Technological Change and the Evolution of Finance

Robin Doettling and Enrico Perotti

Gene Ambrocio

Bank of Finland

22 October

《曰》 《聞》 《臣》 《臣》 三臣

Question and Contribution

- Ties together three trends as result of technological innovation
 - Promotes intangible capital investment with less need for external financing
 - Lowers interest rates and raises land prices
 - Raises the skill premium and leads to larger mortgages and defaults

 Introduces costly foreclosures and suggests LTV limits (even in the absence of this social cost)

Comments

- 1. Efficiency of the competitive equilibrium
- 2. Nature of default risk and public policy
- 3. Debt backed by collateral (Land or Capital)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Model

• Rents decomposition: $Y = (H^{\alpha}h^{1-\alpha})^{\eta}(K^{\alpha}l^{1-\alpha})^{1-\eta}$

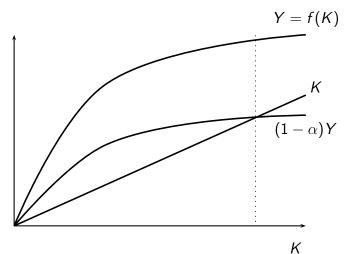
► FOC:
$$p_t = \frac{1}{r_t} \left[v'(L) + p_{t+1} - p_t \right] \Rightarrow p = \frac{v'(L)}{f'(K)}$$

• Credit market clearing: $(1 - \alpha)Y = pL + K$

Model

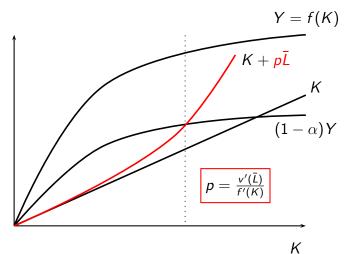
• Rents decomposition: $Y = (H^{\alpha}h^{1-\alpha})^{\eta}(K^{\alpha}l^{1-\alpha})^{1-\eta}$

$$\begin{array}{ll} \text{Skill premium} & \begin{cases} (1-\alpha)\eta & \text{Skilled share} \\ (1-\alpha)(1-\eta) & \text{Unskilled share} \end{cases}$$

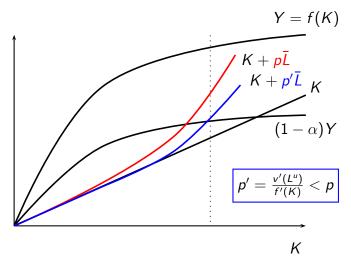

$$\text{External finance} & \begin{cases} \alpha\eta & \text{Entrep share} \\ \alpha(1-\eta) & \text{Capital share} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FOC:
$$p_t = \frac{1}{r_t} \left[v'(L) + p_{t+1} - p_t \right] \Rightarrow p = \frac{v'(L)}{f'(K)}$$


• Credit market clearing: $(1 - \alpha)Y = pL + K$

Recall Y = f(H, h, K, l)


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall Y = f(H, h, K, l)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Recall Y = f(H, h, K, l)

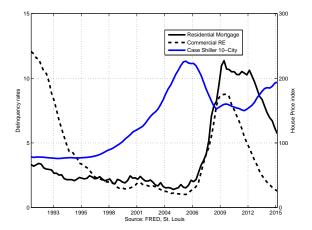
◆□> ◆□> ◆三> ◆三> ◆三> ●のへで

- Land crowds out investment in capital and reduces the gains from technological innovation
- Intangible capital is in fixed supply and cannot be externally financed - cannot absorb savings.
- Regardless of defaults, policies which reduce the price of land and channel more savings to capital investment increases consumption and keeps utility from land holdings constant

Comments: Default risk

• Credit market clearing: $(1 - \alpha)Y = pL + K$

$$1 - \alpha = \frac{pL}{Y} + \frac{K}{Y}$$


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Nature of risk: idiosyncratic weather shock has no aggregate effect other than social utility loss.

- Perfect scenario for diversification: Pool all loans or lease the houses instead - essentially ex-post subsidies financed by tax on land purhcases (home insurance)
- Prediction: as house prices and mortgages go up, default rates also rise.

Comments: Default risk

We might need an aggregate shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Comments: Collateralized debt

Debt is backed by Land or Capital

- Consider entrepreneurs: $(1 + r_t)(p_t L_t^i y_t^i) \le p_{t+1} L_t^i$
- Let the Firm hire all skilled workers and pay them q_t, trasform some h_t into H_t and retain earnings to pay for the additional skilled labor rents.

Other things

- Notion of technological progress not your typical SBTC model
- Under default, collateral constraint evaluated in the case of repayment - a higher loan rate implies a different allocation
- Tax and spend does not seem to do much, perhaps tax and invest can do better

Overall

- Important message: technological innovation as a simple mechanism that delivers these aggregate trends
- Tighten the motivation for policy intervention, role of collateral, and nature of default risk

Tie up a few loose ends

Technological Change and the Evolution of Finance

Robin Doettling and Enrico Perotti

Gene Ambrocio

Bank of Finland

22 October

《曰》 《聞》 《臣》 《臣》 三臣

Other things

 Notion of technological progress - not your typical SBTC model

$$Y = (Y_{Hh})^{\eta} (Y_{Kl})^{1-\eta}$$

$$\frac{\partial Y}{\partial \eta} = Y \left[log(\frac{Y_{Hh}}{Y_{Kl}}) + (1-\eta)\frac{\alpha}{K}\frac{\partial K}{\partial \eta} \right]$$

A model with steady state growth:

$$\begin{array}{lcl} Y_t &=& [\eta(A_tH^{\alpha}_th^{1-\alpha}_t)^{\rho} + (1-\eta)(K^{\alpha}_tl^{1-\alpha}_t)^{\rho}]^{\frac{1}{\rho}}\\ \frac{\Delta A_t}{A_t} &=& g>0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

