Understanding the New Normal: The Role of Demographics

Etienne Gagnon, Benjamin K. Johannsen, David Lopez-Salido ${ }^{1}$

October, 2017

[^0]
Introduction

- The U.S. recovery from the Great Recession has been characterized by:
- low real GDP growth;
- low real interest rates, even for long maturities.
- Observers such as El-Erian (2010) have described this situation as a "new normal" for the U.S. economy.
- This paper assesses the extent to which demographic factors may be contributing to a new normal.

Key take-away points

- Our overlapping-generation (OG) model accounts for a $1 \frac{1}{4}$-percentage-point decline in both real GDP growth and the equilibrium real interest rate $\left(r_{t}^{*}\right)$ since 1980-essentially all of the permanent declines in those variables according to some estimates.
- Transition to the new normal has been unusually rapid over the past decade.

Key take-away points (continued)

- Declines mainly reflect the unfolding of the post-war baby boom.
- Real GDP growth: A sharp fall in fertility rates in the 1960s eventually led to slower growth in the labor supply.
- r_{t}^{*} : Capital accumulation was boosted ahead of the decelleration in labor supply by the fact that:
- baby boomers had few dependents;
- female labor force participation rose in the 1960s and 1970s;
- longer life expectancy created extra incentives to save.

Related literature

- Effects of aging on interest rates and growth:
- Kruger and Ludwig (2007), Aksoy, et al. (2015), Carvalho et al. (2016), Eggertsson, et al. (2017), Cooley and Henriksen (2017), and others.
- What we do:
- Focus on US data going as far back and forward as possible.
- Isolate the effects of demographics in history.
- Evaluate the model relative to time-series estimates of trend real rates.

Our OG model

- We calibrate an OG model to a rich set of life-cycle statistics by age and birth cohort:
- Population composition;
- Mortality rates;
- Fertility rates;
- Labor supply.
- The decision units are:
- Adults (18+ years old) who are representative of their birth cohort;
- Representative firms.
- There is no aggregate uncertainty and factor markets are competitive.
- Individuals face uninsurable mortality risk; otherwise have perfect foresight.

Families

An adult of age a who survives the Grim Reaper in period t maximizes

$$
\sum_{s=0}^{A-a} \beta^{s} \Gamma_{a, t, t+s}\left(\frac{\left(C_{a+s, t+s}\right)^{1-\nu}}{1-\nu}+\epsilon\left(n_{a+s, t+s}\right)^{\eta} \frac{\left(C_{a+s, t+s}^{c}\right)^{1-\nu}}{1-\nu}\right)
$$

subject to a sequence of budget constraints such that

$$
\begin{aligned}
C_{a+s, t+s}+n_{a+s, t+s} C_{a+s, t+s}^{c}+K_{a+s+1, t+s+1} & = \\
\left(K_{a+s, t+s}+\phi \equiv_{t+s}\right)\left(R_{t+s}^{K}+1-\delta\right) & +e_{a+s, t+s} W_{t+s} .
\end{aligned}
$$

If an adult lives to be 120 years old, she consumes all of her income and dies.

Life-cycle variables to calibrate

- Mortality rates by age and birth cohort, $\Gamma_{a, t, t+1}$.
- Fertility rates by age and birth cohort, $n_{a, t}$.
- Employment rates by age and birth cohort, $e_{a, t}$.
- Initial conditions (population, dependent children, capital) at the start of our sample, 1900.
- We extend simulation out through 2400.

Mortality rates

- Our mortality rates by age and birth cohort are based on Bell and Miller (2005) from U.S. Social Security Administration.
- Their decennial projections run from 1900 to 2100 .
- We interpolate across years of age and decennial projections using splines.
- We assume constant mortality rates by age from 2100:Q1
 onward.

Births

- We obtain birth data from three sources:
- U.S. Census Bureau;
- U.S. National Center for Health Statistics;
- U.N. Wold Population Estimates.
- We interpolate the stitched series with splines.
- Assign births to parents based on distribution of parent age.

Employment rates

- Data by age and birth cohort from BLS since 1948.
- Forecasts for 2024.
- We H-P filter employment rates to remove recessions.
- We then extrapolate the trend over time and over quarters of age.
- We extend the endpoints of the trend back in history and forward in time.

Dynamic equilibrium: real interest rates

- The model predicts that demographic factors:
- have lowered $r_{t}^{*} 1 \frac{1}{4}$ percentage points since 1980;
- caused the largest declines in r_{t}^{*} just after 2000;
- will keep r_{t}^{*} low in the coming decades.
- Removing dependent children from the utility function make the decline somewhat more gradual.

Equilibrium real interest rates

Point estimates and 50-percent uncertainty bands are from Johannsen and Mertens (2015).

Demographic transition since 1960

- To parse the repective effects of each demographic factor since 1960, we:
- Freeze one demographic variable from 1960 onward;
- Allow others to follow their historical path;
- Repeate the exercise for 1980.

Demographic transition since 1960

50-percent uncertainty bands from Johannsen and Mertens (2015).

Demographic transition since 1980

50-percent uncertainty bands from Johannsen and Mertens (2015).

Dynamic equilibrium: real GDP growth

- The model predicts that demographic factors:
- have lowered growth $1 \frac{1}{4}$ percentage points since 1980;
- GDP growth will remain low in the coming decades;
- all else equal, adding historical TFP produces level shift in growth rates.

Demographic transition since 1960

Real growth rate

Demographic transition since 1980

Real growth rate

Historical TFP growth

- TFP growth rate data from Fernald (2014), starting in 1947.
- Extend data back in time using estimates from Shackleton (2013), 2 percent.
- Extend data forward using estimates from Gordon (2015), 1.1 percent.
- H-P filter the data to remove business cycle.

Equilibrium real GDP growth rates

Summary

- Demographic factors predict that real interest rates and real growth rates should have fallen since 1980.
- The size of the declines predicted by the model— $1 \frac{1}{4}$ percentage points—appears consistent with empirical estimates.
- Demographic factors also predict real interest rates would rise from 1960 to 1980, consistent with some time-series evidence.
- The model predicts a rapid decline in r_{t}^{*} due to demographics since 2000.

Investment

- Since the global financial crisis of 2008, investment in the U.S. has been low.
- At the same time, real interest rates on have been low, which might drive money into equities and business investment.
- We analyze what our model predicts for net savings rates.

Net saving rate

- Blue line:benchmark model Red line: no dependent children.
- Net saving rates high as baby boom saves for retirement.
- Dip in net saving in 1980s and 1990s when we account for dependent kids.
- Large decline in net saving rate as baby boom retires.

[^0]: ${ }^{1}$ The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors.

