Overview
 Model
 Calibration
 Simulations
 Policy Implications
 Conclusions

 000000
 00000
 0
 0000
 0
 0

## Leaning Against the Credit Cycle\*

Paolo Gelain Kevin J. Lansing Norges Bank FRBSF Gisle J. Natvik BI Norwegian Business School

Bank of Finland and CEPR conference on Housing Markets, Monetary Policy and Macroprudential Policy Helsinki, 22 - 23 October 2015

\*Any opinions expressed here do not necessarily reflect the views of the managements of the Norges Bank, the Federal

Reserve Bank of San Francisco, or the Board of Governors of the Federal Reserve System.

| Overview  | Model | Calibration | Simulations | Policy Implications | Conclusions |
|-----------|-------|-------------|-------------|---------------------|-------------|
| •••••     | 00000 | 0           | 0000        |                     | O           |
| Motivatio | on    |             |             |                     |             |

- Recent monetary policy discussion: Emphasis on debt
  - Credit typically moves gradually and persistently over time
    - The "Credit cycle" (Aikman, Haldane and Nelson (2013), Drehman, Borio, Tsatsaronis (2012), etc.)
  - Debt matters for the risk and cost of crises (Schularik and Taylor (2010))
  - Svensson (2013): Interest rate hikes likely to raise debt-to-GDP ratio
    - Do not address a high debt-to-GDP ration with high interest rates

| Overview  | Model | Calibration | Simulations | Policy Implications | Conclusions |
|-----------|-------|-------------|-------------|---------------------|-------------|
| •••••     | 00000 | 0           | 0000        |                     | O           |
| Motivatio | on    |             |             |                     |             |

- Recent monetary policy discussion: Emphasis on debt
  - Credit typically moves gradually and persistently over time
    - The "Credit cycle" (Aikman, Haldane and Nelson (2013), Drehman, Borio, Tsatsaronis (2012), etc.)
  - Debt matters for the risk and cost of crises (Schularik and Taylor (2010))
  - Svensson (2013): Interest rate hikes likely to raise debt-to-GDP ratio
    - Do not address a high debt-to-GDP ration with high interest rates
- Problem: Standard DSGE models used for monetary policy analysis do not account well for debt dynamics
  - Key assumption: One-quarter debt contract all debt is fully amortized each period

| Househ   | olde deb | t dynamic   |                     |             |
|----------|----------|-------------|---------------------|-------------|
| 00000    |          |             |                     |             |
| Overview | Model    | Calibration | Policy Implications | Conclusions |

## 

Standard model fails to capture the persistence in the data



| Overview | Model | Calibration | Simulations | Policy Implications | Conclusions |
|----------|-------|-------------|-------------|---------------------|-------------|
| ○○●○○○   | 00000 | 0           | 0000        | 000                 | O           |
| Our pape | er    |             |             |                     |             |

- Develop a simple New Keynesian DSGE model with reasonable debt dynamics
  - Collateral constraint (lacoviello (2005))
  - Long term debt only new loans constrained
- Study monetary policy in that environment
  - What is the likely effect of an interest rate hike on the aggregate debt burden?
  - What are the consequences of mechanically raising the interest rate in response to debt

| Overview                   | Model   | Calibration | Simulations | Policy Implications | Conclusions |
|----------------------------|---------|-------------|-------------|---------------------|-------------|
| 000000                     | 00000   | 0           | 0000        |                     | O           |
| Our pape<br>Result preview | er<br>v |             |             |                     |             |

- Develop a simple New Keynesian DSGE model with reasonable debt dynamics
  - Autocorrelation of debt closer to U.S. data
  - Cross-correlations and lead-lag relationships of debt with inflation, house prices, interest rate and GDP closer to U.S. data
- Study monetary policy in that environment
  - What is the likely effect of an interest rate hike on the aggregate debt burden?
    - Short-run increase, medium-run decline
  - What are the consequences of mechanically raising the interest rate in response to debt?
    - Indeterminacy
    - Debt more volatile
    - Responding to debt growth preferable to debt level

| Overview  | Model     | Calibration | Simulations | Policy Implications | Conclusions |
|-----------|-----------|-------------|-------------|---------------------|-------------|
| ○○○○●○    | 00000     | O           | 0000        |                     | O           |
| Related I | iterature |             |             |                     |             |

- "Credit cycle": Drehman et al. (2012), Aikman et al. (2013), Strohsal et al. (2015), lacoviello (2015)
- Policy rate and debt-to-GDP: Svensson (2013), Laséen and Strid (2013), Robstad (2014), Alpanda and Zubairy (2015)
- Multiperiod debt model: Rubio (2011), Kydland et al. (2012), Justiniano et al. (2013), Gelain et al. (2015), Garriga et al. (2013), Calza et al. (2013), Brzoza-Brzezina et al. (2014), Andrées et al. (2014), Chen et al. (2013)
- Debt and inflation: Mason and Jayadev (2014), Gomes et al. (2014)

| Outline  | of the r | presentatio | n           |                     |             |
|----------|----------|-------------|-------------|---------------------|-------------|
| 000000   | 00000    | O           | 0000        | 000                 |             |
| Overview | Model    | Calibration | Simulations | Policy Implications | Conclusions |

- Model
- Calibration
- Simulations
- Policy implications
- Conclusions



- Two households types: Savers (patient) Borrowers (impatient)
  - Borrowers are subject to collateral constraint on new loans only
  - Reduced form law of motion for amortization rate as in Kydland, Rupert, and Sustek (2012)
- Firms owned by savers
- Fixed supply of houses
- Calvo-pricing
- Habits and price indexation

| Overview | Model     | Calibration | Simulations | Policy Implications | Conclusions |
|----------|-----------|-------------|-------------|---------------------|-------------|
| 000000   | ○●○○○     | O           | 0000        |                     | O           |
| Borrower | s probler | n           |             |                     |             |

## Borrowers maximize

$$\max_{c_{b,t}, h_{b,t}, L_{b,t}, b_{b,t}, \delta_t} E_0 \sum_{t=0}^{\infty} \beta_b^t U_t(c_{b,t} h_{b,t}, L_{b,t}),$$

subject to the following constraints

$$c_{b,t} + q_t h_{b,t} + \frac{r_{t-1} + \delta_{t-1}}{\pi_t} b_{b,t-1} = w_{b,t} L_{b,t} + q_t h_{b,t-1} + l_{b,t},$$
  
$$b_{b,t} = (1 - \delta_{t-1}) b_{b,t-1} + l_{b,t}, \qquad l_{b,t} = \text{New loans}$$

$$\delta_t = \left(1 - \frac{I_{b,t}}{b_{b,t}}\right) \delta_{t-1}^{\alpha} + \frac{I_{b,t}}{b_{b,t}} \left(1 - \alpha\right)^{\kappa}$$

 $lpha \in [0,1)$  and  $\kappa > 0$  are parameters.



Solid line: Model. Dashed line: 30-year mortgage schedule.



 Overview
 Model
 Calibration
 Simulations
 Policy Implications
 Conclusions

 Borrowers problem (continued)

Borrowers maximize

$$\max_{c_{b,t}, h_{b,t}, L_{b,t}, b_{b,t}, \delta_t} E_0 \sum_{t=0}^{\infty} \beta_b^t U_t(c_{b,t} h_{b,t}, L_{b,t}),$$

subject to the following constraints

$$c_{b,t} + q_t h_{b,t} + \frac{r_{t-1} + \delta_{t-1}}{\pi_t} b_{b,t-1} = w_{b,t} L_{b,t} + q_t h_{b,t-1} + l_{b,t},$$
 (1)

$$b_{b,t} = (1 - \delta_{t-1}) b_{b,t-1} + l_{b,t}, \qquad l_{b,t} =$$
 New loans (2)

$$\delta_t = \left(1 - \frac{I_{b,t}}{b_{b,t}}\right) \delta_{t-1}^{\alpha} + \frac{I_{b,t}}{b_{b,t}} \left(1 - \alpha\right)^{\kappa}$$
(3)

**NB!** 1 and 2 imply:

$$c_{b,t} + q_t (h_{b,t} - h_{b,t-1}) = w_{b,t} L_{b,t} + b_{b,t} - \frac{R_{t-1}}{\pi_t} b_{b,t-1}, \qquad R_t = 1 + r_t$$

 Overview
 Model
 Calibration
 Simulations
 Policy Implications
 Conclusions

 Borrowers problem (continued)

 Collateral constraint

Why does  $\delta_t$  matter?

$$I_t \leq m \underbrace{\left[\frac{E_t \left[q_{t+1} \pi_{t+1}\right] h_{b,t}}{R_t} - b_{b,t}\right]}_{R_t}$$

Next period home equity.

which combined with equation 2 in the previous slide (i.e. debt law of motion) gives

$$b_{b,t} = \frac{m}{1+m} \frac{E_t \left[q_{t+1} \pi_{t+1}\right] h_{b,t}}{R_t} + \frac{1 - \delta_{t-1}}{1+m} \frac{b_{b,t-1}}{\pi_t}$$

- Debt  $b_{b,t}$  becomes persistent
- Relation between debt b<sub>b,t</sub> and expected inflation E<sub>t</sub> [π<sub>t+1</sub>] changes with respect to the 1-quarter model

| Model r  | paramete | er values   |             |                     |                  |
|----------|----------|-------------|-------------|---------------------|------------------|
| Overview | Model    | Calibration | Simulations | Policy Implications | Conclusions<br>0 |

- Steady state targets
  - Share of liquidity constrained, relative hours worked and relative labor incomes in Justiniano, Primiceri and Tambalotti (2013) (n,v<sub>1,1</sub>,v<sub>1,b</sub>,*∞*)
  - Ratio of housing wealth to yearly consumption in laccoviello and Neri (2010) ( $\nu_h$ )
  - Approximate 30-year annuity loan contract, as in Kydland, Rupert, Sustek (2013) (κ,α)

|             | Parameters Value |            |      |          |        |              |        |  |  |  |
|-------------|------------------|------------|------|----------|--------|--------------|--------|--|--|--|
| $\beta_l$   | 0.99             | φ          | 1    | ε        | 6      | т            | 0.0446 |  |  |  |
| $\beta_{h}$ | 0.97             | $\epsilon$ | 0.5  | $\theta$ | 0.75   | $\rho_z$     | 0.9    |  |  |  |
| $v_h$       | 0.0839           | n          | 0.61 | l        | 0.5    | $\rho_{cp}$  | 0.9    |  |  |  |
| $\nu_{I,I}$ | 0.1055           | Ø          | 0.5  | κ        | 1.0487 | $\phi_{\pi}$ | 1.5    |  |  |  |
| $v_{I,b}$   | 0.2218           | ξ          | 0.33 | α        | 0.0059 | $\phi_y$     | 0.75   |  |  |  |

| Overview Mo | odel odel | Calibration | Simulations  | Policy Implications | Conclusions |
|-------------|-----------|-------------|--------------|---------------------|-------------|
| 000000 00   |           | O           | ●○○○         | 000                 | O           |
| Moments c   | comparis  | son: U.S. o | data vs. bas | seline model        |             |

| Moment                | Data   | 30-year model | 20-year model | 1-quarter model |
|-----------------------|--------|---------------|---------------|-----------------|
| B/Y autocorrelation 1 | 0.9940 | 0.9979        | 0.9975        | 0.9544          |
| B/Y autocorrelation 2 | 0.9818 | 0.9929        | 0.9913        | 0.9231          |
| B/Y autocorrelation 3 | 0.9642 | 0.9855        | 0.9820        | 0.8970          |

Simulations are done with tfp shock only and data are linearly detrended.





Correlation between variable X at time t and household debt and time t + k.

| Moneta             | ny policy | , shock          |             |                     |             |
|--------------------|-----------|------------------|-------------|---------------------|-------------|
| Overview<br>000000 | Model     | Calibration<br>0 | Simulations | Policy Implications | Conclusions |







| Overview            | Model | Calibration | Simulations | Policy Implications | Conclusions |  |  |  |
|---------------------|-------|-------------|-------------|---------------------|-------------|--|--|--|
| 000000              | 00000 | O           | 0000        | ●○○                 | O           |  |  |  |
| Policy Implications |       |             |             |                     |             |  |  |  |

- Svensson 2013: Higher policy rate increases the debt burden therefore it is wrong to use monetary policy to stabilize debt.
- But: Even if a higher policy rate increases the stock of real debt, the policy implication is unclear
- The question: What are the consequences of letting the interest rate systematically respond to debt?
- Simple policy rule

$$R_t = (1+r) \, \pi_t^{\phi_\pi} \left(rac{b_{b,t}}{\overline{b}_b}
ight)^{\phi_b}$$





 $b_{b,t} = \frac{m}{1+m} \frac{E_t \left[q_{t+1} \pi_{t+1}\right] h_{b,t}}{R_t} + \frac{1 - \delta_{t-1}}{1+m} \frac{b_{b,t-1}}{\pi_t}$ 





| Overview  | Model | Calibration | Simulations | Policy Implications | Conclusions |
|-----------|-------|-------------|-------------|---------------------|-------------|
| 000000    | 00000 | O           | 0000        |                     | ●           |
| Conclusio | ons   |             |             |                     |             |

- A tractable model with realistically gradual amortization process captures persistent nature of debt dynamics à la "credit cycle"
  - Other macro variables unaffected by debt dynamics unless monetary policy emphasizes debt
- Monetary policy implications
  - Policy tightening likely to raise households' debt burden in the short run (à la Svensson)
    - but also likely to reduce the debt burden in the medium run
  - Mechanically increasing the interest rate in response to debt (or debt-to-GDP) level causes equilibrium indeterminacy
    - Opposite under 1-quarter model
    - Destabilizes debt itself
    - Better to respond to debt growth