Unemployment and Market Size

Martin Ellison, Godfrey Keller, Kevin Roberts and Margaret Stevens University of Oxford

Matching function

- Rate at which firms and workers meet is a function of number of agents on each side of market
- Naturally depends on market tightness
- May also depend on market size
- Dominant equilibrium random matching model rules out market size effects by assuming constant RTS in matching, e.g. Pissarides (2000)
- We follow Diamond (1982) and allow non-constant RTS

Empirical evidence

- Pissarides (1986), Layard, Nickell and Jackman (1991), van Ours (1991) find constant RTS
- Burda and Wyplosz (1995) and Berman (1997) find decreasing RTS
- Blanchard and Diamond (1990), Warren (1996), Yashiv (2000) find increasing RTS
- Evidence from disaggregated markets similarly mixed

Dynamics under constant RTS

- Dynamic behaviour of Pissarides model very simple
- Unemployment evolves slowly away from steady state but market size does not matter
- Reservation wage, market tightness and job-finding rate all remain constant at equilibrium values
- High frequency shock to productivity or other parameters needed to match observed dynamic variation in job-finding rates, Shimer (2005)
- Turnover dynamics are irrelevant as unemployment closely tracks its steady-state level, Hall (2005)

Matching technology

- Aggregate search activity m(u, v)
- m(u, v) homogeneous of degree 1.
- Elasticities of search activity wrt u and v are α and 1α .
- $\Phi(m)$ converts aggregate search activity activity into matching

$$M = \Phi(m(u, v))$$

- Elasticity of matching wrt activity is $\eta(m) = rac{m \Phi'(m)}{\Phi(m)}$
- $\bullet~{\sf RTS}$ decreasing, constant or increasing for $\eta<{\rm 1},\eta={\rm 1},\eta>{\rm 1}$

Agents

- ullet All agents infinitely lived with common discount rate ho
- Many firms, each with single potential job
- Constant population of workers
- At each instant worker is either employed (matched to firm) or unemployed (receiving unemployment income normalised to zero)

Employment

- Firm maintaining a vacancy incurs constant flow cost c
- Firm with no employee creates and maintains a vacancy if PDV of doing so is positive
 - Perfectly supply of vacancies at zero profit
- Match productivity stochastic employed worker produces constant flow of output *x*
- x is a random variable realised when worker and firm meet
- Match formation entails instantaneous cost K
 - Not all matches are consummated. If productivity is low agents may prefer to search for better match
- $\bullet\,$ Matches destroyed exogenously at constant rate $\delta\,$

Reservation productivity

- Y(x, t) expected PDV of being matched at t
- $V_u(t)$ expected PDV of being unemployed at t
- Assume all matches maintained until exogenously destroyed
- Match consummated if

$$Y(x-(\rho+\delta)K,t_0)\geq V_u(t_0)$$

Match acceptable to worker if

$$y \equiv x - (\rho + \delta)K \ge z(t)$$

• y is net productivity, z(t) is reservation net productivity

Expected surplus from meeting

- $y \sim G(y)$ with supremum \bar{y}
- Probability that match is acceptable

$$\pi(z) \equiv P(y \ge z) = 1 - G(z)$$

• Expected productivity of accepted match

$$E(y | y \ge z) = z + h(z)$$
 $h(z) = \frac{1}{\pi(z)} \int_{z} (1 - G(y)) dy$

• Expected surplus from meeting

$$E\left[\max(Y(y) - Y(z), 0)\right] = \frac{h(z)\pi(z)}{\rho + \delta} = S(z)$$

• Match surplus shared β_1 to worker, β_2 to firm

Equilibrium conditions

• Arbitrage equations

$$\rho Y = x + \delta(V_u - Y) + \frac{\partial Y}{\partial t}$$
$$\rho V_u = \lambda \beta_1 S(z) + \frac{\partial V_u}{\partial t}$$

• Reservation net productivity

$$\frac{1}{\rho+\delta}\frac{dz}{dt} + \frac{\partial Y}{\partial t} = \frac{\partial V_u}{\partial t}$$

Free entry condition

$$\theta c = \lambda \beta_2 S(z)$$

• Unemployment dynamics

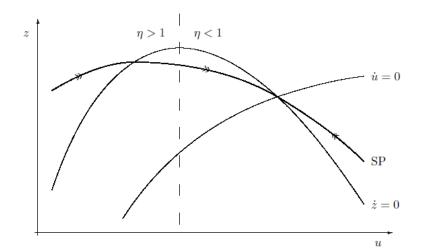
$$\dot{u} = \delta(1-u) - \lambda \pi(z)u$$

Local dynamics

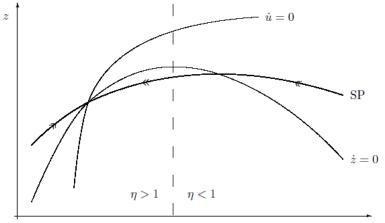
$$\begin{split} \dot{u} &= \delta(1-u) - \lambda \pi(z)u \\ \dot{z} &= (\rho + \delta)(z - \lambda \beta_1 S(z)) \\ \theta c &= \lambda \beta_2 S(z) \end{split}$$

- Saddlepath stability requires decreasing returns to vacancy creation $\alpha \eta(\textit{m}^*) < 1$
- ullet Saddlepath locally downward sloping if decreasing RTS $\eta < 1$
- \bullet Saddlepath locally upward sloping if increasing RTS $\eta>1$

Decreasing RTS



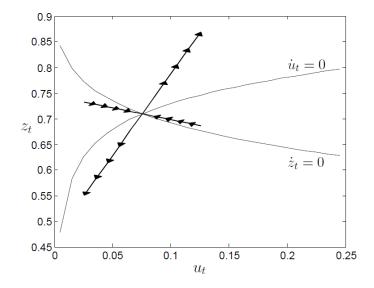
Increasing RTS



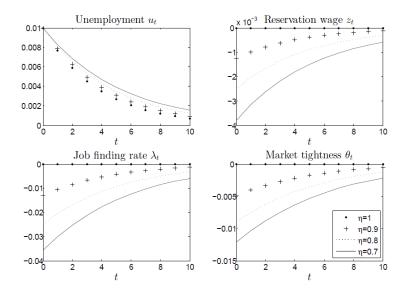
Dynamic adjustment

- Start at steady state in an equilibrium with decreasing RTS
- Assume exogenous job destruction shock causes $u\uparrow$
- ullet Increase in search activity makes matching less efficient $\lambda\downarrow$
- Workers jump to saddlepath $z\downarrow$
- $v \uparrow \mathsf{but} \ \theta \downarrow$
- Output per employee \downarrow
- As $u \downarrow$ get $v \downarrow z \uparrow \lambda \uparrow \theta \uparrow$

Quantitatively



Quantitatively



Implications for market tightness and job finding rate

- Decreasing RTS help explain procyclicality of θ and λ documented by Shimer (2005) for US data
- If constant RTS need shifts in steady state to explain θ and λ
- In the model v ↑ as u ↑ so still need productivity shocks to get a Beveridge curve, as argued by Shimer (2005)
- v does not ↑ one-for-one with u so easier for productivity shocks to generate Beveridge curve

Implications for adjustment dynamics

• Hall (2005) estimates "equilibrium" unemployment rate by

$$u_t^* = rac{\delta}{\delta + \lambda_t}$$

- Constant RTS imply λ_t constant and u_t^* is steady state
- Hall interprets $u_t \approx u_t^*$ as evidence that dynamic adjustment irrelevant
- Decreasing RTS imply λ_t not constant and u_t^* is not steady state
- u_t and u_t^* move together in return to steady state
- $u_t \approx u_t^*$ not evidence that dynamic adjustment irrelevant

Further results

- Dynamics with multiple equilibria
- When multiple equilibria exist, steady-state welfare increases with market size
- Generalised Hosios condition

A decentralised equilibrium path is a local welfare optimum iff $\beta_1 = \eta_u$, $\beta_2 = \eta_v$ and $\frac{m\Phi''}{\Phi} < \frac{1-\alpha}{\alpha\sigma}$

• Endogenous participation

Conclusions

- Constant RTS not well supported by empirical evidence
- Extension of standard model to non-constant RTS is tractable
- Simple and intuitive steady-state and dynamic properties
- Size matters decentralised markets can have stable equilibria with decreasing or increasing RTS
- Allowing for market size means adjustment dynamics important
- Helps to explain evolution of labour market variables