The Joint Determination of TFP and Financial Sector Size

Christian Bauer (LMU Munich) José V. Rodríguez Mora (University of Edinburgh and CEPR)

September 21, 2012

Summary (1/2)

- Introduction → →
- Contribution I →
- Contribution II
- Model: General Environment
- Production Function →
- Frictions in the credit market —
- Bellman Equations —
- Bargaining → →
- Equilibrium Conditions 🛶

 - No Arbitrage between professions
 - Threshold of Productivity
 - Capital Market Clearing —
 - Output determination —
- Equilibrium Characterization and Solution
- Capital Irrelevance 🛶
- \bullet Effects of frictions in the investment sector \twoheadrightarrow

Summary (2/2)

- \bullet Effects of the destruction rate \twoheadrightarrow
- The degree of product market efficiency
- Example →
- TFP and the size of the financial sector
- Conclusions →

- Misallocation of resources to explain TFP differences across countries.
 - Extensive Margin (too many firms)
 - Intensive Margin (bad firms using too many resources)
 - Hopenhayn..., HsiehKlenow09, RestucciaRogerson08, etc.

- Misallocation of resources to explain TFP differences across countries.
 - Extensive Margin (too many firms)
 - Intensive Margin (bad firms using too many resources)
 - Hopenhayn..., HsiehKlenow09, RestucciaRogerson08, etc.
 - Via Capital Market Imperfections

- Misallocation of resources to explain TFP differences across countries.
 - Extensive Margin (too many firms)
 - Intensive Margin (bad firms using too many resources)
 - Hopenhayn..., HsiehKlenow09, RestucciaRogerson08, etc.
 - Via Capital Market Imperfections
- Search Frictions for modeling non-Walrasian features of investment markets

• WasmerWeil04, SilveraWright10, WangBesciLi05, denHaanetal03, Dell'AricciaGaribaldi05)

• Information frictions, time usage, creditor-borrower relationships...

- Misallocation of resources to explain TFP differences across countries.
 - Extensive Margin (too many firms)
 - Intensive Margin (bad firms using too many resources)
 - Hopenhayn..., HsiehKlenow09, RestucciaRogerson08, etc.
 - Via Capital Market Imperfections
- Search Frictions for modeling non-Walrasian features of investment markets

• WasmerWeil04, SilveraWright10, WangBesciLi05, denHaanetal03, Dell'AricciaGaribaldi05)

- Information frictions, time usage, creditor-borrower relationships...
- We build a model of Misallocation
 - Endogenizing the degree of imperfections in Capital Markets
 - via **Search frictions**

Contribution I

- We impose aggregate resource constraints on
 - Capital, and
 - Human Resources
 - for financial intermediation
 - or directly productive activities

Contribution I

- We impose aggregate resource constraints on
 - Capital, and
 - Human Resources
 - for financial intermediation
 - or directly productive activities
- **Trade-off** in usage of labor:
 - Society endogenously determines the severeness of frictions.
 - More human resources into intermediation imply:
 - A Sacrifice:
 - Resources not used in directly productive activities.
 - A Gain:
 - Finding finance less of an obstacle for entrepreneurs.

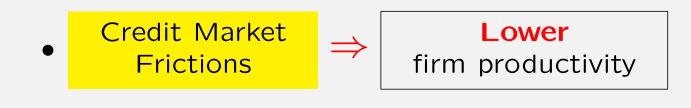
Contribution I

- We impose aggregate resource constraints on
 - Capital, and
 - Human Resources
 - for financial intermediation
 - or directly productive activities
- **Trade-off** in usage of labor:
 - Society endogenously determines the severeness of frictions.
 - More human resources into intermediation imply:
 - A Sacrifice:
 - Resources not used in directly productive activities.
 - A Gain:
 - Finding finance less of an obstacle for entrepreneurs.
- Irrelevance of Capital Abundance. For financial sector size.

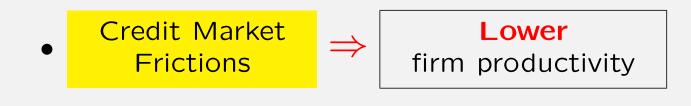
Bidirectional relationship between efficiency of finance and production sectors.

Bidirectional relationship between efficiency of finance and production sectors.

Bidirectional relationship between efficiency of finance and production sectors.

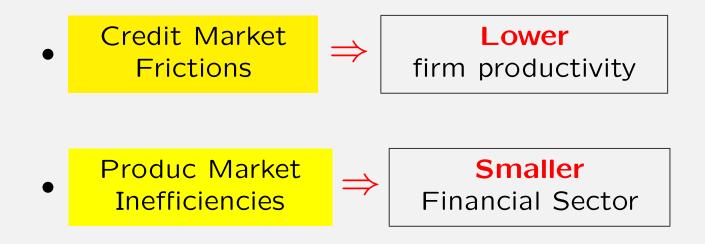


Bidirectional relationship between efficiency of finance and production sectors.



Produc Market Inefficiencies

Bidirectional relationship between efficiency of finance and production sectors.



Bidirectional relationship between efficiency of finance and production sectors.

Bidirectional relationship between efficiency of finance and production sectors.

To explain cross countries differences in Productivities and GDP (TFP):
 Underliving differences in Product Market Efficiency

Bidirectional relationship between efficiency of finance and production sectors.

- To explain cross countries differences in Productivities and GDP (TFP):
 Underliving differences in Product Market Efficiency
- Rich countries are rich and have a larger financial sector because they have more efficient product markets
 - Not because more efficient financial sector.

- Deposit Market:
 - Walrasian.
 - market return r.
 - Inelastic supply \overline{k}

• Investment Market:

- time to find finance.
- Search frictions
- heterogeneous projects
- specific evaluators
 - \sim different beliefs

- Deposit Market:
 - Walrasian.
 - market return r.
 - Inelastic supply \overline{k}

• Investment Market:

- time to find finance.
- Search frictions
- heterogeneous projects
- specific evaluators
 - \sim different beliefs

Two Professions:

- Entrepreneurs:
 - Access to Production projects.
 - $a \sim G(a)$ uncertain.
 - Project: F(k, a, Y)
 - No access to capital.
- Brokers:
 - Access to Deposit Room
 - Needed for revealing a
 - Only acts at firm formation.

- Deposit Market:
 - Walrasian.
 - market return r.
 - Inelastic supply \overline{k}

• Investment Market:

- time to find finance.
- Search frictions
- heterogeneous projects
- specific evaluators
 - \sim different beliefs

Two Professions:

- Entrepreneurs:
 - Access to Production projects.
 - $a \sim G(a)$ uncertain.
 - Project: F(k, a, Y)
 - No access to capital.
- Brokers:
 - Access to Deposit Room
 - Needed for revealing a
 - Only acts at firm formation.
- OK, plus K owners

- Deposit Market:
 - Walrasian.
 - market return r.
 - Inelastic supply \overline{k}

• Investment Market:

- time to find finance.
- Search frictions
- heterogeneous projects
- specific evaluators
 - \sim different beliefs

Two Professions:

- Entrepreneurs:
 - Access to Production projects.
 - $a \sim G(a)$ uncertain.
 - Project: F(k, a, Y)
 - No access to capital.
- Brokers:
 - Access to Deposit Room
 - Needed for revealing *a*
 - Only acts at firm formation.
- OK, plus K owners

Production Function

• F(k; a, Y)

- $F_k(k; a, Y) > 0$, $F_a(k; a, Y) > 0$, $F_{ka}(k; a, Y) > 0$, $F_{kk}(k; a, Y) < 0$
- Y measure of aggregate demand or market size.
 - We may well have $F_Y = 0$ (neoclassical)
- Each unit of capital gets rent r
- Profit generated by a project
 - $\pi(a, r, Y) = \max_k \{F(k, a, Y) rk\},\$
 - Capital demand $\frac{k^d(a,r)}{k}$.
- F(k, a, Y) is log linear in k, a, and Y

$$\pi(a, r, Y) = (1 - e_k) e_k^{\frac{e_k}{1 - e_k}} a^{\frac{e_a}{1 - e_k}} r^{-\frac{e_k}{1 - e_k}} Y^{\frac{e_y}{1 - e_k}}$$
$$\frac{rk^d(a, r, Y)}{\pi(a, r, Y)} = \frac{e_k}{1 - e_k}$$

• e_k , e_a and e_y are the (constant) elasticities.

Frictions in the credit market

- Brokers ease frictions in the market
 - the more there are,
 - the less time it takes for a manager to obtain funding.
 - Resource constraint:
 - If they are brokers, they are not entrepreneurs.
- A broker may have relationships with many entreps.
 - Once she meets an entrep. move on to look for another.
- Tightness: $\theta = \frac{\text{mass of searching entrepreneurs}}{\text{mass of brokers}}$
- Rate at which entreps. meet brokers: $\frac{p(\theta, \nu)}{\rho(\theta, \nu)}$, $\frac{\frac{\partial p(\theta, \nu)}{\partial \theta} < 0}{\frac{\partial p(\theta, \nu)}{\partial \theta}}$
 - e.g., with ν an exog. efficiency parameter $p(\theta, \nu) = \nu \theta^{-\alpha}$
- CRS matching: for brokers $\theta p(\theta, \nu)$
- Jointly learn productivity (a)
 - Threshold productivity b

Bellman Equations

- Death rate δ equals discount (and replacement)
- Entrepreneurs. Two states:

$$\delta V_0 = p(\theta) \int_b^\infty [V_1(a) - V_0] \, dG(a)$$

$$\delta V_1(a, r, Y) = \pi(a, r, Y) - \rho(a, r, Y)$$

•
$$\rho(a,r) \equiv$$
 annuity of the payment to broker.

• continuation value of being a broker (B) solves:

$$\delta B = \theta p(\theta) \int_{b}^{\infty} \Gamma(a) \, dG(a) \, ,$$

with $\Gamma(a) = \frac{\rho(a,r,Y)}{\delta}$.

Bargaining (1/2)

- If a > b: Bilateral Monopoly. Nash bargaining
 - entreps.' bargaining weight $\beta \in (0,1)$

$$\beta S(a) = V_1(a) - V_0$$
$$(1 - \beta) S(a) = \Gamma(a)$$

- Outside options
 - Broker: zero
 - No satiation
 - Looks for new customer indep. of bargaining result.
 - Entrepreneur: Get new project
 - can NOT use the info acquired from broker.
 - Bargain on "schedule" ex-ante.
- This gives payment: $\rho(a, r, Y) = (1 \beta) \{\pi(a, r, Y) \delta V_0\}$
- Broker accesses deposit market & extracts capital for project.
 - The efficient capital demand.

• $V_0 \equiv PDV$ of future income.

$$\delta V_0 = \frac{p(\theta) \left[1 - G(b)\right]}{\delta + p(\theta) \left[1 - G(b)\right]} \times \frac{\frac{\beta}{1 - \beta}}{\frac{\beta}{1 - \beta} + \frac{\delta}{\delta + p(\theta) \left[1 - G(b)\right]}} \times \int_b^\infty \pi(a, r, Y) \frac{dG(b)}{1 - G(b)} \tag{1}$$

- $\left(\frac{\delta}{\delta + p(\theta)[1 G(b)]}\right)$ percentage of time searching
- $\left(\int_{b}^{\infty} \pi(a, r, Y) \frac{dG(b)}{1-G(b)}\right)$ expected income flow of project with a > b.

•
$$\left(\frac{\frac{\beta}{1-\beta}}{\frac{\beta}{1-\beta}+\frac{\delta}{\delta+p(\theta)[1-G(b)]}}\right)$$
 sha

share of this income for entrepreneur.

• The value of a broker:

$$\delta B = \frac{\theta p(\theta) [1 - G(b)]}{\delta + \theta p(\theta) [1 - G(b)]} \frac{\frac{1 - \beta}{\beta}}{\frac{1 - \beta}{\beta} + \frac{\delta}{\delta + \theta p(\theta) [1 - G(b)]}} \times \int_{b}^{\infty} \pi(a, r, Y) \frac{dG(b)}{1 - G(b)}$$

- $m \equiv$ number of entrepreneurs.
- endogenous variables: $\{\theta, m, r, b, Y\}$.
- The equilibrium conditions:
 - Human Resource Constraint: $\theta = \frac{\text{searching entrep}}{1-m}$
 - No Arbitrage between professions: $V_0 = B$
 - Threshold of Productivity: b : S(b) = 0
 - Capital Market Clearing: $K^d(r, b, m) = \overline{k}$
 - Output determination Aggregate demand equals output.

•
$$\theta = \frac{\delta}{\delta + p(\theta)[1 - G(b)]} \frac{m}{1 - m}$$
. Substituting:

$$1 - m = \frac{\delta}{\theta \left[\delta + p(\theta, \nu) \left(1 - G(b)\right)\right] + \delta}$$

- more human resources devoted to financial activities \Rightarrow larger b.
- Given θ , if b increases, the number of rejections also increases,
 - the share of *searching* entrepreneurs also increases,
 - increase in size of the financial sector to keep θ constant.
- Larger financial sector allows society to be pickier in quality of projects

Finance does not produce output directly,

- Allows to improve productivity of firms
- by reducing the opportunity cost of searching for better projects.

No arbitrage between professions pins down credit market tightness

 $V_0 = B \quad \Rightarrow \quad \theta = \frac{\beta}{(1-\beta)}$

- θ depends only on the bargaining power. Independent of b
- Entrepreneur and broker care only about **expected** incomes.
 - Time searching compensates for share of the deal
 - Independently of **size** of the deal
- More (β) , better for entrep.
 - Longer search to equalize value across activities.
- 2 ways of decreasing θ (ratio searching entrepreneurs to brokers).
 - Increasing the number of brokers (more finance/GDP)
 - Increasing the threshold of productivity
 - Smaller numerator via more rejections.

• $b: \quad S(b) = 0 \quad \Leftrightarrow \quad \delta V_1(b) = \delta V_0$

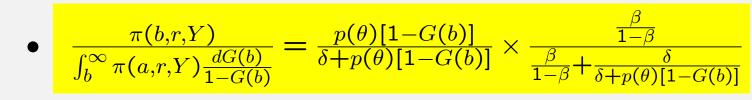
because continuation value of broker independent of events in match

$$\delta V_1(a) = \delta V_0 + \beta \left[\pi(a, r, Y) - \delta V_0 \right]$$

- projects accepted if profits that they generate are larger than the value of going back into search.
- b is such that $\pi(b,r,Y) = \delta V_0$

$$\frac{\pi(b,r,Y)}{\int_b^\infty \pi(a,r,Y)\frac{dG(b)}{1-G(b)}} = \frac{p(\theta)\left[1-G(b)\right]}{\delta + p(\theta)\left[1-G(b)\right]} \times \frac{\frac{\beta}{1-\beta}}{\frac{\beta}{1-\beta} + \frac{\delta}{\delta + p(\theta)\left[1-G(b)\right]}}$$

Threshold of Productivity (2/2)



- RHS: PDV of the share of the income that goes to the entrepreneurs.
 decreasing in b, and equals zero as it approaches its upper limit.
- LHS: ratio of marginal to average profits.

$$H(b,\epsilon) \equiv \frac{\pi (b,r,Y)}{\int_b^\infty \pi (a,r,Y) \frac{dG(a)}{1-G(b)}} = \frac{(b)^\epsilon}{\int_b^\infty (a)^\epsilon \frac{dG(a)}{1-G(b)}} \in (0,1)$$

where ϵ is the elasticity of profits to a: $\epsilon = \frac{e_a}{1 - e_k}$

- Intuitive $H(b,\epsilon)$ to be non-decreasing in b. Thus, assumption on G(.)
 - *H* is a non-decreasing function of *b*: $\frac{\partial H(b,\epsilon)}{\partial b} \ge 0$
 - Includes many (if not all) of the commonly used distributions.

•
$$K^d(r, b, m) = \overline{k}$$
.

$$\frac{p\left(\theta\right)\left[1-G\left(b\right)\right]}{\delta+p\left(\theta\right)\left[1-G\left(b\right)\right]}m\int_{b}^{\infty}k^{d}\left(a,r\right)\frac{dG\left(a\right)}{1-G\left(b\right)}=\bar{k}$$

$$\frac{p(\theta)\left[1-G(b)\right]}{\delta+p(\theta)\left[1-G(b)\right]}m\int_{b}^{\infty}\frac{e_{k}}{1-e_{k}}\pi(a,r,Y)\frac{dG(a)}{1-G(b)}=r\bar{k}$$
(2)

• average lifetime income equals the annuity of the profit of the marginal firm: $\delta V_0 = \pi(b, r)$

$$\delta V_0 = \frac{\beta p(\theta) [1 - G(b)]}{\delta + \beta p(\theta) [1 - G(b)]} \int_b^\infty \pi(a, r) \frac{dG(a)}{1 - G(b)}$$
(3)

$$Y = r\bar{k} + \frac{1}{\delta}\pi(b, r, Y) \tag{4}$$

The solution algorithm:

- Arbitrage pins down θ .
- Optimal Threshold pins b
- 1-m is obtained from the human resource constraint
- r and Y are residuals

Equilibrium Characterization and Solution (2/2) <

Result: The threshold of productivity *b* is the unique solution of:

$$\frac{(b)^{\epsilon}}{\int_{b}^{\infty} (a)^{\epsilon} \frac{dG(a)}{1-G(b)}} = \frac{p(\theta,\nu) \left[1-G(b)\right]}{\delta + p(\theta,\nu) \left[1-G(b)\right]} \times \frac{\frac{\beta}{1-\beta}}{\frac{\beta}{1-\beta} + \frac{\delta}{\delta + p(\theta,\nu) \left[1-G(b)\right]}}$$
(5)

Result: Given the value of b determined in result . The number of brokers in the economy (and the share of finance in GDP) is:

$$1 - m = (1 - \beta) (1 - H(b, \epsilon))$$
(6)

Result: Given b from result

$$r\bar{k} = \frac{e_k}{1 - e_k} \pi(b, r, Y)$$

$$Y = \left[\frac{e_k}{1 - e_k} + \frac{1}{\delta}\right] \pi(b, r, Y)$$
(7)

Furthermore, both r and Y are maximized whenever b is maximum

Result: The allocative decisions of the economy θ , m and b are independent of \overline{k} .

- To have more or less K (and thus r) does not affect the marginal to average profit ratio $(H(b,\epsilon))$,
- correlation across countries of income and financial sector size
 can not be simply because relative capital abundance.

Result: *b* and output are both increasing in the efficiency of the search process in the investment sector (ν). Furthermore, as ν approaches infinity the limit of *b* is its maximum possible value (or infinity if it is unbounded).

The number of brokers, (1-m) is decreasing with ν .

- Less frictions, More picky
 - smaller opportunity cost of back to search.
- Less frictions, Less brokers
 - They are not needed. Few get many matches.
- Walrasian Limit: $b = \overline{a}, m = 1$

Result: *b* is not increasing in δ , and strictly **decreasing** if $H(b, \epsilon)$ is strictly increasing in *b*.

The number of entrepreneurs does no decrease with δ , and strictly increase if $H(b,\epsilon)$ is strictly increasing in b.

- Less time before death ($\uparrow \delta$). Less picky
- but increase in brokers... because many newborns.
- Large destruction rate demands large finance sector.

Effects of the bargaining power

Result: There exists a value of β called $\hat{\beta} : 1 - \hat{\beta} = -\frac{\theta}{p(\theta,\nu)} \frac{\partial p(\theta,\nu)}{\partial \theta}$ such that $\hat{\beta}$ maximizes b (and thus, Y). If $\beta < \hat{\beta} \rightarrow \frac{db}{d\beta} > 0$, and if $\beta > \hat{\beta} \rightarrow \frac{db}{d\beta} < 0$.

An increase of β decreases 1 - m if $\beta < \hat{\beta}$. If the value of β is much larger than $\hat{\beta}$, it is possible than an increase of β might increase 1 - m

- β , contractual arrangements...
- β has two effects:
 - More "share" to entrep.
 - but increases her waiting time.
 - Get later
 - and less (outside option)
- like HOSIOS... it IS Hosios.
 - Congestion in search pool, interiorized if $\beta = \hat{\beta}$

The degree of product market efficiency (1/3) > \rightarrow \rightarrow

Result: The minimum productivity threshold b (and consequently Y) are increasing in the elasticity of profits to talent (ϵ), irrespectively of the shape of $H(b, \epsilon)$.

The number of brokers increases with ϵ .

- Productivity more important.
 - You are more picky about the quality of the projects you start.
 - More option value of looking for a better project.
- More picky. More projects rejected.
- More *searching* entrepreneurs
- More Brokers to service them (θ constant)

• Consider tax and transfer scheme (Benabou, 2002). The net profits of a firm are:

$$\widehat{\pi}(a,r) = \pi(a,r)^{1-\tau} \, \widetilde{\pi}^{\tau}$$

• τ : measures progressive redistribution between efficient and non-efficient firms

- $\tilde{\pi}$ is perceived by the agents as lump-sum
- Clearly, balanced budget requires:

$$\int_{b}^{\infty} \pi\left(a,r\right) \frac{dG\left(a\right)}{1-G\left(b\right)} = \int_{b}^{\infty} \hat{\pi}\left(a,r\right) \frac{dG\left(a\right)}{1-G\left(b\right)}$$

- In our environment τ measures allocative inefficiencies in the economy.
 - Higher τ transfers profitability from efficient to inefficient firms

• τ decreases elasticity of profits to productivity:

$$H(b,\epsilon,\tau) = \frac{\widehat{\pi}(b,r)}{\int_b^\infty \widehat{\pi}(a,r) \frac{dG(a)}{1-G(b)}} = \frac{(b)^{\epsilon(1-\tau)}}{\int_b^\infty a^{\epsilon(1-\tau)} \frac{dG(a)}{1-G(b)}}$$

Result: A decrease of the allocative inefficiencies of the product sector (decrease of τ) produces larger steady state values of b and Y and a decrease of m

- More efficient treatment of firms. More Picky
- ... and more brokers.

- $F(a, K, Y) = 2\sqrt{aK}$
- 1τ measures the efficiency of the productive sector.
- a follows a Pareto with minimum value \underline{a} and parameter γ

$$\pi(a,r) = \frac{a}{r}; \quad k^d(a,r) = \frac{a}{r^2}; \quad \hat{\pi}(a,r) = \left(\frac{a}{r}\right)^{1-\tau} \tilde{\pi}^\tau; \quad \tilde{\pi} = \left(\frac{\gamma - (1-\tau)}{\gamma - 1}\right)^{\frac{1}{\tau}} b$$

$$\left(H(b,1-\tau)=\frac{\gamma-(1-\tau)}{\gamma}\right)$$

Result:

There exists a level of taxes
$$\tilde{\tau} = \frac{1 - (\gamma - 1)\frac{1}{\beta} \frac{\delta}{p(\frac{\beta}{1 - \beta}, \nu)}}{1 + \frac{1}{\beta} \frac{\delta}{p(\frac{\beta}{1 - \beta}, \nu)}} \in (0, 1)$$
 such that

$$1 - G(b) = \begin{cases} 1 + \frac{1}{\beta} \frac{\delta}{p\left(\frac{\beta}{1-\beta},\nu\right)} \frac{\tau+\gamma-1}{1-\tau} & \text{if } \tau \leq \tilde{\tau} \\ 1 & \text{if } \tilde{\tau} \leq \tau \end{cases}$$
$$b = \begin{cases} \frac{a}{2} \left[\beta \frac{p\left(\frac{\beta}{1-\beta},\nu\right)}{\delta} \frac{1-\tau}{\tau+\gamma-1}\right]^{\frac{1}{\gamma}} & \text{if } \tau \leq \tilde{\tau} \\ \frac{a}{2} & \text{if } \tilde{\tau} \leq \tau \end{cases}$$
$$1 - m = \begin{cases} (1 - \beta) \frac{1-\tau}{\gamma} & \text{if } \tau \leq \tilde{\tau} \\ (1 - \beta) \frac{1-\tau}{\gamma} & \text{if } \tilde{\tau} \leq \tau \end{cases}$$
$$1 + \beta \frac{p\left(\frac{\beta}{1-\beta},\nu\right)}{\delta} & \text{if } \tilde{\tau} \leq \tau \end{cases}$$

 $\checkmark \checkmark \checkmark \checkmark \checkmark$

(8)

From where TFP, r and income:

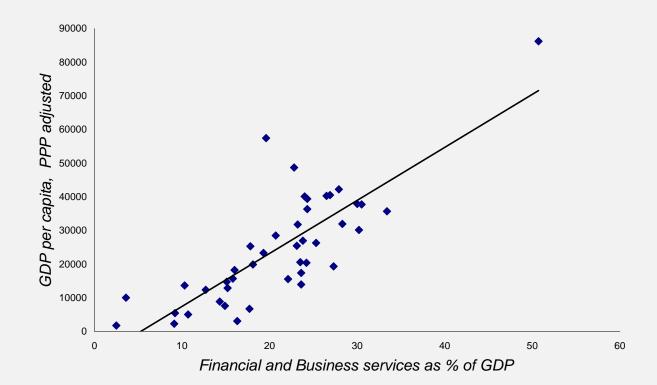
$$A = \begin{cases} b\left(1 + \frac{\tau}{\gamma - 1}\right) = \underline{a} \left[\beta \frac{p\left(\frac{\beta}{1 - \beta}, \nu\right)}{\delta} \frac{1 - \tau}{\tau + \gamma - 1}\right]^{\frac{1}{\gamma}} \left(1 + \frac{\tau}{\gamma - 1}\right) & \text{if } \tau \leq \tilde{\tau} \\ \\ \underline{a} \frac{\gamma}{\gamma - 1} \frac{\beta \frac{p\left(\frac{\beta}{1 - \beta}, \nu\right)}{\delta}}{1 + \beta \frac{p\left(\frac{\beta}{1 - \beta}, \nu\right)}{\delta}} & \text{if } \tilde{\tau} \leq \tau \end{cases}$$

$$r = \frac{\sqrt{A}}{\sqrt{\overline{k}}}$$
$$Y = 2\sqrt{A}\sqrt{\overline{k}}$$

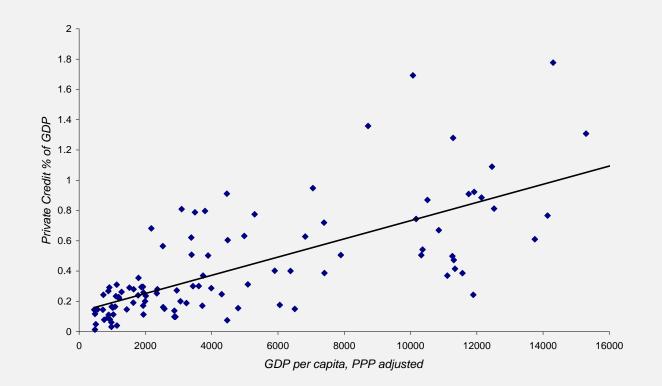
$$A = \begin{cases} b\left(1 + \frac{\tau}{\gamma - 1}\right) = \underline{a}\left[\beta \frac{p\left(\frac{\beta}{1 - \beta}, \nu\right)}{\delta} \frac{1 - \tau}{\tau + \gamma - 1}\right]^{\frac{1}{\gamma}} \left(1 + \frac{\tau}{\gamma - 1}\right) & \text{if } \tau \leq \tilde{\tau} \\ \underline{a} \frac{\gamma}{\gamma - 1} \frac{\beta \frac{p\left(\frac{\beta}{1 - \beta}, \nu\right)}{\delta}}{1 + \beta \frac{p\left(\frac{1 - \beta}{1 - \beta}, \nu\right)}{\delta}} & \text{if } \tilde{\tau} \leq \tau \end{cases}$$

- Less frictions in finance, $\uparrow \nu \rightarrow \uparrow A$ via two different mechanisms.
 - More efficient firms $(\uparrow b)$,
 - but also makes them smaller $(\uparrow m) \rightarrow \uparrow$ productivity of capital.
- More efficient product sector $(\downarrow \tau)$: effects in opposite directions.
 - $\uparrow b \Rightarrow \uparrow A$ via selection.
 - But, $\downarrow m \Rightarrow$ Larger firms \Rightarrow More capital per firm $\Rightarrow \downarrow A$
 - First effect dominates, always.

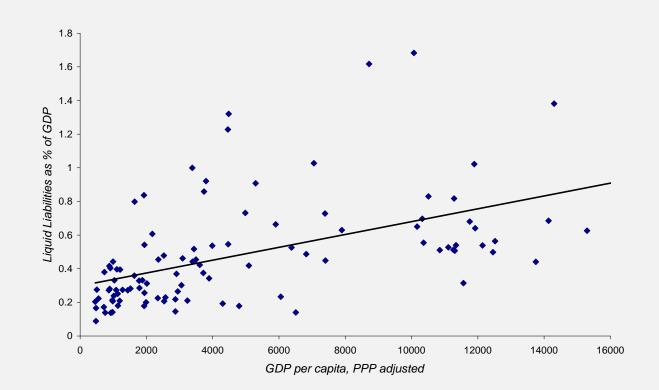
- Cross country evidence: Positive correlation (1 m) with A.
- Traditional Explanation: Shchumpeterian, King and Levine (1993)
 - Better finance, more growth



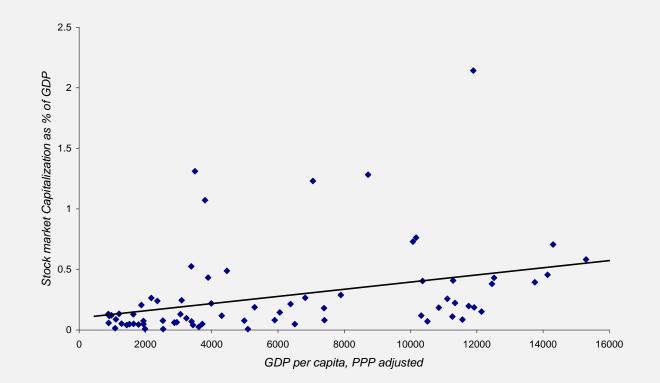
[Financial and Business Services as % of GDP.]



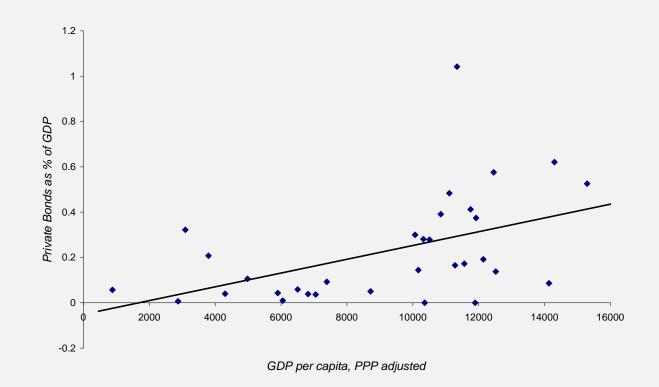
[Claims on private sector by deposit money banks and other financial institutions as % of GDP]



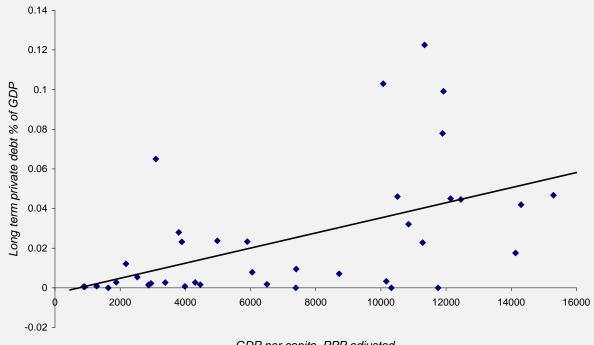
[Liquid liabilities as % of GDP]



[Stock Market capitalization as % of GDP]



[Outstanding domestic debt securities issued by private domestic entities divided by GDP]



GDP per capita, PPP adjusted

[Total private long-term debt issues as % of GDP]

TFP and the size of the financial sector (8/9) *≤* →

- The level of capital does not seem to affect the relationship
- Neusser and Kugler (1998)
 - Finance size cointegrated with TFP in manufacturing
 - not with output
 - They find evidence of reverse causality.
- In our model:
 - Differences in ν would produce **negative** correlation.
 - Differences τ would produce positive correlation.
 - Contractual inefficiencies (β) can explain both only if they mean that there is too little power to brokers, and not in Pareto-World

Result: Model suggest that the rich countries are rich and have a larger financial sector because their product sectors have more allocative efficiency, not because they have a more efficient financial sector.

- Tractable model.
 - Capital Irrelevant.
- Less frictions in financial markets
 - More income
 - Less dispersion of firm characteristics
 - LESS financial sector
- More destruction (here not creative, but perhaps...)
 - Less income.
 - More dispersion
 - More financial sector.
- There can be Too much or too little contractual power into finance.
- Efficiency in Product Market delivers
 - More income
 - Less dispersion
 - More finance
- Compatible with data if differences across countries are derived mostly from inefficiencies in product markets, not in financial markets.

The Joint Determination of TFP and Financial Sector Size

Christian Bauer (LMU Munich) José V. Rodríguez Mora (University of Edinburgh and CEPR)

September 21, 2012

