Leaning Against the Credit Cycle*

Paolo Gelain Kevin J. Lansing
Norges Bank
Gisle J. Natvik BI Norwegian Business School

Bank of Finland and CEPR conference on Housing Markets, Monetary Policy and Macroprudential Policy
 Helsinki, 22-23 October 2015

Motivation

- Recent monetary policy discussion: Emphasis on debt
- Credit typically moves gradually and persistently over time
- The "Credit cycle" (Aikman, Haldane and Nelson (2013), Drehman, Borio, Tsatsaronis (2012), etc.)
- Debt matters for the risk and cost of crises (Schularik and Taylor (2010))
- Svensson (2013): Interest rate hikes likely to raise debt-to-GDP ratio
- Do not address a high debt-to-GDP ration with high interest rates

Motivation

- Recent monetary policy discussion: Emphasis on debt
- Credit typically moves gradually and persistently over time
- The "Credit cycle" (Aikman, Haldane and Nelson (2013), Drehman, Borio, Tsatsaronis (2012), etc.)
- Debt matters for the risk and cost of crises (Schularik and Taylor (2010))
- Svensson (2013): Interest rate hikes likely to raise debt-to-GDP ratio
- Do not address a high debt-to-GDP ration with high interest rates
- Problem: Standard DSGE models used for monetary policy analysis do not account well for debt dynamics
- Key assumption: One-quarter debt contract - all debt is fully amortized each period

Households debt dynamics

Standard model fails to capture the persistence in the data

Our paper

- Develop a simple New Keynesian DSGE model with reasonable debt dynamics
- Collateral constraint (lacoviello (2005))
- Long term debt - only new loans constrained
- Study monetary policy in that environment
- What is the likely effect of an interest rate hike on the aggregate debt burden?
- What are the consequences of mechanically raising the interest rate in response to debt

Our paper
 Result preview

- Develop a simple New Keynesian DSGE model with reasonable debt dynamics
- Autocorrelation of debt closer to U.S. data
- Cross-correlations and lead-lag relationships of debt with inflation, house prices, interest rate and GDP closer to U.S. data
- Study monetary policy in that environment
- What is the likely effect of an interest rate hike on the aggregate debt burden?
- Short-run increase, medium-run decline
- What are the consequences of mechanically raising the interest rate in response to debt?
- Indeterminacy
- Debt more volatile
- Responding to debt growth preferable to debt level

Related literature

- "Credit cycle": Drehman et al. (2012), Aikman et al. (2013), Strohsal et al. (2015), lacoviello (2015)
- Policy rate and debt-to-GDP: Svensson (2013), Laséen and Strid (2013), Robstad (2014), Alpanda and Zubairy (2015)
- Multiperiod debt model: Rubio (2011), Kydland et al. (2012), Justiniano et al. (2013), Gelain et al. (2015), Garriga et al. (2013), Calza et al. (2013), Brzoza-Brzezina et al. (2014), Andrées et al. (2014), Chen et al. (2013)
- Debt and inflation: Mason and Jayadev (2014), Gomes et al. (2014)

Outline of the presentation

- Model
- Calibration
- Simulations
- Policy implications
- Conclusions

Simple NK model with housing and long term debt

- Two households types: Savers (patient) Borrowers (impatient)
- Borrowers are subject to collateral constraint on new loans only
- Reduced form law of motion for amortization rate as in Kydland, Rupert, and Sustek (2012)
- Firms owned by savers
- Fixed supply of houses
- Calvo-pricing
- Habits and price indexation

Borrowers problem

Borrowers maximize

$$
\max _{c_{b, t}, h_{b, t}, L_{b, t}, b_{b, t}, \delta_{t}} E_{0} \sum_{t=0}^{\infty} \beta_{b}^{t} U_{t}\left(c_{b, t} h_{b, t}, L_{b, t}\right)
$$

subject to the following constraints

$$
\begin{gathered}
c_{b, t}+q_{t} h_{b, t}+\frac{r_{t-1}+\delta_{t-1}}{\pi_{t}} b_{b, t-1}=w_{b, t} L_{b, t}+q_{t} h_{b, t-1}+l_{b, t} \\
b_{b, t}=\left(1-\delta_{t-1}\right) b_{b, t-1}+I_{b, t}, \quad \quad I_{b, t}=\text { New loans } \\
\delta_{t}=\left(1-\frac{l_{b, t}}{b_{b, t}}\right) \delta_{t-1}^{\alpha}+\frac{l_{b, t}}{b_{b, t}}(1-\alpha)^{\kappa} \\
\alpha \in[0,1) \text { and } \kappa>0 \text { are parameters. }
\end{gathered}
$$

Payment schedule: Model vs. 30-year mortgage

 From Kydland, Rupert, and Sustek (2012), NBER Working Paper 18432.Solid line: Model. Dashed line: 30-year mortgage schedule.

Borrowers problem (continued)

Borrowers maximize

$$
\max _{c_{b, t}, h_{b, t}, L_{b, t}, b_{b, t}, \delta_{t}} E_{0} \sum_{t=0}^{\infty} \beta_{b}^{t} U_{t}\left(c_{b, t} h_{b, t}, L_{b, t}\right)
$$

subject to the following constraints

$$
\begin{gather*}
c_{b, t}+q_{t} h_{b, t}+\frac{r_{t-1}+\delta_{t-1}}{\pi_{t}} b_{b, t-1}=w_{b, t} L_{b, t}+q_{t} h_{b, t-1}+l_{b, t} \tag{1}\\
b_{b, t}=\left(1-\delta_{t-1}\right) b_{b, t-1}+l_{b, t}, \quad I_{b, t}=\text { New loans } \tag{2}\\
\delta_{t}=\left(1-\frac{l_{b, t}}{b_{b, t}}\right) \delta_{t-1}^{\alpha}+\frac{l_{b, t}}{b_{b, t}}(1-\alpha)^{\kappa} \tag{3}
\end{gather*}
$$

NB! 1 and 2 imply:
$c_{b, t}+q_{t}\left(h_{b, t}-h_{b, t-1}\right)=w_{b, t} L_{b, t}+b_{b, t}-\frac{R_{t-1}}{\pi_{t}} b_{b, t-1}, \quad \quad R_{t}=1+r_{t}$

Borrowers problem (continued)

Collateral constraint

Why does δ_{t} matter?

$$
I_{t} \leq m \underbrace{\left.\frac{E_{t}\left[q_{t+1} \pi_{t+1}\right] h_{b, t}}{R_{t}}-b_{b, t}\right]}
$$

Next period home equity.
which combined with equation 2 in the previous slide (i.e. debt law of motion) gives

$$
b_{b, t}=\frac{m}{1+m} \frac{E_{t}\left[q_{t+1} \pi_{t+1}\right] h_{b, t}}{R_{t}}+\frac{1-\delta_{t-1}}{1+m} \frac{b_{b, t-1}}{\pi_{t}}
$$

- Debt $b_{b, t}$ becomes persistent
- Relation between debt $b_{b, t}$ and expected inflation $E_{t}\left[\pi_{t+1}\right]$ changes with respect to the 1-quarter model

Model parameter values

- Steady state targets
- Share of liquidity constrained, relative hours worked and relative labor incomes in Justiniano, Primiceri and Tambalotti (2013) ($n, v_{l, l, v} v_{l, b}, \infty$)
- Ratio of housing wealth to yearly consumption in laccoviello and Neri (2010) (v_{h})
- Approximate 30 -year annuity loan contract, as in Kydland, Rupert, Sustek (2013) (κ, α)

Parameters Value							
β_{l}	0.99	φ	1	ε	6	m	0.0446
β_{b}	0.97	ϵ	0.5	θ	0.75	ρ_{z}	0.9
v_{h}	0.0839	n	0.61	ι	0.5	$\rho_{c p}$	0.9
$v_{l, l}$	0.1055	ω	0.5	κ	1.0487	ϕ_{π}	1.5
$v_{l, b}$	0.2218	ξ	0.33	α	0.0059	ϕ_{y}	0.75

Moments comparison: U.S. data vs. baseline model
 Baseline model fits debt-to-GDP autocorrelation better than the 1-quarter model

Moment	Data	30-year model	20-year model	1-quarter model
B/Y autocorrelation 1	0.9940	0.9979	0.9975	0.9544
B/Y autocorrelation 2	0.9818	0.9929	0.9913	0.9231
B/Y autocorrelation 3	0.9642	0.9855	0.9820	0.8970

Simulations are done with tfp shock only and data are linearly detrended.

Moments comparison: U.S. data vs. baseline model

Baseline model fits cross-correlations better than the 1-quarter model

Correlation between variable X at time t and household debt and time $t+k$.

Monetary policy shock

Debt response to monetary policy shock
 Debt-to-GDP increases significantly only if the loan duration is long enough

Debt/GDP 10-year model

Debt/GDP 20-year model

Debt/GDP 5-year model

Policy Implications

- Svensson 2013: Higher policy rate increases the debt burden - therefore it is wrong to use monetary policy to stabilize debt.
- But: Even if a higher policy rate increases the stock of real debt, the policy implication is unclear
- The question: What are the consequences of letting the interest rate systematically respond to debt?
- Simple policy rule

$$
R_{t}=(1+r) \pi_{t}^{\phi_{\pi}}\left(\frac{b_{b, t}}{\bar{b}_{b}}\right)^{\phi_{b}}
$$

Determinacy analysis - reacting to the real debt level

$$
b_{b, t}=\frac{m}{1+m} \frac{E_{t}\left[q_{t+1} \pi_{t+1}\right] h_{b, t}}{R_{t}}+\frac{1-\delta_{t-1}}{1+m} \frac{b_{b, t-1}}{\pi_{t}}
$$

Reacting to Debt Level vs Debt Growth, 30-year model

Conclusions

- A tractable model with realistically gradual amortization process captures persistent nature of debt dynamics à la "credit cycle"
- Other macro variables unaffected by debt dynamics unless monetary policy emphasizes debt
- Monetary policy implications
- Policy tightening likely to raise households' debt burden in the short run (à la Svensson)
- but also likely to reduce the debt burden in the medium run
- Mechanically increasing the interest rate in response to debt (or debt-to-GDP) level causes equilibrium indeterminacy
- Opposite under 1-quarter model
- Destabilizes debt itself
- Better to respond to debt growth

