i_f^c$             | $i_f^o$             | r                    |
|-----------|------------|-----------------|-----------------------|---------------------|---------|---------|---------------------|---------------------|---------------------|----------------------|
| 2.5<br>24 | 2.5<br>24  | <u>22</u><br>24 | $\frac{10^{-7}}{360}$ | <u>.0036</u><br>360 | 0       | 0       | <u>.0625</u><br>360 | <u>.0725</u><br>360 | <u>.0925</u><br>360 | <u>0.0001</u><br>360 |

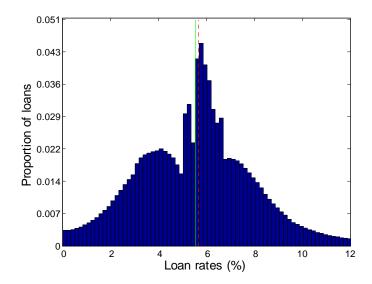
## Calibrated parameters, 2007 targets

| $(\alpha, P^w) = (100, \frac{0.0525}{360})$ | Model | Data   |
|---------------------------------------------|-------|--------|
| fed funds rate                              | .0527 | .0525* |
| std. dev. of balances at 6:30 pm            | 1.2   | 1.15*  |
| median number of counterparties             | 7     | 2      |
| mean number of counterparties               | 7     | 4.5    |
| intermediation index                        | .65   | .43    |

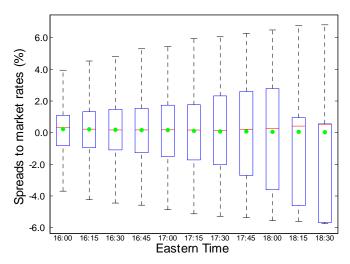
### Intraday evolution of reserve balances (2007)



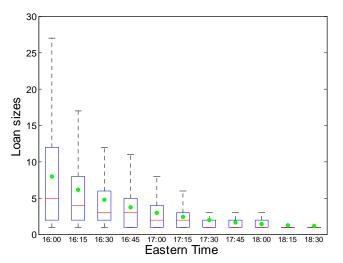
### Daily distribution of rates (2007)



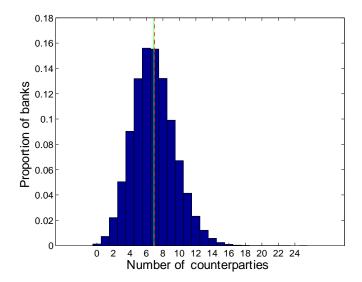
### Intraday evolution of spreads (2007)



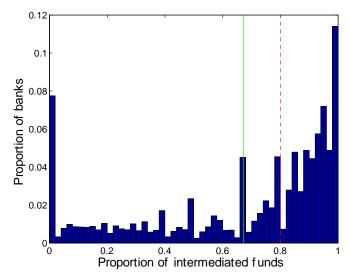
### Intraday distribution of loan sizes (2007)



### Daily distribution of trading activity (2007)



### Intermediation (2007)



# Policy parameters as in 2011

| $i_f^r$      | $i_f^e$      | $i_f^w$      | $i_f^c$ | $i_f^o$      |
|--------------|--------------|--------------|---------|--------------|
| <u>.0025</u> | <u>.0025</u> | <u>.0075</u> | .0175   | <u>.0415</u> |
| 360          | 360          | 360          | 360     | 360          |

## Calibrated parameters, 2011 targets

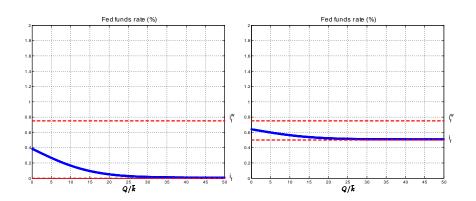
| $(\alpha, P^{w}) = (1, 0)$       | Model | Data   |
|----------------------------------|-------|--------|
| fed funds rate                   | .0029 | .0025* |
| std. dev. of balances at 6:30 pm | 31    | 31*    |
| median number of counterparties  | 0     | 2      |
| mean number of counterparties    | .1    | 2.9    |
| intermediation index             | .02   | .35    |

# Policy experiments (baseline policy as in 2011)

| $i_f$ | $Q/\bar{k}=0.50$ | $Q/\bar{k}=1.00$ | $Q/\bar{k}=30$ |
|-------|------------------|------------------|----------------|
| 0     | 38               | 36               | 1              |
| 25    | 51               | 50               | 26             |
| 50    | 64               | 63               | 51             |

| $i_f^w$ | $Q/\bar{k}=0.50$ | $Q/\bar{k}=1.00$ | $Q/\bar{k}=30$ |
|---------|------------------|------------------|----------------|
| 50      | 39               | 38               | 26             |
| 75      | 51               | 50               | 26             |
| 100     | 63               | 61               | 26             |

# Corridor system



## IOR Policy intuition from the analytical example

#### **Proposition**

If  $r \approx 0$ ,

$$ho_{f}\left( au
ight)pproxeta\left( au
ight)i_{f}^{e}+\left[1-eta\left( au
ight)
ight]i_{f}^{w}$$
 where

- **1** If  $n_2(T) = n_0(T)$ ,  $\beta(\tau) = \theta$
- $\textbf{ 0} \ \, \textit{If } \mathsf{n}_2\left(T\right) < \mathsf{n}_0\left(T\right), \, \beta\left(\tau\right) \in [0,\theta], \, \beta\left(0\right) = \theta \, \, \textit{and} \, \, \beta'\left(\tau\right) < 0$
- $\textbf{ If } n_0\left(T\right) < n_2\left(T\right), \, \beta\left(\tau\right) \in [\theta,1], \, \beta\left(0\right) = \theta \, \, \text{and} \, \beta'\left(\tau\right) > 0.$

▶ Figures

### More to be done...

- Fed funds brokers
- Banks' portfolio decisions
- Random "payment shocks"
- Sequence of trading sessions
- Quantiative work with ex-ante heterogeneity

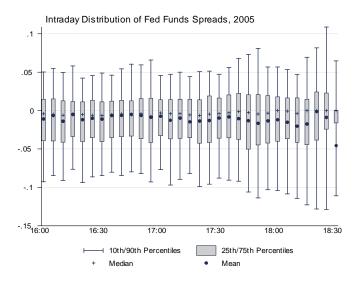
The views expressed here are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.

### Evidence of OTC frictions in the fed funds market

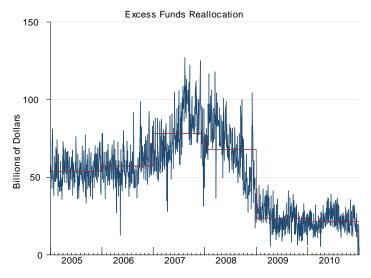
- Price dispersion
- Intermediation
- Intraday evolution of the distribution of reserve balances
- There are banks that are "very long" and buy
   There are banks that are "very short" and sell

## Price dispersion

Percent

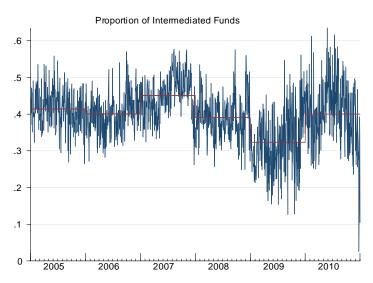


### Intermediation: excess funds reallocation



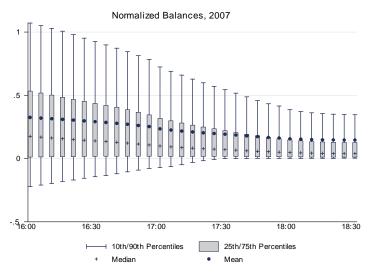


## Intermediation: proportion of intermediated funds



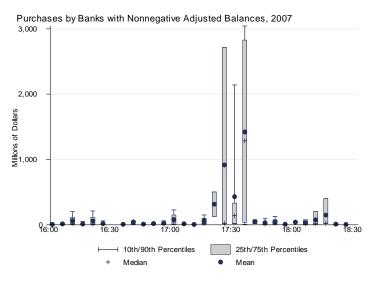


### Intraday evolution of the distribution of reserve balances

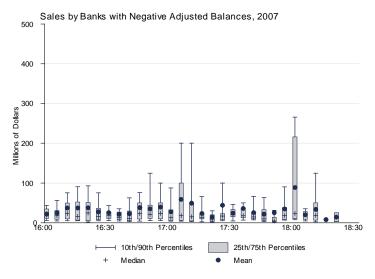




## Banks that are "long" ... and buy...

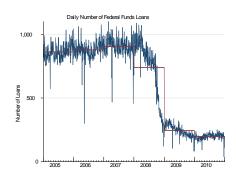


## Banks that are "short" ... and sell...

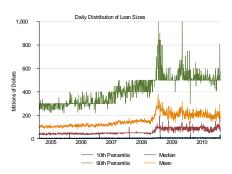


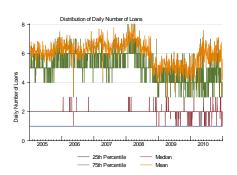
## Daily volume



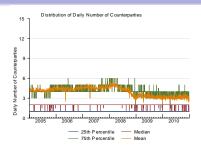


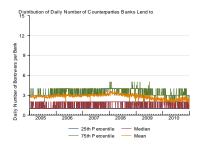
## Daily volume (size distribution)

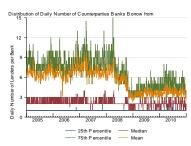




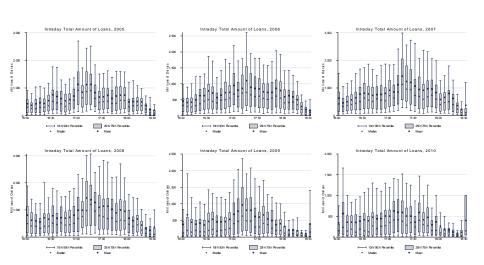
## Daily distribution of the number of counterparties





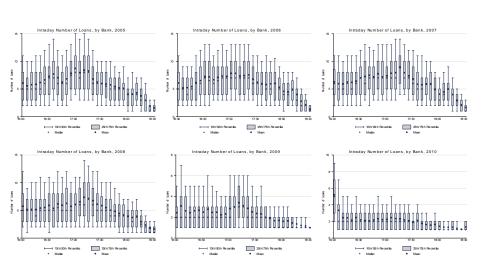


## Intraday volume (dollar amount)



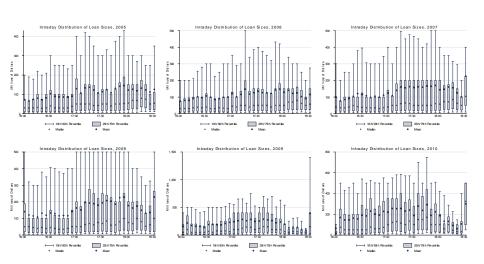


## Intraday volume (number of loans)



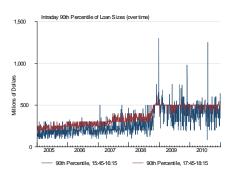


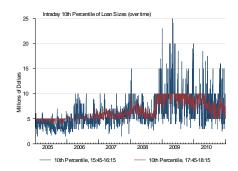
## Intraday size distribution of loans



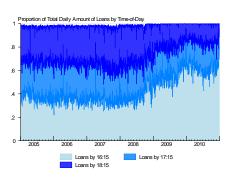


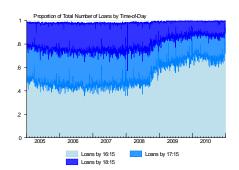
### Intraday size distribution of loans



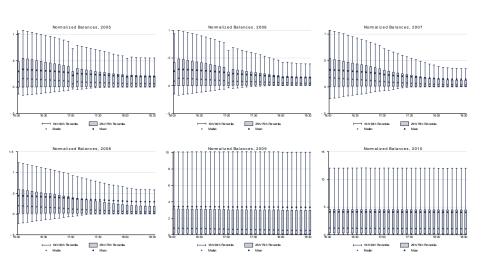


#### Trading activity by time-of-day

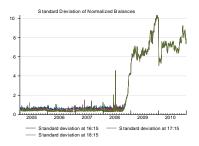


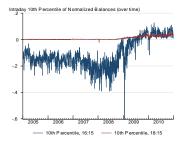


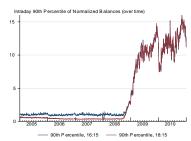
## Intraday evolution of the distribution of reserve balances



#### Intraday evolution of the distribution of reserve balances

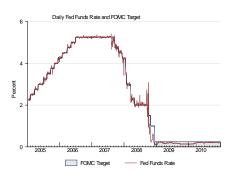


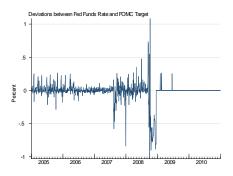




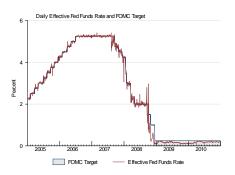


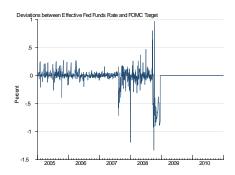
#### Daily fed funds rate vs. FOMC target



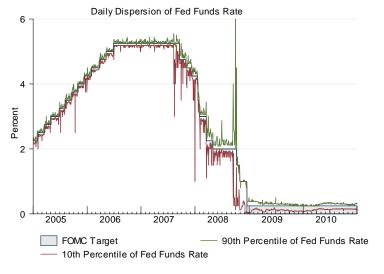


## Daily effective fed funds rate vs. FOMC target



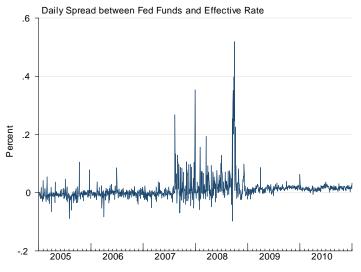


## Daily fed funds rate dispersion

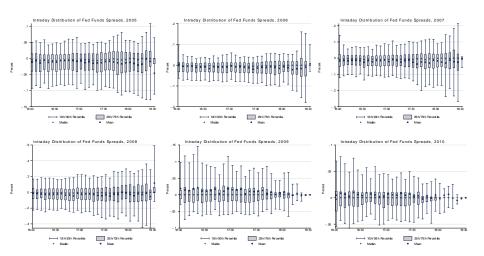




#### Fed funds rate vs. effective fed funds rate

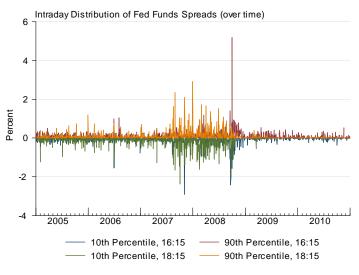


# Intraday distribution of fed funds spreads



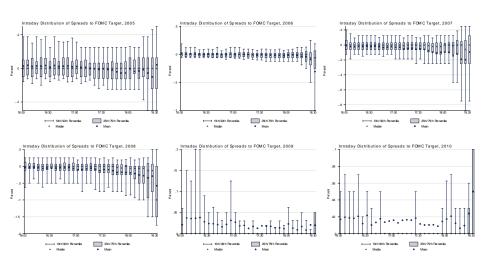


# Intraday distribution of fed funds spreads (over time)

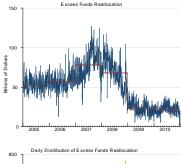


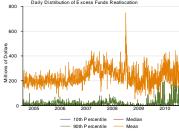


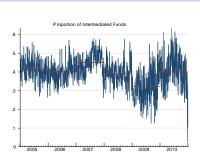
# Intraday distribution of fed funds/FOMC target spreads

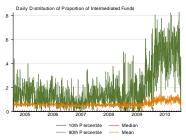


# Daily intermediation



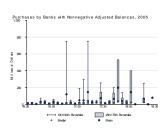


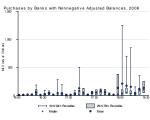


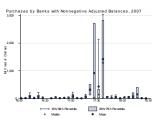


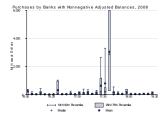


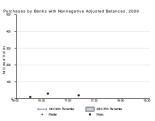
## Banks that are "long" ... and buy...

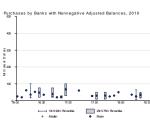




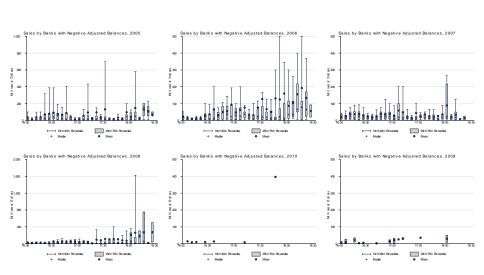




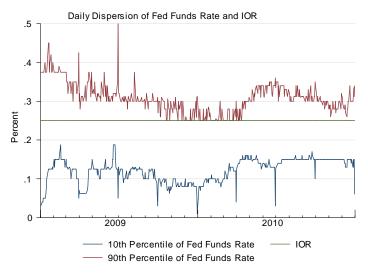




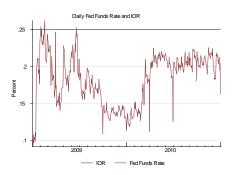
#### Banks that are "short" ... and sell...

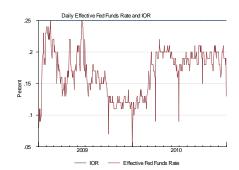


## Daily fed funds rate vs. IOR



## Daily FFR and daily effective FFR vs. IOR: a puzzle





$$\begin{split} J_{k}\left(x,\tau\right) &= \mathbb{E}\left\{\int_{0}^{\min\left(\tau_{\alpha},\tau\right)} e^{-rz} u_{k} dz + \mathbb{I}_{\left\{\tau_{\alpha} > \tau\right\}} e^{-r\tau} \left(U_{k} + e^{-r\Delta}x\right) + \right. \\ \\ &\left. \mathbb{I}_{\left\{\tau_{\alpha} \leq \tau\right\}} e^{-r\tau_{\alpha}} \int J_{k-b_{ss'}\left(\tau-\tau_{\alpha}\right)} \left(x + R_{s's}\left(\tau-\tau_{\alpha}\right), \tau-\tau_{\alpha}\right) \mu\left(ds', \tau-\tau_{\alpha}\right) \right\} \end{split}$$

$$J_{k}(x,\tau) = \mathbb{E}\left\{\int_{0}^{\min(\tau_{\alpha},\tau)} e^{-rz} u_{k} dz + \mathbb{I}_{\{\tau_{\alpha}>\tau\}} e^{-r\tau} \left(U_{k} + e^{-r\Delta}x\right) + \right\}$$

$$\mathbb{I}_{\left\{\tau_{\alpha} \leq \tau\right\}} e^{-r\tau_{\alpha}} \int J_{k-b_{\mathbf{s}\mathbf{s}'}(\tau-\tau_{\alpha})} \left(x + R_{\mathbf{s}'\mathbf{s}} \left(\tau - \tau_{\alpha}\right), \tau - \tau_{\alpha}\right) \mu \left(d\mathbf{s}', \tau - \tau_{\alpha}\right) \right\}$$

- ullet  $au_{lpha}$  : time until next trading opportunity
- $b_{\mathbf{s}\mathbf{s}'}\left( au
  ight)$  : balance that bank  $\mathbf{s}=\left(k,x\right)$  lends to bank  $\mathbf{s}'=\left(k',x'\right)$  at time T- au
- ullet  $R_{\mathbf{s's}}\left( au
  ight)$  : repayment negotiated at time T- au (due at  $T+\Delta$ )
- $\mu(\cdot, \tau)$ : prob. measure over individual states,  $\mathbf{s}' = (k', x')$

## Bargaining

Bank with  $\mathbf{s} = (k, x)$  meets bank  $\mathbf{s}' = (k', x')$  at  $T - \tau$ .

The loan size b and the repayment R maximize:

$$[J_{k-b}(x+R,\tau)-J_{k}(x,\tau)]^{\frac{1}{2}}[J_{k'+b}(x'-R,\tau)-J_{k'}(x',\tau)]^{\frac{1}{2}}$$

s.t. 
$$b \in \Gamma(k, k')$$

$$R \in \mathbb{R}$$

$$J_{k}\left(x, au
ight)=V_{k}\left( au
ight)+e^{-r\left( au+\Delta
ight)}x$$
 where

$$V_{k}\left(\tau\right) = \mathbb{E}\left\{\int_{0}^{\min\left(\tau_{\alpha},\tau\right)} e^{-rz} u_{k} dz + \mathbb{I}_{\left\{\tau_{\alpha} > \tau\right\}} e^{-r\tau} U_{k} + \mathbb{I}_{\left\{\tau_{\alpha} \leq \tau\right\}} e^{-r\tau_{\alpha}}\right\}$$

$$\sum_{k'\in\mathbb{K}}n_{k'}\left(\tau-\tau_{\alpha}\right)\left[V_{k-b_{kk'}\left(\tau-\tau_{\alpha}\right)}\left(\tau-\tau_{\alpha}\right)+e^{-r\left(\tau+\Delta-\tau_{\alpha}\right)}R_{k'k}\left(\tau-\tau_{\alpha}\right)\right]\right\}$$

$$J_{k}\left(x, au
ight)=V_{k}\left( au
ight)+e^{-r\left( au+\Delta
ight)}x$$
 where

$$V_{k}(\tau) = \mathbb{E}\left\{\int_{0}^{\min(\tau_{\alpha},\tau)} e^{-rz} u_{k} dz + \mathbb{I}_{\{\tau_{\alpha}>\tau\}} e^{-r\tau} U_{k} + \mathbb{I}_{\{\tau_{\alpha}\leq\tau\}} e^{-r\tau_{\alpha}}\right\}$$

$$\sum_{k'\in\mathbb{K}}n_{k'}\left(\tau-\tau_{\alpha}\right)\left[V_{k-b_{kk'}\left(\tau-\tau_{\alpha}\right)}\left(\tau-\tau_{\alpha}\right)+e^{-r\left(\tau+\Delta-\tau_{\alpha}\right)}R_{k'k}\left(\tau-\tau_{\alpha}\right)\right]\right\}$$

$$b_{kk'}\left(\tau\right) \in \arg\max_{b \in \Gamma\left(k,k'\right)} \left[V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right)\right]$$

$$J_{k}\left(x, au
ight)=V_{k}\left( au
ight)+e^{-r\left( au+\Delta
ight)}x$$
 where

$$V_{k}\left( au
ight)=\mathbb{E}\left\{ \int_{0}^{\min\left( au_{lpha}, au
ight)}e^{-rz}u_{k}dz+\mathbb{I}_{\left\{ au_{lpha}> au
ight\}}e^{-r au}U_{k}+\mathbb{I}_{\left\{ au_{lpha}\leq au
ight\}}e^{-r au_{lpha}}$$

$$\sum_{k' \in \mathbb{K}} n_{k'} \left( \tau - \tau_{\alpha} \right) \left[ V_{k - b_{kk'} \left( \tau - \tau_{\alpha} \right)} \left( \tau - \tau_{\alpha} \right) + e^{-r \left( \tau + \Delta - \tau_{\alpha} \right)} R_{k'k} \left( \tau - \tau_{\alpha} \right) \right] \right\}$$

$$b_{kk'}\left(\tau\right) \in \arg\max_{b \in \Gamma\left(k,k'\right)} \left[V_{k'+b}\left(\tau\right) + V_{k-b}\left(\tau\right) - V_{k'}\left(\tau\right) - V_{k}\left(\tau\right)\right]$$

$$e^{-r( au+\Delta)}R_{k'k}\left( au
ight) = rac{1}{2}\left[V_{k'+b_{kk'}\left( au
ight)}\left( au
ight)-V_{k'}\left( au
ight)
ight] + \ rac{1}{2}\left[V_{k}\left( au
ight)-V_{k-b_{kk'}\left( au
ight)}\left( au
ight)
ight]$$

- Bank with i = 2 is a *lender*, bank with j = 0, a *borrower*
- $oldsymbol{ heta} heta \in [ exttt{0}, exttt{1}]$  : bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- $S(\tau) \equiv 2V_1(\tau) V_2(\tau) V_0(\tau)$
- Conjecture  $S\left( au 
  ight) > 0$  for all  $au \in \left[ 0,\, T 
  ight]$  (to be verified later)

- Bank with i = 2 is a *lender*, bank with j = 0, a *borrower*
- $oldsymbol{ heta} heta \in [ exttt{0}, exttt{1}]$  : bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- Conjecture  $S\left( au 
  ight) > 0$  for all  $au \in \left[ 0,\, T 
  ight]$  (to be verified later)
- Assumption:  $2u_1 u_2 u_0 \ge 0$  and  $2U_1 U_2 U_0 > 0$

- Bank with i = 2 is a *lender*, bank with j = 0, a *borrower*
- $oldsymbol{ heta} heta \in [ exttt{0}, exttt{1}]$  : bargaining power of the borrower
- Only potentially profitable trade is between i=0 and j=2
- Conjecture  $S\left( au 
  ight) > 0$  for all  $au \in \left[ 0, T 
  ight]$  (to be verified later)
- Assumption:  $2u_1 u_2 u_0 \ge 0$  and  $2U_1 U_2 U_0 > 0$

- Bank with i = 2 is a *lender*, bank with j = 0, a *borrower*
- $oldsymbol{ heta}$   $heta \in [ extsf{0}, extsf{1}]$  : bargaining power of the borrower
- ullet Only potentially profitable trade is between i=0 and j=2
- Conjecture  $S\left( au 
  ight) > 0$  for all  $au \in \left[ 0, T 
  ight]$  (to be verified later)
- Assumption:  $2u_1 u_2 u_0 \ge 0$  and  $2U_1 U_2 U_0 > 0$

Given  $\{n_k(T)\}$ , the distribution of balances follows:

$$\dot{n}_0(\tau) = \alpha n_2(\tau) n_0(\tau)$$

$$\dot{n}_2(\tau) = \alpha n_2(\tau) n_0(\tau)$$

## Time-path for the distribution of balances

$$n_{2}\left(\tau\right)=n_{2}\left(T\right)-\left[n_{0}\left(T\right)-n_{0}\left(\tau\right)\right]$$

$$n_1\left(\tau\right) = 1 - n_0\left(\tau\right) - n_2\left(\tau\right)$$

$$n_{0}(\tau) = \frac{\left[n_{2}(T) - n_{0}(T)\right] n_{0}(T)}{n_{2}(T) e^{\alpha \left[n_{2}(T) - n_{0}(T)\right](T - \tau)} - n_{0}(T)}$$

## Bargaining

The repayment R solves:

$$\max_{R}\left[V_{1}\left(\tau\right)-V_{0}\left(\tau\right)-e^{-r\left(\tau+\Delta\right)}R\right]^{\theta}\left[V_{1}\left(\tau\right)-V_{2}\left(\tau\right)+e^{-r\left(\tau+\Delta\right)}R\right]^{1-\theta}$$

$$\Rightarrow$$

$$e^{-r(\tau+\Delta)}R(\tau) = \theta\left[V_2(\tau) - V_1(\tau)\right] + (1-\theta)\left[V_1(\tau) - V_0(\tau)\right]$$

#### Value function

$$rV_0\left( au
ight)+\dot{V}_0\left( au
ight)=u_0+lpha\,n_2\left( au
ight)\, heta S\left( au
ight)$$
  $rV_1\left( au
ight)+\dot{V}_1\left( au
ight)=u_1$   $rV_2\left( au
ight)+\dot{V}_2\left( au
ight)=u_2+lpha\,n_0\left( au
ight)\left(1- heta
ight)S\left( au
ight)$   $V_i\left(0
ight)=U_i ext{ for } i=0,1,2$ 

#### Value function

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$V_{i}(0) = U_{i} \text{ for } i = 0, 1, 2$$

$$\Rightarrow$$

$$\dot{S}(\tau) + \delta(\tau) S(\tau) = 2u_{1} - u_{2} - u_{0}$$

$$\delta(\tau) \equiv \{r + \alpha [\theta n_{2}(\tau) + (1 - \theta) n_{0}(\tau)]\}$$

### Surplus

$$S(\tau) = \left( \int_0^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz \right) \bar{u} + e^{-\bar{\delta}(\tau)} S(0)$$

$$\bar{u} \equiv 2u_1 - u_2 - u_0$$

$$S(0) = 2U_1 - U_2 - U_0$$

$$\bar{\delta}(\tau) \equiv \int_0^{\tau} \delta(x) dx$$

$$\delta(\tau) \equiv \{r + \alpha \left[\theta n_2(\tau) + (1 - \theta) n_0(\tau)\right] \}$$

# Fed funds rate

$$R\left( au
ight) = \mathrm{e}^{
ho\left( au+\Delta
ight) } imes 1$$

#### Fed funds rate

$$R\left( au
ight) = e^{
ho\left( au+\Delta
ight)} imes 1$$
  $\Rightarrow$ 

$$\rho(\tau) = \frac{\ln R(\tau)}{\tau + \Delta}$$

$$= r + \frac{\ln \left[V_2(\tau) - V_1(\tau) + (1 - \theta) S(\tau)\right]}{\tau + \Delta}$$

#### Intuition for efficiency result

$$rV_{0}\left(\tau\right)+\dot{V}_{0}\left(\tau\right)=u_{0}+\alpha n_{2}\left(\tau\right)\theta S\left(\tau\right)$$

$$rV_{1}\left(\tau\right)+\dot{V}_{1}\left(\tau\right)=u_{1}$$

$$rV_{2}\left(\tau\right)+\dot{V}_{2}\left(\tau\right)=u_{2}+\alpha n_{0}\left(\tau\right)\left(1-\theta\right)S\left(\tau\right)$$

### Intuition for efficiency result

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$r\lambda_{0}(\tau) + \dot{\lambda}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) S^{*}(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$r\lambda_{1}(\tau) + \dot{\lambda}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$r\lambda_{2}(\tau) + \dot{\lambda}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) S^{*}(\tau)$$

### Intuition for efficiency result

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$r\lambda_{0}(\tau) + \dot{\lambda}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) S^{*}(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$r\lambda_{1}(\tau) + \dot{\lambda}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$r\lambda_{2}(\tau) + \dot{\lambda}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) S^{*}(\tau)$$

$$S(\tau) = \bar{u} \int_0^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz + e^{-\bar{\delta}(\tau)} S(0)$$
  
$$S^*(\tau) = \bar{u} \int_0^{\tau} e^{-\left[\bar{\delta}^*(\tau) - \bar{\delta}^*(z)\right]} dz + e^{-\bar{\delta}^*(\tau)} S(0)$$

$$rV_{0}(\tau) + \dot{V}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) \theta S(\tau)$$

$$r\lambda_{0}(\tau) + \dot{\lambda}_{0}(\tau) = u_{0} + \alpha n_{2}(\tau) S^{*}(\tau)$$

$$rV_{1}(\tau) + \dot{V}_{1}(\tau) = u_{1}$$

$$r\lambda_{1}(\tau) + \dot{\lambda}_{1}(\tau) = u_{1}$$

$$rV_{2}(\tau) + \dot{V}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) (1 - \theta) S(\tau)$$

$$r\lambda_{2}(\tau) + \dot{\lambda}_{2}(\tau) = u_{2} + \alpha n_{0}(\tau) S^{*}(\tau)$$

$$S(\tau) = \bar{u} \int_{0}^{\tau} e^{-\left[\bar{\delta}(\tau) - \bar{\delta}(z)\right]} dz + e^{-\bar{\delta}(\tau)} S(0)$$

$$S^{*}(\tau) = \bar{u} \int_{0}^{\tau} e^{-\left[\bar{\delta}^{*}(\tau) - \bar{\delta}^{*}(z)\right]} dz + e^{-\bar{\delta}^{*}(\tau)} S(0)$$

$$\bar{\delta}^{*}\left( au
ight)-\bar{\delta}\left( au
ight)=lpha\int_{0}^{ au}\left[\left(1- heta
ight)n_{2}\left(z
ight)+ heta n_{0}\left(z
ight)\right]dz\geq0$$

#### Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left(\tau\right)$ Gain from trade as perceived by lender:  $(1-\theta) S\left(\tau\right)$ 

Planner

- $\delta^*(\tau) \ge \delta(\tau)$  for all  $\tau \in [0, T]$ , with "=" only for  $\tau = 0$ 
  - $\Rightarrow$  The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^*(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left( au 
ight)$ 

Gain from trade as perceived by lender:  $(1-\theta)\,S\,( au)$ 

• Planner:

- $\delta^*(\tau) \ge \delta(\tau)$  for all  $\tau \in [0, T]$ , with "=" only for  $\tau = 0$ 
  - $\Rightarrow$  The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^*(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left( au 
ight)$ 

Gain from trade as perceived by lender:  $(1 - \theta) S(\tau)$ 

Planner:

- $\delta^*(\tau) \ge \delta(\tau)$  for all  $\tau \in [0, T]$ , with "=" only for  $\tau = 0$ 
  - ⇒ The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^*(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left( au 
ight)$ 

Gain from trade as perceived by lender:  $(1 - \theta) S(\tau)$ 

Planner:

- $\delta^{*}\left(\tau\right)\geq\delta\left(\tau\right)$  for all  $\tau\in\left[0,T\right]$ , with "=" only for  $\tau=0$ 
  - ⇒ The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^{*}(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left( au 
ight)$ 

Gain from trade as perceived by lender:  $(1 - \theta) S(\tau)$ 

Planner:

- $\delta^{*}\left(\tau\right)\geq\delta\left(\tau\right)$  for all  $\tau\in\left[0,T\right]$ , with "=" only for  $\tau=0$ 
  - $\Rightarrow$  The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^*(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

Equilibrium:

Gain from trade as perceived by borrower:  $\theta S\left( au 
ight)$ 

Gain from trade as perceived by lender:  $(1 - \theta) S(\tau)$ 

Planner:

- $\delta^{*}\left(\tau\right)\geq\delta\left(\tau\right)$  for all  $\tau\in\left[0,T\right]$ , with "=" only for  $\tau=0$ 
  - $\Rightarrow$  The planner "discounts" more heavily than the equilibrium
  - $\Rightarrow S^*(\tau) < S(\tau)$  for all  $\tau \in (0,1]$
  - ⇒ Social value of loan < joint private value of loan

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if 
$$(1 - \theta) S(\tau) > S^*(\tau)$$

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if 
$$(1 - \theta) S(\tau) > S^*(\tau)$$

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners
- These "liquidity provision services" to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs
- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner's problem:

E.g., too high if 
$$(1 - \theta) S(\tau) > S^*(\tau)$$

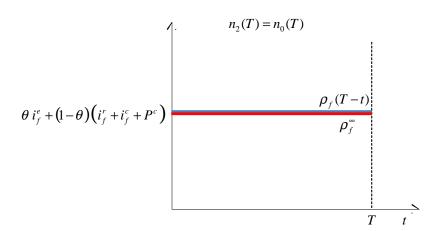
### Frictionless limit

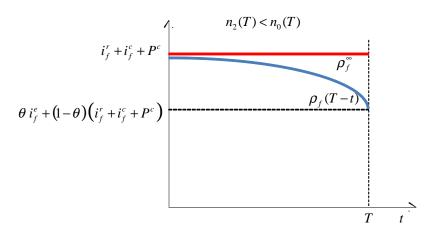
#### **Proposition**

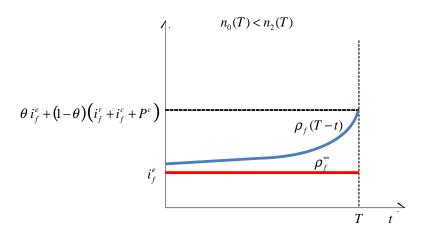
Let 
$$Q \equiv \sum_{k=1}^{K} k n_k (T) = 1 + n_2 (T) - n_0 (T)$$
.

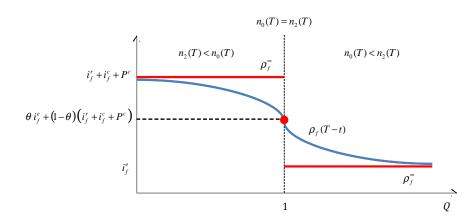
For 
$$\tau \in [0, T]$$
,

$$\rho^{\infty}\left(\tau\right) = \left\{ \begin{array}{ll} r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{1} - u_{0}}{r} + e^{-r\tau}\left(U_{1} - U_{0}\right)\right]}{\tau + \Delta} & \text{if } Q < 1 \\ r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{1} - u_{0} - \theta \bar{u}}{r} + e^{-r\tau}\left(U_{1} - U_{0} - \theta S(0)\right)\right]}{\tau + \Delta} & \text{if } Q = 1 \\ r + \frac{\ln\left[\left(1 - e^{-r\tau}\right) \frac{u_{2} - u_{1}}{r} + e^{-r\tau}\left(U_{2} - U_{1}\right)\right]}{\tau + \Delta} & \text{if } 1 < Q. \end{array} \right.$$









# Small-scale simulations: $\mathbb{K} = \{0, 1, 2\}$

$$\bar{k}=1$$

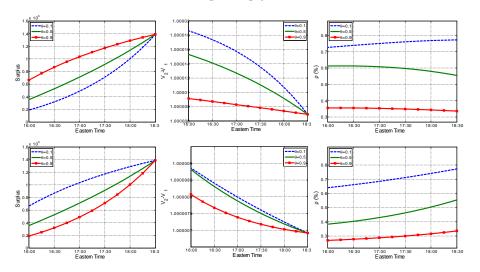
#### Two scenarios

| $\left\{ n_{0}^{H}\left( T\right) ,n_{2}^{L}\left( T\right) \right\}$ | $\left\{ \mathit{n}_{0}^{\mathit{L}}\left(\mathit{T}\right)$ , $\mathit{n}_{2}^{\mathit{H}}\left(\mathit{T}\right)\right\}$ |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| {0.6, 0.3}                                                            | {0.3, 0.6}                                                                                                                  |

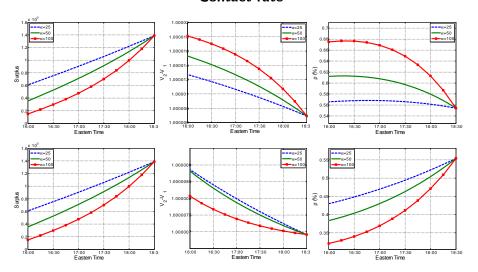
### Experiments

| Bargaining Power $(	heta)$ |     | Discount Rate $(i_f^w)$ |              |              | Contact Rate $(\alpha)$ |    |    |     |
|----------------------------|-----|-------------------------|--------------|--------------|-------------------------|----|----|-----|
| 0.1                        | 0.5 | 0.9                     | .0050<br>360 | .0075<br>360 | .0100<br>360            | 25 | 50 | 100 |

#### **Bargaining** power



#### Contact rate



#### **Discount-Window lending rate**

