Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix

Housing, Debt, and the Marginal Propensity to Consume

Jiaxiong Yao¹ Andreas Fagereng² Gisle Natvik^{3,4}

¹Johns Hopkins University

²Statistics Norway

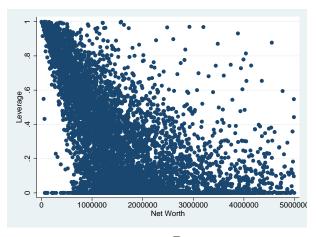
³BI Norwegian Business School

⁴Norges Bank

CEPR workshop, Bank of Finland, October 22, 2015

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
•••••		00000000000	0000000000	O	0000
Motivat	ion				


- What determines the marginal propensity to consume (MPC)?
 - Fundamental in macroeconomics
 - Aggregate demand
 - Highly policy relevant
 - Household debt overhang
 - Effect of stimulus policy and austerity
- How important are household balance sheets for the MPC?

Heterogeneity

Introduction ○●○○○○	Empirical Evidence	Model	Results 00000000000	Conclusion o	Appendix 0000
Heterog	eneity in Ho	busing Leve	erage		

0.2% Random Sample of the Data

▶ Leverage

$$ev_t = \frac{B_t}{H_t}$$

・ロト・(四ト・(川下・(日下))

Introduction	Empirical Evidence	Model ooooooooooo	Results 00000000000	Conclusion O	Appendix 0000
- · ·					

Balance sheets and the MPC

Existing Theory

- Buffer stock saving models (Carroll (1992; 1997))
 - MPC declines monotonically in wealth (concavity)
 - Key: degree of impatience, income uncertainty
- Two-asset models (Kaplan & Violante 2014)
 - Wealthy hand-to-mouth (HtM)
 - Key: high-return illiquid asset
- Recent empirical evidence
 - Mian & Sufi (2013): ZIPs with more levered HH had higher MPC
 - Kaplan & Violante (2014): 30% of U.S. HH are wealthy HtM

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion o	Appendix 0000
Our Pap	oer				

- Lessons from recent evidence
 - MPC seems declining in wealth and related to leverage
 - Housing seems important
 - A substantial fraction of wealth, but illiquid

• Gap: a micro-founded model with credible implications about MPC

- useful for quantitative evaluation of macro questions with micro data e.g. the effect of credit contraction/expansion
- Contribution of this study:
 - new evidence about leverage and MPC at the micro level
 - a consumption-saving life cycle model with endogenous leverage
 - matches the life cycle profiles of household balance sheets
 - generates the relation between MPC and leverage seen in the data

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
○○○○●○		00000000000	00000000000	O	0000
Literati	Iro				

Debt and consumption

- Dynan (2012), Mian et al (2013)
- Eggertsson and Krugman (2012), Guerrieri and Lorenzoni (2011)

Excess sensitivity

- Baker (2014; 2015); Parker (2015)
- Carroll et al (2014), Kaplan and Violante (2014)
- Life cycle choices
 - Gourinchas and Parker (2002), Cagetti (2003)
 - Fernandez-Villaverde and Krueger (2011), Yang (2009)
- Solving dynamic stochastic optimization problem
 - Carroll (2006)
 - Iskhakov et al (2014), Hintermaier and Koeniger (2010)

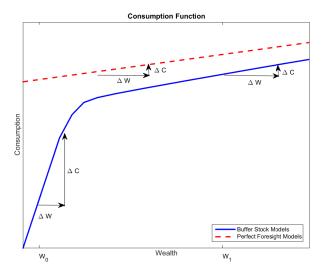
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
○○○○○●		00000000000	00000000000	o	0000
Road M	lap				

- Leverage and MPC in micro data
 - Data
 - Leverage and consumption response to wealth changes
- A consumption-saving life cycle model
 - explicit modeling of housing and debt
 - liquid and illiquid assets (cf. Kaplan and Violante 2014)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Model vs. data and implications for MPC
- Policy implications
 - A sudden credit contraction
 - A permanently lower LTV-limit


Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		00000000000	00000000000	o	0000
Data					

- Norwegian registry data 2005-2011
 - Household level data in normal times
 - Knowledge about the structure and the dynamics of balance sheets (not available in PSID)
- Full balance sheet
 - Housing
 - Debt
 - Financial assets
 - Deposits
 - Bonds
 - Stocks
 - Mutual funds
 - Income
- Imputed consumption
- Detailed household characteristics
 - Area, education, marital status, family type and size, etc

ъ

Introduction	Empirical Evidence	Model ०००००००००००	Results 00000000000	Conclusion O	Appendix 0000

Concavity of Consumption Function

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

		. .		Dele	
Introduction 000000	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion O	Appendix 0000
In the state of the second	Encountry and the set of the second set	h A = -l = l	Desculto		A

Mian-Rao-Sufi Type Regressions on Micro Data

Regression equation

$$\Delta C_{it} = \beta_0 + \beta_1 \Delta W_{it} + \beta_2 W_{it-1} + \frac{\beta_3 \Delta W_{it} \times W_{it-1}}{+\beta_4 lev_{it-1} + \frac{\beta_5 \Delta W_{it} \times lev_{it-1}}{+\beta_5 \Delta W_{it} \times lev_{it-1}} + \text{control variables} + \epsilon_{it}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• From simple buffer-stock theory:

•
$$\beta_3 < 0$$

• $\beta_5 = 0$

 Introduction
 Empirical Evidence
 Model
 Results
 Conclusion
 Appendiation

 Mian-Sufi Type Regressions on Micro Data

 Fixed Effect

Regression equation

$$\Delta C_{it} = \beta_{0,i} + \beta_{1,i} \Delta W_{it} + \beta_2 W_{it-1} + \beta_3 \Delta W_{it} \times W_{it-1} + \beta_4 lev_{it-1} + \beta_5 \Delta W_{it} \times lev_{it-1} + \text{control variables} + \epsilon_{it}$$

- Fixed effect in slopes (FEIS)
 - Unobserved household heterogeneity (preference, expectations, etc)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Parker (2015): MPC a persistent household trait, related to impatience

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion O	Appendix 0000

Mian-Rao-Sufi Type Regressions on Micro Data

Dep.Var:			ΔC_t	
	(1)	(2)	(3)	(4)
ΔW_t	0.595*** (0.002)	0.445*** (0.002)	0.531*** (0.106)	
W_{t-1}	-0.012***	-0.060***	-0.096 [*] **	0.121***
$\Delta W_t \times W_{t-1}$	(0.000) -0.015***	(0.000) 0.003***	(0.001) 0.008***	(0.004) 0.064***
lev_{t-1}	(0.001)	(0.001) -0.194***	(0.001) -0.337***	(0.007) -0.747***
$\Delta W_t \times lev_{t-1}$		(0.001) 0.197***	(0.001) 0.226***	(0.008) 0.375***
Year# Ÿ# CHAR# FEIS	х	(0.002) X	(0.002) X X X X	(0.022) X X X X X
adj. R^2 N	0.281 1,346,844	0.309 1,346,844	0.346 1,346,264	0.231 1,191,995

Introduction	Empirical Evidence	Model 00000000000	Results 0000000000	Conclusion o	Appendix 0000
Mian-R	ao-Sufi Type	e Regressio	ons on Mic	ro Data	

Aggregation

Dep.Var:	ΔC_t				
Agg. Level:	Household	Household	Municipality	County	
	(1)	(2)	(3)	(4)	
$\Delta W_t \times lev_{t-1}$	0.226***	0.375***	0.348***	0.390	
	(0.002)	(0.022)	(0.054)	(0.595)	
Baseline W_{t-1}	Х	X	Х	X	
Year#	Х	Х	Х	Х	
Age#	Х	Х	Х	Х	
CHAR#	Х	Х			
FEIS		Х			
adj. R^2	0.291	0.231	0.939	0.950	
N	1,346,844	1,191,995	2,147	95	

 Introduction
 Empirical Evidence
 Model
 Results
 Conclusion
 Appendix

 Mian-Rao-Sufi Type
 Regressions on Micro Data

 Alternative Specification

• Controlling for wealth-to-income ratio

$$\Delta C_{it} = \beta_0 + \beta_1 \Delta W_{it} + \beta_2 \frac{W_{it-1}}{Y_{it-1}} + \beta_3 \Delta W_{it} \times \frac{W_{it-1}}{Y_{it-1}} + \beta_4 lev_{it-1} + \beta_5 \Delta W_{it} \times lev_{it-1} + \text{control variables} + \epsilon_{it}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Introduction
 Empirical Evidence
 Model
 Results
 Conclusion
 Appendix

 Mian-Rao-Sufi Type
 Regressions on Micro Data

 Alternative Specification

• Controlling for wealth-to-income ratio

$$\Delta C_{it} = \beta_{0,i} + \beta_{1,i} \Delta W_{it} + \beta_2 \frac{W_{it-1}}{Y_{it-1}} + \beta_3 \Delta W_{it} \times \frac{W_{it-1}}{Y_{it-1}} + \beta_4 lev_{it-1} + \beta_5 \Delta W_{it} \times lev_{it-1} + \text{control variables} + \epsilon_{it}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
	00000000000				

Mian-Rao-Sufi Type Regressions on Micro Data

Dep.Var:			ΔC_t	
	(1)	(2)	(3)	(4)
ΔW_t	0.659*** (0.001)	0.521*** (0.002)	0.804*** (0.107)	•
$\frac{W_{t-1}}{Y_{t-1}}$	0.001***	-0.013***	-0.012***	0.006***
11-1	(0.000)	(0.000)	(0.000)	(0.001)
$\Delta W_t \times \frac{W_{t-1}}{Y_{t-1}}$	-0.017***	-0.010***	-0.010***	-0.002
lev_{t-1}	(0.000)	(0.000) -0.201*** (0.001)	(0.000) -0.253*** (0.001)	(0.002) -0.864*** (0.007)
$\Delta W_t \times lev_{t-1}$		0.167***	0.206***	0.299***
Year# Ӯ# CHAR# FEIS	х	(0.002) X	(0.002) X X X X	(0.021) X X X X X
adj. <i>R</i> ² N	0.283 1,346,844	0.306 1,346,844	0.335 1,346,264	0.224 1,191,995

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion o	Appendix
Mian-R Aggregatio	ao-Sufi Type	e Regressi	ons on Mic	ro Data	

Dep.Var:	ΔC_t					
Agg. Level:	Household	Household Household Mu		County		
	(1)	(2)	(3)	(4)		
$\Delta W_t \times lev_{t-1}$	0.206*** (0.002)	0.299*** (0.021)	0.306*** (0.083)	0.667 (0.597)		
Baseline $\frac{W_{t-1}}{Y_{t-1}}$	Х	Х	Х	Х		
Year#	Х	Х	Х	Х		
Age#	Х	Х	Х	Х		
CHAR#	Х	Х				
FEIS		Х				
adj. R^2	0.335	0.224	0.936	0.949		
N	1,346,264	1,191,995	2,147	95		

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion o	Appendix 0000
The Pe	lo of Housin	alovorad			

The Role of Housing Leverage

• $\beta_5 > 0$

- Statistically significant
- Economically important
 - Consider a household who moved from a small apartment to a big house

$$lev_{t-1} = 0.3 \longrightarrow lev_t = 0.8$$
$$\Delta\left(\frac{dC_t}{dM_t}\right) \approx 0.10$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Leverage is related to MPC over and above wealth
- WHY?

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion o	Appendix 0000
T D					

The Role of Housing Leverage

- In the presence of housing
 - total wealth is not a good proxy for the proximity to the liquidity constraint
 - but leverage is
- Housing plays several roles in affecting consumption
 - Illiquid wealth
 - In the short run, consumption is more affected by liquid wealth
 - (S,s)-rule over housing
 - Consumption good
 - complementarity with non-housing consumption
 - Collateral
- Will a consumption-saving model with housing generate similar portfolio choices over the life cycle as in the data?
 - And what will it say about the link between leverage and MPC?

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		●○○○○○○○○○○	00000000000	o	0000
Ingredie	ents				

- Two assets
 - Housing H and financial wealth M
 - No asset price uncertainty
- Consumption $\tilde{C}(C, S)$
 - $\bullet\,$ Non-housing consumption C and housing service flow S
 - Renters purchase S, homeowners derive utility from owning $S = \zeta H$
- Housing transaction cost
 - Purchase κ_p
 - Sale κ_s
- Other ingredients
 - Income profiles: growth $\{\Gamma_a\}_{a=27}^{90}$ and idiosyncratic risk $\{\sigma_{\xi,a}^2\}_{a=27}^{90}$,
 - $\{\sigma^2_{\psi,a}\}^{90}_{a=27}$
 - Borrowing constraint μ_V , μ_Y , μ_U
 - Conditional probability of survival $\{p_a^S\}_{a=27}^{90}$
 - Family composition $\{N_a^{Adult}\}_{a=27}^{90}, \{N_a^{Children}\}_{a=27}^{90}$
 - Bequest motives

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		○●○○○○○○○○○	00000000000	o	0000
Setup Preferences					

• CES consumption index

$$\tilde{C}_a = \left[\alpha_a^{\frac{1}{\theta}} C_a^{\frac{\theta-1}{\theta}} + (1 - \alpha_a)^{\frac{1}{\theta}} S_a^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}$$

Weight on non-housing consumption

$$\alpha_a \propto \alpha \exp\{f_a N_a^{Adult} + f_c N_a^{Children}\}$$

CRRA utility

$$u(\tilde{C}_a) = \frac{\tilde{C}_a^{1-\rho}}{1-\rho} \qquad \rho > 1$$

Bequest

$$u^{b}(W_{a+1}) = \varphi \frac{W_{a+1}^{1-\rho}}{1-\rho},$$

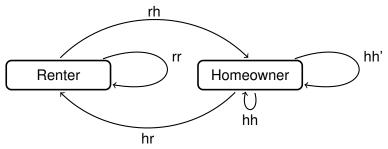
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		○○●○○○○○○○○○	00000000000	o	0000
Setup	ess				

Permanent-transitory type of income process

$$Y_a = P_a \Xi_a$$
$$P_a = \Gamma_a P_{a-1} \Psi_a$$

Notation


- Y_a after-tax income
- *P_a* permanent component of income
- Ξ_a transitory component of income
- Γ_a deterministic growth rate
- Ψ_a shock to permanent income
- Permanent and transitory shocks are log-normal

$$\begin{aligned} \xi_a &= \log \Xi_a \sim N(-\sigma_{\xi,a}^2/2, \sigma_{\xi,a}^2) \\ \psi_a &= \log \Psi_a \sim N(-\sigma_{\psi,a}^2/2, \sigma_{\psi,a}^2) \end{aligned}$$

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		○○○●○○○○○○○	00000000000	O	0000
Setup					

• Discrete choices: *rr*, *rh*, *hr*, *hh*, *hh*'

Renters and Homeowners

- Transaction costs related to housing
 - κ_p, κ_s Transaction costs of housing purchase and sale

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Empirical Evidence	Model ○000●000000	Results 00000000000	Conclusion o	Appendix
Setup					

Setup Borrowing Constraints

Loan to value

$$A_a \ge -\mu_V H_{a+1}$$

Loan to income

$$A_a \ge -\mu_Y P V_a$$

where PV_a is expected income in the future

Unsecured borrowing

$$A_a \ge -\mu_U P_a$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Borrowing rate $r_b > \text{Risk}$ free rate r

Introduction	Empirical Evidence	Model ○0000●○○○○○	Results 00000000000	Conclusion o	Appendix 0000
Setup Households	' Problem				

$$\max u(\tilde{C}_{a_0}) + E_{a_0} \left[\sum_{a=a_0+1}^T \beta^{a-a_0} \left(p_a^S u(\tilde{C}_a) + (1-p_a^S) u^b(W_a) \right) \right]$$

subject to

$$\int M_a - C_a - S_a \qquad rr$$

$$M_a - C_a - S_a - (1 + \kappa_p)H_{a+1} \qquad rh$$

$$A_a = \left\{ \begin{array}{ll} M_a - C_a + (1 - \kappa_s - \delta)H_a \\ hr \end{array} \right.$$

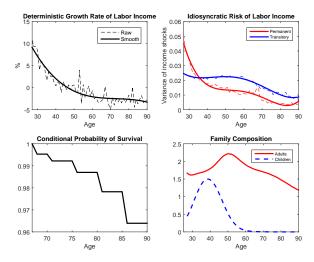
$$M_a - C_a + (1 - \kappa_s - \delta)H_a - (1 + \kappa_p)H_{a+1} \qquad hh' \\
 M_a - C_a \quad (H_{a+1} = (1 - \delta)H_a) \qquad hh$$

$$M_{a+1} = \begin{cases} (1+r)A_a + Y_{a+1} & A_a \ge 0\\ (1+r_b)A_a + Y_{a+1} & A_a < 0 \end{cases}$$
$$W_a = M_a + H_a$$

Introduction 000000	Empirical Evidence	Model	Results 00000000000	Conclusion o	Appendix 0000
Estimat	rion				

• First step (external calibration)

- Income process
 - Deterministic growth rate
 - Age-varying idiosyncratic risk


 BPP
- Conditional probability of survival
- Household composition
- Transaction cost, interest rates, minimum housing, depreciation rate

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Initial distribution of balance sheets Initial Dist
- Second step (preference estimation)
 - Preference parameters: ρ , β , θ , α , ζ , φ , f_a , f_c
 - Simulated method of moments

I	O - I'lle I'lle				
Introduction	Empirical Evidence	<mark>Model</mark> ○○○○○○ ○●○○○	Results 00000000000	Conclusion O	Appendix 0000

External Calibration

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

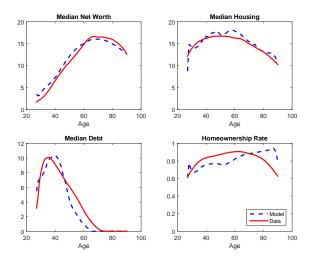
Introduction	Empirical Evidence	Model ○○○○○○○○○○○○	Results ooooooooooo	Conclusion O	Appendix 0000

First Step Parameters

Estimates	Parameter	Value	Target/Source
First Step			
Demographics			
Lifespan	T	90	
Conditional probability of survival	$\{p_a^S\}$		SSB
Income process			
Permanent income growth rate	$\{\Gamma_t\}$		SSB
Variance of permanent income	$\{\sigma_{\Psi,t}\}$		SSB
Variance of transitory income	$\{\sigma_{\Xi,t}\}$		SSB
Borrowing			
Risk free rate	r	0.016	Norges Bank
Borrowing rate	r_b	0.054	Norges Bank
Maximum loan to value ratio	μ_V	0.90	Norges Bank
Maximum debt to lifetime income ratio	μ_Y	0.25	
Housing market			
Depreciation rate	δ	2%	
Transaction cost of purchase	κ_p	0.025	
Transaction cost of sale	κ_p	0.025	
Minimum housing	\underline{h}	8.2	SSB

Introduction	Empirical Evidence	Model ○○○○○○○○○●○	Results 00000000000	Conclusion o	Appendix 0000
Estimat Second Ste					

- Target (64×3 moments):
 - Median net worth $\{A_a\}_{a=27}^{90}$
 - Housing $\{H_a\}_{a=27}^{90}$
 - Homeownership rate $\{O_a\}_{a=27}^{90}$
- Method (8 parameters): method of simulated moments
 - Simulated profiles $\{A_a^s\}_{a=27}^{90}, \{H_a^s\}_{a=27}^{90}, \{O_a^s\}_{a=27}^{90}$
 - Distance between the profiles in the data and in the simulated data is the smallest


(日) (日) (日) (日) (日) (日) (日)

Introduction	Empirical Evidence	<mark>Model</mark> ○○○○○○○○○○○	Results 0000000000	Conclusion O	Appendix 0000	

	01	Paramet	
Sacono	Stan	Paramo	iare
		' a a a no	

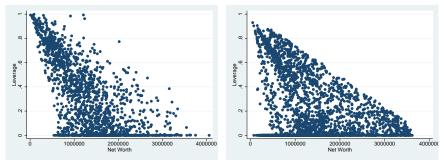
Estimates	Parameter	Value
Second Step		
Preference		
Initial weight on consumption	α	0.55
Adults' impact on consumption weight	f_a	0.47
Children's impact on consumption weight	f_a	0.12
Discount factor	β	0.93
Coefficient of relative risk aversion	ho	1.20
Elasticity of substitution	θ	0.49
Utility of owning	ζ	0.09
Bequest weight	φ	12.3

Introduction	Empirical Evidence	Model 00000000000	Results •••••••	Conclusion o	Appendix 0000
Life Cyc Model vs. D	cle Profiles				

・ロト・日本・日本・日本・日本・日本

Introduction

Empirical Evidence


Model

Results

Conclusion

Appendix

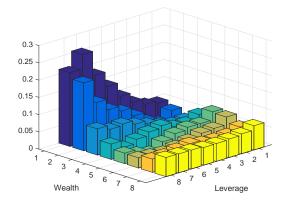
Heterogeneity in Leverage Model vs. Data

(a) Data

(b) Simulation

Introduction 000000	Empirical Evidence	Model 00000000000	Results	Conclusion o	Appendix 0000		
MPC a	MPC and Leverage						

Why would leverage affect the MPC in this model?

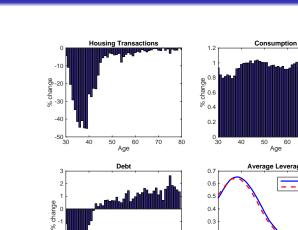

- Housing wealth is extremely liquid here:
 - Nothing prevents the household from borrowing more against its housing wealth
- But housing wealth is still somewhat illiquid: There are moving costs.
- The liquidity of housing wealth depends on proximity to the LTV-limit
 - \Rightarrow Leverage measures the liquidity of housing wealth

Introduction	Empirical Evidence	Model 00000000000	Results 0000000000	Conclusion o	Appendix 0000
The Ro Model vs. D	le of Housin	g Leverage	Э		

Dep.Var:			ΔC_t	
	(1) Simulation	(2) Data	(3) Simulation	(4) Data
ΔW_t	0.527*** (0.042)	0.531*** (0.106)	0.203*** (0.042)	0.804*** (0.107)
W_{t-1}	-0.004*** (0.000)	-0.096*** (0.001)	(0.042)	(0.107)
$\Delta W_t \times W_{t-1}$	-0.000 (0.000)	0.008*** (0.001)		
$\frac{W_{t-1}}{Y_{t-1}}$	(0.000)	(0.001)	0.034***	-0.012***
			(0.000)	(0.000)
$\Delta W_t \times \frac{W_{t-1}}{Y_{t-1}}$			0.017***	-0.010***
lev_{t-1}	-0.091*** (0.005)	-0.337*** (0.001)	(0.000) 0.147*** (0.005)	(0.000) -0.253*** (0.001)
$\Delta W_t \times lev_{t-1}$	0.200***	0.226***	0.259***	0.206***
	(0.005)	(0.002)	(0.004)	(0.002)
Year#		X		X
\bar{Y} #	X	X	X	X
CHAR#	Х	Х	Х	Х
adj. R^2	0.316	0.346	0.346	0.335
N	144,246	1,346,264	144,246	1,346,264

Introduction Empirical Evidence Model Results Conclusion Appendix

MPC by Wealth and Leverage in the Model

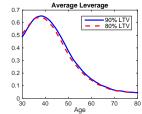

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction 000000	Empirical Evidence	Model	Results 00000●00000	Conclusion o	Appendix 0000
	mplications Credit Contraction				

• Eggertsson & Krugman (2012), Guerrieri & Lorenzoni (2011)

- Reduction in credit limit
- Constrained households are forced to reduce consumption
- No leverage
- Problem: very stylized
- Our exercise
 - A sudden change in LTV requirement
 - Geanakopoulos (2008,2011,2014)
 - Compare households' reaction with and without the policy change
 - Caveat: no general equilibrium effect

Introduction	Empirical Evidence	Model	Results oooooo●oooo	Conclusion o	Appendix 0000
	mplications Gredit Contraction				


Age

0

-2

-3

-4 -30 40 50 60 70 80

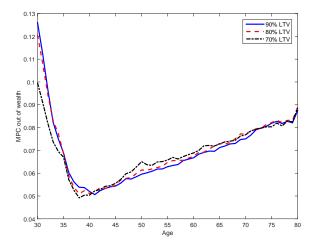
60 70 80

Age

・ロト ・ 四ト ・ ヨト ・ ヨト æ

Introduction	Empirical Evidence	Model 00000000000	Results ooooooo●ooo	Conclusion o	Appendix 0000
	mplications nt Tightening of Len		- Low LTV		

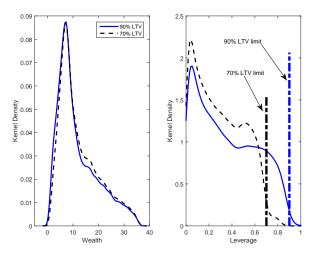
- A widespread narrative of the Great Recession: Shocks amplified due to high household leverage
 - Supportive Evidence: Mian, Rao and Sufi (2013), Baker (2014)
- Does this motivate tighter restrictions on lending?
 - Macroprudential policy tool: LTV-limit
 - Already implemented in New Zealand, Norway, ++
- Our exercise
 - Compare to economies that differ only by their LTV-limits
 - Steady state comparison
 - Ask: Will a lower LTV-limit reduce the marginal propensity to consume out of wealth changes?


(日) (日) (日) (日) (日) (日) (日)

• Wealth change of a given size

Introduction	Empirical Evidence	Model 00000000000	Results oooooooo●oo	Conclusion o	Appendix 0000
	mplications	ding Standards -	· Lower LTV		

Effect on the MDC nr and groups


Effect on the MPC pr age group:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ●

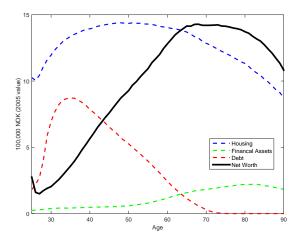
Introduction	Empirical Evidence	Model 00000000000	Results ooooooooooooo	Conclusion o	Appendix 0000
	mplications	ding Standards -	· Lower LTV		

Distributional consequences:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Empirical Evidence	Model 00000000000	Results oooooooooo●	Conclusion o	Appendix 0000
	mplications nt Tightening of Ler	iding Standards ·	- Lower LTV		

Upshot:


- MPC out of given wealth change largely unaffected
- Intuition: LTV tightening reduces both leverage and the leverage level that generates illiquidity.
- Interpretation: Permanent LTV-lowering is only likely reduce volatility if it reduces the magnitude of wealth shocks
 - In particular: Reduce the effect of house price changes on wealth (ignored in our study)

Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion	Appendix 0000
Conclus	ion				

- Mian-Sufi association between consumption response to wealth changes and leverage confirmed at the micro level
- A model that matches life cycle profiles of households' balance sheets implies a similar association between leverage and the MPC out of wealth as in the data
- Housing key to understanding the MPC and the role of leverage
- Down payment requirements have little effect on the MPC out of given wealth changes
 - Postpones the home ownership choice
 - To be effective, the influence must be to dampen the magnitude of wealth shocks (not in our model)

Introduction Empirical Evidence Model Results Conclusion Appendix

Median Household Balance Sheet: Data

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A@

Introduction	Empirical Evidence	Model	Results	Conclusion	Appendix
000000		00000000000	00000000000	o	0000
Parame	ters				

Preferences

- a age a
- \tilde{C}_a consumption index
- p_a^S conditional probability of survival
- C_a real non-housing consumption
- S_a housing service flow
- α_a weight on non-housing consumption
- β the discount factor
- ρ the coefficient of relative risk aversion
- θ the elasticity of substitution
- *f_a* impact of adults on non-housing consumption
- f_c impact of children on non-housing consumption

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

	-				
Introduction	Empirical Evidence	Model 00000000000	Results 00000000000	Conclusion O	Appendix 00●0

Income Growth and Idiosyncratic Risk

External Calibration

Residual Income Growth

$$\log Y_{ia} = f_i + Z_{ia}\beta + y_{ia}$$

Idiosyncratic risk

$$\Delta y_{ia} = \psi_{ia} + \Delta \xi_{ia}$$
$$\sigma_{\psi,a}^2 = Cov(\Delta y_{ia}, \Delta y_{ia-1} + \Delta y_{ia} + \Delta y_{ia+1})$$
$$\sigma_{\xi,a}^2 = -Cov(\Delta y_{ia}, \Delta y_{ia+1})$$

Introduction	Empirical Evidence	Model 0000000000	Results 00000000000	Conclusion O	Appendix 000
1. 10 L D.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C. N. 1. 3. 8. 1. 11	1 I I I I I I I I I I I I I I I I I I I	1.1	

Initial Distribution of Net Worth, Housing, and Income

External Calibration

Group	Net Worth	Income	Housing	Homeownership
1	-16.87	3.06	15.64	0.25
2	-7.03	3.01	13.33	0.55
3	-3.44	2.33	13.33	0.36
4	-2.27	1.97	13.24	0.22
5	-1.52	2.06	13.72	0.20
6	-0.86	2.10	13.78	0.19
7	-0.27	1.99	13.76	0.17
8	0.01	1.25	14.04	0.04
9	0.24	1.99	13.92	0.16
10	1.05	2.56	14.24	0.49
11	2.66	2.82	14.45	0.83
12	4.68	2.76	15.49	0.95
13	6.78	2.57	15.70	0.98
14	8.98	2.53	16.32	0.99
15	11.27	2.32	16.83	1.00
16	13.75	2.21	18.07	1.00
17	16.56	2.09	19.70	1.00
18	20.02	2.13	22.40	1.00
19	25.73	2.12	27.71	1.00
20	51.66	2.56	43.14	0.99