Discussion of 'Demographic Structure and Macroeconomic Trends' by Yunus Aksoy, Henrique Basso, Ron Smith, Tobias Grasl

Christian Siegel

University of Kent

12/10/2017

BoF/CEPR Conference on Demographics and the Macroeconomy

Overview

- How does demographic structure affect the macroeconomy?
- Import question as there is large demographic change
 - over recent decades: ageing
 - in the future: when baby boomers retire rejuvenating of the workforce, but for some time further ageing of population
- potentially supply and demand effects

This paper:

- Empirical analysis finds demographics matter
- Economic model to investigate potential channels

The Empirical Analysis

Panel VAR of 21 OECD countries over 1970–2014 (unbalanced)

- endogenous variables:
 - real GDP growth (in baseline specification not per capita)
 - investment rate
 - savings rate
 - (log hours) worked per capita
 - (short-term) real interest rate
 - inflation rate
 - extension: + (log) residential patent applications per capita
- whole range of controls, incl. fixed effects
- whole range of robustness checks

Empirical Specification

Panel VAR at yearly frequency

$$Y_{i,t} = a_i + A_1 Y_{i,t-1} + DW_{i,t} + controls_{i,t} + u_{i,t}$$

- ▶ can look at short-term (D) and long-term effects $(I A_1)^{-1}D$
- demographics change slowly, so main interest is in LR

Some results

with 3 age groups:

	β_1	β_2	β_3
g	0.09	0.03	-0.11
1	0.02	0.00	-0.02
S	0.08	0.04	-0.12
Н	-0.07	0.11	-0.03
rr	-0.14	0.28	-0.14
π	0.24	-0.28	0.04

	β_1	β_2	β_3
g	0.04	0.06	-0.10**
1	0.13***	0.08	-0.22**
S	0.24***	0.16	-0.40**
Н	-0.54***	1.08**	-0.54**
rr	-0.05	0.46	-0.42*
π	0.70***	-0.75***	0.05

Note: * = 10%, ** = 5%, * * * = 1% levels of significance.

Short-Run Demographic Impact - Matrix D

Table: Long-Run Demographic Impact - DLR

or with 8 age groups (quite demanding specification):

	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8
g	-0.040	0.118	0.093	0.046	0.108	-0.021	-0.304*	0.000
Ι	-0.506	0.195	0.251	0.228	0.023	0.241	0.399	-0.832
S	0.039	0.539 * *	-0.371	0.275	0.381	0.645^{**}	-0.126	-1.382*
H	-2.024**	0.053	0.498	2.654*	0.295	1.217	-1.567	-1.126
rr	-0.895	-0.328	0.507	0.847	0.375	0.149	0.255	-0.910
π	1.117*	0.656**	-0.328	-0.979*	-0.749*	0.016	-0.073	0.339

Note: ** = 10%, * = 5% levels of significance.

Table 3: Long-Run Demographic Impact - D_{LR}

Determinants of the age structure

Where is the variation in the demographic structure coming from?

- historical fertility rates, (age-specific) mortality rates
- but also migration across countries
 - migrants tend to be younger
 - migrants tend to move to countries that are doing well
 - potential endogeneity concern
- could the finding that 'younger' countries grow faster be spurious?
- same for population growth; differences in results b/w GDP growth and GDP per capita growth?

Functional Form

$$Y_{i,t} = a_i + A_1 Y_{i,t-1} + DW_{i,t} + controls_{i,t} + u_{i,t}$$

- baseline specification: no time fixed effect
- slope homogeneity
 - assumes being 60 in 1970 is the same as in 2010
 - does not allow for cross-country differences, but labour market institutions and retirement policies differ a lot

Further outcomes might be of interest

Supply side:

- heterogeneity within the workforce: imperfect substitutability between experience groups
- Katz-Murphy (1992); Jeong, Kim, Manovskii (2015): relative supply affects relative wages
- ► Caselli (2015): experienced biased technological change
- Boehm and Siegel (2017) find the above, but also effect on employment rates (using LLM variation and IV strategy)

Demand side:

- not just total consumption but also composition might matter
 - demand for services (e.g. health and social care) vs. goods

A relatively rich stylized model

- Blanchard-Yaari style households (young/workers/old)
- Endogenous technology, adaptation of Comin and Gertler (2006)

R&D and Adoption are Endogenous

- R&D and adoption respond to rate of return
- stock of invented products is endogenous due to R&D which has productivity

$$\frac{\chi Z_t}{\Psi^{\rho}_t S^{1-\rho}_t} \left(\Gamma^{yw}_t \right)^{\rho_{yw}}$$

- novelty is introducing $\Gamma_t^{yw} = (1 \omega^y) \frac{N_t^y}{N_t} + (1 \lambda^{yw}) \Gamma_{t-1}^{yw}$
- For 0 < λ^{yw} < 1, innovation productivity depends on when workers entered → a *supply* effect.
- ► adoption decision depends positively on total consumption → demand effect.

Other Model Ingredients

- what do endogenous mark-ups, capital utilization, etc. do?
 - Comin and Gertler (2006) use these to generate fluctuations at medium frequency from a high frequency shock.
 - but your driver is demographic change a *low* frequency shock.
- what role does human capital have?
 - reduction in fertility increases efficiency units of the young
 - seems to be very similar to intergenerational transfers

Empirical Analysis vs. Model

- quantitatively, how much did endogenous innovation, life-cycle consumption effects, human capital, etc. matter in the past?
- theoretical model has predictions beyond what is in the VAR (e.g. mark-ups) – and vice versa (e.g. inflation)
- in general difficult to apply a closed-economy model to cross-country data
 - global diffusion of technology
 - rate of return equality
 - migration
- but growth slowed down globally model might also apply at world level

Very interesting paper

- document a set of empirical facts
- empirical results consistent with theory
- perhaps the empirics and the model could be linked better

Minor Comments

- how well does the VAR in sample?
- how large are the effects identified?
- when forecasting, what do assume about future fertility and mortality rates?